
Séminaire Lotharingien de Combinatoire 86B (2022) Proceedings of the 34th Conference on Formal Power
Article #45, 12 pp. Series and Algebraic Combinatorics (Bangalore)

Planar Tanglegram Layouts and Single Edge
Insertion

Kevin Liu*1

1Department of Mathematics, University of Washington, Seattle, WA 98125, USA

Abstract. Tanglegrams are formed by taking two rooted binary trees T and S with the
same number of leaves and uniquely matching each leaf in T with a leaf in S. They
are usually represented using layouts that embed the trees and matching in the plane.
Planar tanglegrams are tanglegrams that have a layout with no crossings. Previous
work on planar tanglegrams include enumeration, a Tanglegram Kuratowski Theorem,
and an algorithm for drawing a planar layout. In this paper, we characterize all planar
layouts of a planar tanglegram. We then apply our work to inserting a single edge into
a planar tanglegram.

Keywords: tanglegram, tree, layout, crossing, planar, edge insertion

t1

t2

t3

t4

t5

s1

s2

s3

s4

s5

t3

t1

t2

t5

t4

s5

s4

s2

s3

s1

Figure 1: Two layouts for the same tanglegram.

1 Introduction

Let T and S be two rooted binary trees with leaves labeled as {ti}i∈I and {sj}j∈J , re-
spectively, where I, J ⊆ N are finite index sets of the same size. If we let ϕ : I → J be
a bijection, then we can denote a tanglegram as (T, S, ϕ), where ϕ indicates that ti is
matched with sϕ(i). A layout of a tanglegram draws T, S, and the edges (ti, sϕ(i)) in the
plane such that T is planarly embedded left of the line x = 0 with all leaves on x = 0,
S is planarly embedded right of the line x = 1 with all leaves on x = 1, and the edges
(ti, sϕ(i)) are drawn using straight lines. Examples are shown in Figure 1. A crossing is
any pair of edges (ti, sϕ(i)) and (tj, sϕ(j)) that intersect in the layout, and the crossing num-
ber of a tanglegram (T, S, ϕ), denoted crt(T, S, ϕ), is the minimum number of crossings

*kliu15@uw.edu. Partially supported by the National Science Foundation grant DMS-1764012.

mailto:kliu15@uw.edu

2 K. Liu

over all layouts of (T, S, ϕ). The Tanglegram Layout Problem attempts to efficiently find
a layout that achieves the crossing number.

Tanglegrams initially arose in biology and computer science. Biologists use binary
trees to model evolution and tanglegrams to model relationships between species. Find-
ing optimal layouts helps determine how two species may have co-evolved [15]. Appli-
cations in computer science include clustering, decomposition of programs into layers,
or analyzing the difference in hierarchy between similar programs or different versions
of the same program [3]. Combinatorial interest in tanglegrams developed more re-
cently. Matsen et al. [15] formalized tanglegrams as mathematical objects and described
connections with phylogenetics. Billey, Konvalinka, and Matsen [2] enumerated tan-
glegrams and constructed an algorithm to generate them uniformly at random. Subse-
quently, Ralaivaosaona, Ravelomanana, and Wagner counted planar tanglegrams [17],
Gessel counted several variations of tanglegrams using combinatorial species [8], and
Konvalinka and Wagner studied the properties of random tanglegrams [12].

The Tanglegram Layout Problem has connections to the problem of drawing a graph
with the fewest number of crossings possible. The crossing number of a graph G, de-
noted cr(G), is the minimum number of crossings over all drawings of G. Determining
if cr(G) ≤ k for some k ∈ N is NP-complete [7], and the same is true for determining if
crt(T, S, ϕ) ≤ k [6]. Known results in graph drawings sometimes have analogous results
in tanglegram layouts, and some have approached the Tanglegram Layout Problem by
translating known results about graphs to tanglegrams. Czabarka, Székely, and Wagner
recently constructed a Tanglegram Kuratowski Theorem characterizing planar tangle-
grams. Previously, Lozano et al. constructed an algorithm for drawing a planar layout
[14]. Anderson et al. recently translated results in graph drawings to prove that remov-
ing a between-tree edge (ti, sϕ(i)) from a tanglegram reduces crossing number by at most
n − 3, and they produce a family of tanglegrams to show that this bound is sharp [1].

Given the difficulty of minimizing crossings in graph drawings, some have studied
approximating cr(G) rather than finding it exactly. One approach to this is edge inser-
tion. The Edge Insertion Problem for graphs starts with a graph G and an edge e ∈ G
such that G \ {e} is planar, and attempts to find a drawing of G in the plane so that
the drawing of G \ {e} is planar and the number of crossings from e is minimized. This
problem is well studied. A linear-time algorithm exists to solve it, and some bounds
have been found relating an optimal drawing of G and a solution to the Edge Insertion
Problem for G \ {e} with {e} inserted [9, 10]. The Edge Insertion Problem generalizes
to the Multiple Edge Insertion Problem, where we insert several edges {e1, . . . , en} into
planar G \ {e1, . . . , en} optimally, and current approximation algorithms for cr(G) still
use multiple edge insertion with planar subgraphs [4]. Given the role that edge inser-
tion with planar subgraphs plays in graph drawing, it is plausible that edge insertion
can play a similar role for tanglegram layouts.

Planar Tanglegram Layouts and Single Edge Insertion 3

In this paper, we outline several results involving planar tanglegram layouts and sin-
gle edge insertion. Full details for these results and their proofs can be found in [13]. We
start by characterizing the planar layouts of a planar tanglegram. For a planar tangle-
gram (T, S, ϕ), we will define a leaf-matched pair (u, v) as a pair of internal vertices u ∈ T
and v ∈ S whose descendant leaves are matched by ϕ, and we will define an operation
called a paired flip. By adding steps to the Untangle algorithm by Lozano et al. for draw-
ing a planar layout of a planar tanglegram, we construct ModifiedUntangle (Algorithm
1), which also identifies leaf-matched pairs and stores them in a set L, obtaining the
following result.

Theorem 1.1. Let (T, S, ϕ) be a planar tanglegram, and let P(T, S, ϕ) denote its collection of
planar layouts. Let the output of ModifiedUntangle(T, S, ϕ) be the layout (X, Y) and set of
leaf-matched pairs L. Every (X′, Y′) ∈ P(T, S, ϕ) can be obtained by starting with (X, Y) and
performing a sequence of paired flips at (u, v) ∈ L.

Note that when T and S have more than one vertex, the roots of T and S always form
a leaf-matched pair of (T, S, ϕ). If this is the only leaf-matched pair, then we call the
tanglegram irreducible. Letting size(T, S, ϕ) be the common number of leaves in T and S,
the generating function

H(x) = ∑
irreducible planar (T, S, ϕ)

xsize(T,S,ϕ) (1.1)

was studied in [17], where the authors used the convention that the coefficient of x2 is 1
2

to obtain their results enumerating planar tanglegrams. We maintain this convention. If

F(x, q) = ∑
planar (T,S,ϕ)

xsize(T,S,ϕ)q|{leaf-matched pairs of (T, S, ϕ)}|, (1.2)

then the coefficient of xnqk counts the number of planar tanglegrams of size n with k
leaf-matched pairs. The following result allows us to find these coefficients.

Theorem 1.2. The generating function F(x, q) satisfies the relation

F(x, q) = q · H(F(x, q)) + x +
q · F(x2, q2)

2
.

Finally, we consider the tanglegram analogue of (single) edge insertion, which we
state below. Using our previous results on leaf-matched pairs, we will describe our
Insertion algorithm for efficiently solving this problem.

Problem 1.3 (Tanglegram Single Edge Insertion). Given a tanglegram (T, S, ϕ) and a planar
subtanglegram (TI , Sϕ(I), ϕ|I) induced by the index set I = [n] \ {i} for i ∈ [n], find a layout
of (T, S, ϕ) that restricts to a planar layout of (TI , Sϕ(I), ϕ|I) and has the minimal number of
crossings possible.

Theorem 1.4. The Insertion Algorithm solves the Tanglegram Single Edge Insertion Problem
in O(n2) time and space, where n is the size of the tanglegram.

4 K. Liu

2 Preliminaries

A rooted binary tree T is a tree in which every vertex has either zero or two children, and
where a designated vertex called the root, denoted root(T), is allowed to have degree
2. A vertex that has children is called an internal vertex, and a vertex with no children
is called a leaf. If v has children v1 and v2, we call v the parent of v1 and v2. We say
that a vertex v1 is a descendant of vk or vk is an ancestor of v1 if there is a sequence of
vertices v1, v2, . . . , vk such that vi+1 is the parent of vi for i = 1, 2, . . . , k − 1, and we use
the notation v1 < vk or vk > v1 to denote this. When needed, we will use a subscript
with the name of a tree to indicate ancestry in specific trees, such as vk >T v1.

For an internal vertex v ∈ T, the subtree rooted at v is the tree formed by all vertices
u with u ≤ v, and this subtree then has v as its root. Using subtrees, we can represent
trees using the nested lists notation from Section 2.3.2 of [11]. Each set of parenthesis
represents a subtree, and the label for the root of this subtree is written to the left of the
parenthesis. Unless otherwise stated, we will index leaves with [n] = {1, 2, . . . , n}, and
usually we will omit labels for internal vertices.

All trees are considered up to isomorphism, so relabeling vertices does not produce
a different tree. Given an internal vertex v ∈ T, a flip at vertex v is the operation that
interchanges the order of the children for all u ≤ v. Pictorially, if we start with a drawing
of a tree T, a flip at v ∈ T reflects the subtree rooted at v, which motivates the name
“flip.” Note that for any tree T, flips generate all trees isomorphic to T.

Tanglegrams (T, S, ϕ) are formed from a pair of rooted binary trees T, S and a bijec-
tion ϕ matching their leaves. The size of the tanglegram (T, S, ϕ) is the common number
of leaves in T or S. We will call the edges in T and S tree edges and call the edges induced
by ϕ between-tree edges. For any vertex u ∈ T or v ∈ S, we will use Lf(u) and Lf(v)
to respectively denote the set of leaves that are descendants of u in T and the descen-
dants of v in S. As with trees, we consider tanglegrams up to isomorphism. Since flips
generate all trees isomorphic to the underlying trees, they also generate all tanglegrams
isomorphic to a given tanglegram.

Our notation for tanglegram layouts builds on the notation used in [14]. In any layout,
the number of crossings is completely determined by the order of the leaves in the two
trees and the bijection ϕ matching these leaves, as the between-tree edges (ti, sϕ(i)) and
(tj, sϕ(j)) intersect when ti is embedded above tj and sϕ(i) is embedded below sϕ(j). Since
we are primarily interested in the number of crossings rather than specific coordinates
of the plane embedding, we give the following definition.

Definition 2.1. Let (T, S, ϕ) be a tanglegram drawn in the plane with a given layout. The
leaf order of the given layout is a pair of ordered lists (X, Y), where X and Y respectively
list the leaves of T and S in order of appearance from top to bottom in the layout.

One can view the leaf order of a layout (X, Y) as an equivalence class of layouts,
where two layouts are equivalent if they draw the leaves of T and S in the same order

Planar Tanglegram Layouts and Single Edge Insertion 5

from top to bottom. To recover a layout from the ordered lists (X, Y), one can draw the
leaves listed in X and Y from top to bottom respectively on x = 0 and x = 1, and then
use the information from T, S, and ϕ to draw the trees and between-tree edges. Flips
generate all trees isomorphic to T or S, so they can act on leaf orders (X, Y) to obtain all
possible leaf orders, where a flip at an internal vertex u acts on (X, Y) by reversing the
order of the elements in Lf(u) in the appropriate list X or Y. Throughout this paper, we
abuse terminology and refer to this pair of lists (X, Y) also as a tanglegram layout.

Finally, we will define induced subtrees and induced subtanglegrams using a similar
definition as in [5]. Notice that layouts (X′, Y′) of subtanglegrams correspond to taking
sub-lists in layouts (X, Y) of the original tanglegram.

Definition 2.2. Let T be a tree with leaves indexed by [n]. For any I ⊆ [n], the rooted
binary subtree induced by I, denoted TI , is formed by taking the minimal subtree of T
containing the leaves indexed by I and suppressing all internal vertices that have only
one child. For a tanglegram (T, S, ϕ) with leaves indexed by [n], the subtanglegram induced
by I is the tanglegram (TI , Sϕ(I), ϕ|I), that is, the tanglegram formed from the induced
subtrees TI and Sϕ(I) with leaves matched using the restriction ϕ|I .
Example 2.3. Consider the tanglegram (T, S, ϕ) shown on the left in Figure 2 with

T = (((t1, t2), t3), (t4, t5)) S = (((s1, (s2, s3)), s4), s5)
i 1 2 3 4 5

ϕ(i) 4 2 5 1 3

By writing the leaves of T and S in the order given, we obtain the layout (X, Y) =
(t1t2t3t4t5, s1s2s3s4s5). A flip at the root of ((s1, (s2, s3)), s4) yields (t1t2t3t4t5, s4s3s2s1s5).
Taking sub-lists of (t1t2t3t4t5, s4s3s2s1s5) based on the elements in the sets {1, 2, 4, 5} and
ϕ({1, 2, 4, 5}), we obtain the layout (t1t2t4t5, s4s3s2s1) for (T{1,2,4,5}, Sϕ({1,2,4,5}), ϕ|{1,2,4,5}).
Using T and S, we produce the drawings in Figure 2 corresponding to these sequences.

t1

t2

t3

t4

t5

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

s4

s3

s2

s1

s5

t1

t2

t4

t5

s4

s3

s2

s1

Figure 2: Layouts from Example 2.3.

3 Leaf-matched pairs and planar tanglegram layouts

In this section, we discuss leaf-matched pairs, which allow us to characterize planar
tanglegram layouts. We start with some definitions, followed by an example in Figure 3.
We then give our ModifiedUntangle algorithm.

6 K. Liu

Definition 3.1. Let (T, S, ϕ) be a tanglegram with layout (X, Y). A pair of internal ver-
tices (u, v) with u ∈ T and v ∈ S is a leaf-matched pair of (T, S, ϕ) if Lf(u) and Lf(v) are
matched by ϕ. A paired flip at (u, v) is the operation on (T, S, ϕ) corresponding to a flip
at u and a flip at v. This maps (X, Y) to the layout (X′, Y′), where X′ is the image of X
after a flip at u and Y′ is the image of Y after a flip at v.

u v

t1
t2
t3
t4
t5
t6
t7
t8

s1
s2
s3
s4
s5
s6
s7
s8

t4
t3
t2
t1
t5
t6
t7
t8

s4
s3
s2
s1
s5
s6
s7
s8

u v

Figure 3: Starting with the layout on the left, a paired flip at the leaf-matched pair
(u, v) results in the layout on the right.

Algorithm 1: ModifiedUntangle (based on [14, Algorithm 2])
Input: planar tanglegram (T, S, ϕ) with leaves {t1, . . . , tn} and {s1, . . . , sn}
Output: a planar layout (X, Y) of (T, S, ϕ), list of leaf-matched pairs L ⊆ T × S

1 P := Boolean table with P[u, v] = False for all vertices u ∈ T, v ∈ S
2 set P[ti, sϕ(i)] = True for all i ∈ [n]
3 recursively set P[u, v] = True for internal vertices u ∈ T, v ∈ S if there exists

u′ ≤T u, v′ ≤S v with P[u′, v′] = True
4 X := (root(T)), Y := (root(S)) as ordered lists
5 E := {(root(T), root(S))} as a set of edges
6 L := ∅
7 while X ∪ Y contains an internal vertex of T or S do
8 u := an internal vertex of T or S with highest degree in the bipartite graph

G = (X, Y, E)
9 if u ∈ X then

10 if u has degree 1 in G then
11 update L := L ∪ (u, v), where v is the unique neighbor of u in G

12 update X, E := Refine(X, Y, u, E, P)

13 else if u ∈ Y then
14 if u has degree 1 in G then
15 update L := L ∪ (v, u), where v is the unique neighbor of u in G

16 update Y, E := Refine(Y, X, u, E, P)

17 return (X, Y), L

Planar Tanglegram Layouts and Single Edge Insertion 7

Algorithm 2: Refine (based on [14, Algorithm 3])
Input: ordered lists of vertices (A, B), u ∈ A, edges E on A ∪ B, Boolean table P
Output: A, E after u has been replaced with its children

1 u1, u2 := children of u in T ∪ S
2 foreach j ∈ [m] such that (u, bj) ∈ E where B = (b1, . . . , bm) do
3 update E := E \ {(u, bj)} // replace edges in E involving u with those

involving u1, u2
4 foreach i ∈ {1, 2} do
5 if P[ui, bj] = True then
6 update E := E ∪ {(ui, bj)}

7 k := max{j ∈ [m] : (u1, bj) ∈ E} // last vertex in B adjacent to u1

8 if j > k for all (u2, bj) ∈ E then
9 replace u with u1u2 in A

10 else
11 replace u with u2u1 in A

12 return A, E

Theorem 3.2. [14] For any planar tanglegram (T, S, ϕ) of size n, ModifiedUntangle termi-
nates in a planar layout (X, Y) and runs in O(n2) time and space.

Lemma 3.3. If (T, S, ϕ) is a planar tanglegram, then the set L returned by ModifiedUntangle

is the set of leaf-matched pairs of (T, S, ϕ).

Using the techniques from the proof of Theorem 3.2 and Lemma 3.3, we can establish
Theorem 1.1. Hence, we can use the output of ModifiedUntangle to find all planar
layouts of a tanglegram. Theorem 1.1 also gives us an interesting corollary about the flip
graph of a planar tanglegram, which we now define.

Definition 3.4. Let (T, S, ϕ) be a planar tanglegram. Define the flip graph of (T, S, ϕ) as
Γ(T, S, ϕ) = (V, E) with vertices v(X,Y) ∈ V corresponding to planar layouts (X, Y), and
edges (v(X,Y), v(X′,Y′)) ∈ E if (X′, Y′) can be obtained from (X, Y) by a paired flip at some
leaf-matched pair (u, v) of (T, S, ϕ).

Corollary 3.5. The flip graph of a planar tanglegram is connected.

We can count the number of tanglegrams of size n with k leaf-matched pairs. Re-
call the generating functions H(x) and F(x, q) defined in (1.1) and (1.2). Generalizing
the arguments in [17, Theorem 1] establishes Theorem 1.2. Using this result, it takes a
computer-algebra system a moment to generate several coefficients of F(x, q). The co-
efficient of xnqk counts the number of planar tanglegrams of size n with k leaf-matched
pairs, and we collect these coefficients in Table 1. See [16, A349409] for more terms. The
corresponding planar tanglegrams for n = 4 are shown in Figure 4.

8 K. Liu

n, k 1 2 3 4 5 6 7 total
2 1 1
3 1 1 2
4 5 4 2 11
5 34 28 11 3 76
6 273 239 102 29 6 649
7 2436 2283 1045 325 73 11 6173
8 23391 23475 11539 3852 968 181 23 63429

Table 1: The number of planar tanglegrams of size n with k leaf-matched pairs.

Figure 4: The 11 planar tanglegrams of size 4 with color-coded leaf-matched pairs.
The first five tanglegrams have one leaf-matched pair, and hence are irreducible. The
following four have two pairs, and the final two have three pairs.

4 The Tanglegram Single Edge Insertion Problem

In this section, we describe our Insertion Algorithm for solving the Tanglegram Single
Edge Insertion Problem. Throughout this section, fix a tanglegram (T, S, ϕ) of size n, fix
I = [n] \ {i} for some i ∈ [n], and let (X, Y) be a layout of (T, S, ϕ) that restricts to a
planar layout of (TI , Sϕ(I), ϕ|I). We use the notation

u0 = parent of ti ∈ T,
v0 = parent of sϕ(i) ∈ S,

L(I) = {leaf-matched pairs of (TI , Sϕ(I), ϕ|I)},

L(I)T = {(u, v) ∈ L(I) : u >T ti, v ̸>S sϕ(i)},

L(I)S = {(u, v) ∈ L(I) : u ̸>T ti, v >S sϕ(i)}.

(4.1)

An example of the sets L(I)T and L(I)S is given in Figure 5. Note that u0 and v0 are also
the unique internal vertices in (T, S, ϕ) that are not in (TI , Sϕ(I), ϕ|I). Using these sets
with our results from Section 3, the Tanglegram Single Edge Insertion Problem reduces
to certain operations at the elements above.

Planar Tanglegram Layouts and Single Edge Insertion 9

u3 v3
u2 v2

u1 v1

u0

v0

ti

sϕ(i)

Figure 5: For the tanglegram given above with subtanglegram (TI , Sϕ(I), ϕ|I)
shown in black, L(I)T = {(u2, v2), (u3, v3)} and L(I)S = {(u1, v1)}. Note that
(root(T), root(S)) ∈ L(I) is not an element of either set since root(T) >T ti and
root(S) >S sϕ(i).

Definition 4.1. Let T be a tree, let u ∈ T be an internal vertex, and let u1, u2 be the
children of u. A subtree switch at u is the operation on T that interchanges the two
subtrees rooted at u1 and u2, while maintaining the relative order of all leaves within
each subtree.

Observe that a subtree switch at u is equivalent to a flip at u and a flip at each of its
children. On a layout (X, Y) of a tanglegram (T, S, ϕ), the action of a subtree switch at u
interchanges the order of the two sublists corresponding to Lf(u1) and Lf(u2).

Lemma 4.2. A solution to the Tanglegram Single Edge Insertion Problem can be obtained by
starting at (X, Y) and performing a sequence of paired flips at (u, v) ∈ L(I)T ∪ L(I)S and
subtree switches at u0 and v0.

Identifying a solution in Lemma 4.2 will require some cases. Notice that u >T u0 for
any (u, v) ∈ L(I)T and v >S v0 for any (u, v) ∈ L(I)S, as u0 and v0 are respectively the
parents of ti and sϕ(i). Additionally, whenever L(I)T and L(I)S are nonempty, each set
has a unique “maximal” element, which we denote

(uTmax, vTmax) = unique (u, v) ∈ L(I)T such that u ≥T u′ for all (u′, v′) ∈ L(I)T,
(uSmax, vSmax) = unique (u, v) ∈ L(I)S such that v ≥S v′ for all (u′, v′) ∈ L(I)S.

(4.2)

Lemma 4.3. If L(I)S ̸= ∅ and u0 >T uSmax, then L(I)T = ∅. If L(I)T ̸= ∅ and v0 >S vTmax,
then L(I)S = ∅.

When u0 >T uSmax, the previous lemma implies L(I)T = ∅. In this case, we find
a solution in Lemma 4.2 by considering operations at u0, (u, v) ∈ L(I)S, and v0 in the
unique order such that no element is considered before all of its ancestors have been
considered. We make paired flip and subtree switch choices greedily based on the cross-
ings that can be affected by operations at the given vertices, but not by operations we
consider afterwards. An example is shown in Figure 6. The case v0 >S vTmax is similar.

10 K. Liu

ti

sϕ(i)

ti

u0 v0u1 v1u2 v2

ti

sϕ(i)u0 v0u1 v1u2 v2

ti

sϕ(i)

u0

v0
u1 v1u2 v2

Figure 6: In this example, L(I)S = {(u1, v1), (u2, v2)} with (uSmax, vSmax) = (u2, v2).
Starting with (X, Y) on the left, a subtree switch at u0 determines whether (ti, sϕ(i))

crosses the edges in green. Performing a subtree switch at u0 removes these crossings,
resulting in the middle layout. Subsequent steps include no operation at (u2, v2), a
paired flip at (u1, v1), and no operation at v0, returning the layout on the right.

For all remaining cases, we first consider the elements of L(I)T in descending order
with respect to ancestry, followed by the elements of L(I)S in descending order. We
again make paired flip choices greedily based on crossings that cannot be affected by
operations we consider afterwards. We then consider the four layouts generated by all
combinations of subtree switches at u0 and v0, and we return the layout with the fewest
number of crossings. An example of this procedure is shown in Figure 7.

u3 v3
u2 v2

u1 v1

u0

v0

ti

sϕ(i)

u3 v3

u2 v2

u1 v1

u0

v0

ti

sϕ(i)

u3 v3

u2 v2

u1 v1

u0

v0

ti

sϕ(i)

Figure 7: Starting with (X, Y) on the left, we perform a paired flip at (u3, v3) to min-
imize crossings between (ti, sϕ(i)) and the edges in green, obtaining the layout in the
middle. For (u2, v2) and (u1, v1), we respectively consider the edges shown in green
and blue, and ultimately do not perform either of those paired flips. After considering
all choices of subtree switches at u0 and v0, we return the layout shown on the right.

For our Insertion Algorithm, first use ModifiedUntangle on (T, S, ϕ|I) to find a
layout (X, Y) of (T, S, ϕ) that restricts to a planar layout of (TI , Sϕ(I), ϕ|I). Then construct
L(I)T and L(I)S. Afterwards, check for the different cases involving uSmax or vTmax, and
proceed accordingly. After formalizing this procedure, we obtain Theorem 1.4.

Planar Tanglegram Layouts and Single Edge Insertion 11

5 Future Work

In Section 3, we defined the flip graph of a planar tanglegram. While paired flips will
generate all vertices in this graph, it is possible that some flips do not produce a new
layout, as tanglegrams are considered up to isomorphism on T and S. One simple
example of this is the unique tanglegram of size 2, where a paired flip at the roots of
both trees does not produce a new layout. As such, we pose the following problem.

Problem 5.1. For any planar tanglegram (T, S, ϕ), characterize the flip graph Γ(T, S, ϕ) =
(V, E). In particular, determine |V|, |E|, and deg(v) for v ∈ V.

Our next problem involves generating tanglegrams uniformly at random. Billey,
Konvalinka, and Matsen previously constructed an algorithm that generates tanglegrams
uniformly at random in [2], and we propose a corresponding problem for the planar case.

Problem 5.2. Find an efficient algorithm for generating a planar tanglegram of size n uniformly
at random.

Finally, one can find examples where a solution to the Tanglegram Single Edge In-
sertion Problem is not a solution to the Tanglegram Layout Problem, such as the ones
constructed in [13, Corollary 4.18]. However, we could consider flips that do not preserve
planarity of the subtanglegram but do reduce the number of crossings.

Problem 5.3. Can the Insertion algorithm be modified to create an efficient approximation algo-
rithm for the crossing number of an almost planar tanglegram?

Acknowledgements

We would like to thank Sara Billey for suggesting tanglegrams as an area of research
and for valuable feedback. We would also like to thank Matjaž Konvalinka, Stark Ryan,
and the anonymous reviewers for valuable feedback on earlier versions of this paper.

References

[1] R. Anderson et al. “Analogies between the crossing number and the tangle crossing num-
ber”. Electron. J. Combin. 25.4 (2018), Paper No. 4.24, 15.

[2] S. C. Billey, M. Konvalinka, and F. A. Matsen. “On the enumeration of tanglegrams and
tangled chains”. J. Combin. Theory Ser. A 146 (2017), pp. 239–263.

[3] K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, Y. Okamoto, R. I. Silveira, and A. Wolff.
“Drawing (complete) binary tanglegrams: hardness, approximation, fixed-parameter tract-
ability”. Algorithmica 62.1-2 (2012), pp. 309–332.

12 K. Liu

[4] J. Chuzhoy, S. Mahabadi, and Z. Tan. “Towards better approximation of graph crossing
number”. 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
(2020), pp. 73–84.

[5] E. Czabarka, L. A. Székely, and S. Wagner. “A tanglegram Kuratowski theorem”. J. Graph
Theory 90.2 (2019), pp. 111–122.

[6] H. Fernau, M. Kaufmann, and M. Poths. “Comparing trees via crossing minimization”. J.
Comput. Syst. Sci. 76 (2010), pp. 593–608.

[7] M. R. Garey and D. S. Johnson. “Crossing number is NP-complete”. SIAM J. Algebraic
Discrete Methods 4.3 (1983), pp. 312–316.

[8] I. M. Gessel. “Counting tanglegrams with species”. J. Comb. Theory, Ser. A 184 (2021),
p. 105498.

[9] C. Gutwenger, P. Mutzel, and R. Weiskircher. “Inserting an edge into a planar graph.”
Algorithmica 41 (2001), pp. 289–308.

[10] P. Hliněný and G. Salazar. “On the Crossing Number of Almost Planar Graphs”. Graph
Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 162–173.

[11] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.
USA: Addison Wesley Longman Publishing Co., Inc., 1997.

[12] M. Konvalinka and S. Wagner. “The shape of random tanglegrams”. Adv. in Appl. Math.
78 (2016), pp. 76–93.

[13] K. Liu. “Characterizing planar tanglegram layouts and applications to edge insertion prob-
lems”. 2022. arXiv:2201.10533.

[14] A. Lozano, R. Pinter, O. Rokhlenko, G. Valiente, and M. Ziv-Ukelson. “Seeded Tree Align-
ment and Planar Tanglegram Layout”. WABI. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2007, pp. 98–110.

[15] F. A. Matsen, S. C. Billey, A. Kas, and M. Konvalinka. “Tanglegrams: a reduction tool for
mathematical phylogenetics”. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 15.1 (2015), pp. 343–349.

[16] OEIS Foundation Inc. “The On-Line Encyclopedia of Integer Sequences”. http://oeis.

org. 2021.

[17] D. Ralaivaosaona, J. B. Ravelomanana, and S. Wagner. “Counting Planar Tanglegrams”.
29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the
Analysis of Algorithms (AofA 2018). Vol. 110. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018,
32:1–32:18.

https://arxiv.org/abs/2201.10533
 http://oeis.org
 http://oeis.org

	Introduction
	Preliminaries
	Leaf-matched pairs and planar tanglegram layouts
	The Tanglegram Single Edge Insertion Problem
	Future Work

