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Grothendieck-to-Lascoux Expansions
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Abstract. We establish the conjecture of Reiner and Yong for an explicit combinatorial
formula for the expansion of a Grothendieck polynomial into the basis of Lascoux
polynomials. This expansion is a subtle refinement of its symmetric function version
due to Buch, Kresch, Shimozono, Tamvakis, and Yong, which gives the expansion of
stable Grothendieck polynomials indexed by permutations into Grassmannian stable
Grothendieck polynomials. Our expansion is the K-theoretic analogue of a Schubert
polynomial into Demazure characters, whose symmetric analogue is the expansion
of a Stanley symmetric function into Schur functions. We extend our expansions to
flagged Grothendieck polynomials.
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1 Introduction

The Grothendieck polynomials Gw of Lascoux and Schützenberger [16] are explicit poly-
nomial representatives of the K-classes of structure sheaves of Schubert varieties in
flag varieties. Reiner and Yong [23] conjectured an explicit combinatorial expansion of
Grothendieck polynomials into the basis of Lascoux polynomials Lα [15]. Our first main
theorem (Theorem 4.1) rediscovers a combinatorial formula for the Lascoux polynomi-
als, which is implicit in [4]. This is used to prove our second main theorem (Theorem 7.3)
which establishes the Reiner–Yong conjecture.

2 Four expansions

The Grothendieck-to-Lascoux expansion fits into a family of four related expansions. The
polynomials to be expanded are the cohomological and K-theoretic Schubert bases given
by the Schubert polynomials Sw and the Grothendieck polynomials Gw respectively,
and their symmetrized or stable versions, known as the Stanley symmetric functions Fw
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and Grothendieck symmetric functions (also known as stable Grothendieck polynomi-
als) Gw. These are respectively expanded into type A Demazure characters (also called
key polynomials) κα, Lascoux polynomials Lα, Schur functions sλ, and Grassmannian
Grothendieck symmetric functions Gλ.

Sw Fw

κα sλ

symmetrize

expand(a) expand (b)

symmetrize

cohomology

Gw Gw

Lα Gλ

symmetrize

expand(c) expand (d)

symmetrize

K-theory

Using the formalism of connective K-theory (equivalently, introducing a harmless grad-
ing parameter β into the Grothendieck polynomial), as we do in this article, all expan-
sions specialize to their K-theoretic or cohomological counterparts by setting β to −1 or
0 respectively.

In chronological order, expansion (b) was established by Edelman and Greene [5] via
a Schensted-type insertion algorithm for reduced words. The expansion (a) was found
by Lascoux and Schützenberger and proved in [22]. Expansion (d) was established by
Buch, Kresch, Shimozono, Tamvakis, and Yong [3] via Hecke insertion, which takes
Hecke words as input. Expansion (c) is the topic of this article.

The expansion coefficients have geometric significance. The Stanley-to-Schur coef-
ficients of the expansion (b) coincide with large rank affine Stanley to affine Schur co-
efficients [13, Proposition 9.17], which in turn coincide with Gromov–Witten invariants
for the flag variety via Peterson’s Quantum Equals Affine Theorem [14, 21], [11, Part 3,
Section 10]. Specializing w to a Zelevinsky permutation, (a) and (b) give the expansion
of cohomology classes of equioriented type A quiver loci [9, Theorem 7.14], the latter
being shown by Buch and Fulton [7] to specialize to virtually all known variants of type
A Schubert polynomials. Expansions (c) and (d) give analogous expansions in K-theory
[2, 18].

The nonsymmetric expansions are subtle refinements of their symmetric counter-
parts. In the symmetric expansions there is a set of tableaux in which each tableau T in
the set, gives a copy of sλ or Gλ where λ is the shape of T. There is a corresponding term
κα or Lα in the nonsymmetric expansion, but an additional datum must be supplied: a
composition or extremal weight α in the symmetric group orbit of λ; see (3.10) through
(3.13). Such constructions assigning a composition to a tableau go by the general name
of key. In the crystal graph of semistandard Young tableaux of shape λ, the left and right
keys of the tableau T of shape λ are given by the final and initial directions of the corre-
sponding Littelmann path whose highest weight vector is the directed line segment from
the origin to λ. The initial direction indicates the smallest Demazure crystal containing
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the given tableau.

3 Grothendieck and Lascoux polynomials

The group S+ =
⋃

n≥1 Sn acts on R = Z[β][x1, x2, . . . ] by permuting the variables: for
i ≥ 1, let si exchange xi and xi+1. We define the following operators on R, where an
element f ∈ R (or its fraction field) denotes the operator of left multiplication by f .

∂i := (xi − xi+1)
−1(1 − si), (3.1)

πi := ∂ixi, (3.2)

∂
(β)
i := ∂i(1 + βxi+1), (3.3)

π
(β)
i := ∂

(β)
i xi. (3.4)

All satisfy the braid relations for S+.
Let w(n)

0 ∈ Sn be the long element and ρ(n) = (n − 1, n − 2, . . . , 1, 0). For w ∈ Sn the
β-Grothendieck polynomial is defined by [16]

G
(β)
w :=

{
xρ(n) if w = w(n)

0 ,

∂
(β)
i G

(β)
wsi if wsi > w.

(3.5)

Since the ∂
(β)
i satisfy the braid relations, G(β)

w is well-defined for w ∈ Sn. It is also well-
defined for w ∈ S+, that is, unchanged under the standard embedding Sn → Sn+1 for all
n ≥ 1. The Schubert Sw and Grothendieck polynomials Gw are defined by

Sw := G
(β)
w |β=0, (3.6)

Gw := G
(β)
w |β=−1. (3.7)

Let α = (α1, α2, . . . ) be a composition (sequence of nonnegative integers, almost all
0). The Lascoux polynomial L(β)

α is defined by [15]

L
(β)
α =

{
xα if α is a partition,

π
(β)
i L

(β)
siα if αi < αi+1.

(3.8)

The Demazure character κα is defined by

κα = L
(β)
α |β=0. (3.9)
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Given a composition α = (α1, . . . , αn) ∈ Zn
≥0 let α+ be the unique partition in the

Sn-orbit of α. For w ∈ Sn and w0 ∈ Sn the long element we have the symmetrizations

π
(β)
w0 (Lα) = G(β)

α+
(x1, . . . , xn), (3.10)

πw0(κα) = sα+(x1, . . . , xn), (3.11)

π
(β)
w0 (Gw(x)) = Gw(x1, . . . , xn), (3.12)

πw0(Sw(x)) = Fw(x1, . . . , xn). (3.13)

4 Tableau formula for Lascoux polynomials

Given the definition of a certain kind of tableau which involves entries in a totally or-
dered set, we say “reverse” to mean the same definition but with the total order reversed.
Thus, a reverse semistandard Young tableau (RSSYT) is a tableau where entries weakly de-
crease along rows from left to right and strictly decrease along columns from top to
bottom.

For a partition λ, a reverse set-valued tableau (RSVT) T of shape λ is a filling of the
boxes of λ by finite nonempty subsets of Z>0 satisfying the following. For the box s ∈ λ

let T(s) be the set which occupies the box s in T.

1. min(T(s)) ≥ max(T(t)) if the box t is immediately right of the box s in λ.

2. min(T(s)) > max(T(t)) if the box t is immediately below the box s in λ.

This is the reverse of Buch’s set-valued tableaux [2].
Given a RSVT T, let L(T) be the RSSYT obtained from T by replacing every entry

T(s) by its largest value max(T(s)).
The weight wt(T) of a tableau T is the composition whose i-th part is the total number

of times i appears in T.
A key tableau (or just key) is a RSSYT of partition shape such that the j-th column,

viewed as a set, contains the (j + 1)-th for all j. There is a bijection α 7→ key(α) from
compositions to keys where key(α) is the unique RSSYT of shape α+ and weight α. Its
j-th column consists of the numbers {i | αi ≥ j}.

The left key K−(T) of a RSSYT T is a key computed in the following way. For each j,
let T≤j be the RSSYT we get if we only keep the first j columns of T. We may anti-rectify
T≤j using the jeu-de-taquin (jdt). Then the leftmost column of the result becomes column
j of K−(T).

Let |α| = ∑i≥1 αi. Let RSVTλ be the set of reverse set-valued tableaux of shape λ. For
T ∈ RSVTλ let ex(T) = |wt(T)| − |λ|. Our first main theorem is:
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Theorem 4.1. For any composition α

L
(β)
α = ∑

T∈RSVTα+

K−(L(T))≤key(α)

βex(T)xwt(T). (4.1)

Here ≤ indicates entrywise conparison.

Example 4.2. The following RSVTs contribute to L
(β)
(1,0,2):

2 1

1
,

2 2

1
, 2 21

1
,

3 1

1
, 32 1

1
,

3 2

1
, 3 21

1
, 32 2

1
, 32 21

1
,

3 3

1
, 3 31

1
, 3 32

1
, 3 321

1
.

Thus, we may write L
(β)
(1,0,2) as

x2
1x2 + x1x2

2 + x2
1x3 + x1x2x3 + x1x2

3

+β(x2
1x2

2 + 2x2
1x2x3 + x1x2

2x3 + x2
1x2

3 + x1x2x2
3)

+β2(x2
1x2

2x3 + x2
1x2x2

3).

Remark 4.3. There have been a number of conjectural combinatorial formulas for Lascoux
polynomials, such as the K-Kohnert move rule of Ross and Yong [24] ([8, Footnote on
page 19] for the general β version), the set-valued skyline filling formula of Monical
[19], and a set-valued tableau (SVT) rule of Pechenik and Scrimshaw [20]. Buciumas,
Scrimshaw and Weber [4] proved the last two of these rules using solvable lattice models.
In response to a previous version of this article, Travis Scrimshaw kindly informed us
that Theorem 4.1 is implicit in [4]: see the proof of [4, Theorem 4.4]. We feel it is
worthwhile to state these theorems in their simplest and most explicit form. We note
that the naive nonreversed analogue of the RSVT formula does not yield the Lascoux
polynomial.
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5 Fomin–Kirillov monomial formula

Our point of departure is the explicit monomial expansion of Grothendieck polynomials
due to Fomin and Kirillov [6].

The 0-Hecke monoid H is the quotient of the free monoid of words on the alphabet
Z>0 by the relations

i(i + 1)i ≡H (i + 1)i(i + 1), (5.1)
ii ≡H i, (5.2)
ij ≡H ji for |i − j| ≥ 2. (5.3)

H acts on S+ by

i ∗ w =

{
siw if siw > w,
w if siw < w.

Given a word u ∈ H define its associated permutation by u ∗ id ∈ S+. For w ∈ S+ let
Hw be the words in H with associated permutation w. The subsets Hw ⊂ H are the
≡H-equivalence classes.

Lemma 5.1. u ∈ Hw if and only if rev(u) ∈ Hw−1 .

For a ∈ Hw let ex(a) = length(a) − ℓ(w), the excess of the length of a above the
minimum possible, the Coxeter length ℓ(w) of w.

The following is merely the definition in [1] but with both words reversed, which is
better suited to our use of decreasing tableaux.

Definition 5.2 ([1]). A pair of words (a, i) is compatible if they satisfy

1. a, i are words of positive numbers with the same length.

2. i is weakly decreasing

3. ij = ij+1 implies aj < aj+1.

A compatible pair (a, i) is bounded if ij ≤ aj for all j.

Let C be the set of all compatible pairs, Cb those that are bounded, Cw the pairs
(a, i) ∈ C such that a ∈ Hw, and Cb

w = Cb ∩ Cw. The following monomial expansion of
β-Grothendieck polynomials is due to Fomin and Kirillov [6]:

G
(β)
w = ∑

(a,i)∈Cb
w−1

βex(a)xwt(i). (5.4)
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When β = 0 this is the Billey–Jockusch–Stanley formula for Schubert polynomials [1].
For w ∈ Sn and a positive integer N let 1N × w be the permutation of Sn+N obtained

by adding N fixed points before w. The β-Grothendieck symmetric function is defined
by

G(β)
w = lim

N→∞
G1N×w (5.5)

It lives in a completion of the ring of symmetric functions over Z[β]. The Stanley and
Grothendieck symmetric functions are defined by

Fw = G(β)
w |β=0 (5.6)

Gw = G(β)
w |β=−1. (5.7)

It follows from (5.4) and the definitions that

G(β)
w = ∑

(a,i)∈Cw−1

βex(a)xwt(i). (5.8)

6 G(β)
w to G(β)

λ via Hecke insertion: restriction of compati-
ble pairs according to w

The code c(w) of a permutation w is the sequence (c1, c2, . . . ) such that

ci = |{j | 1 ≤ j < w(i) and w−1(j) > i}|.

For a partition λ = (λ1, λ2, . . . , λk) the Grassmannian Grothendieck symmetric function G(β)
λ

is by definition equal to G(β)
w where w is the permutation with code (λk, . . . , λ1, 0, 0, . . . ).

Buch [2] showed that the Z[β]-span of the G(β)
w for w ∈ S+, has basis given by the

G(β)
λ and proved the increasing version of the following:

G(β)
λ = ∑

T∈RSVTλ

βex(T)xwt(T) (6.1)

For β = 0 this becomes the RSSYT formula for the Schur function sλ.
To find the coefficients of the G(β)

w to G(β)
λ expansion, the Hecke insertion algorithm

was developed in [3] in the language of increasing tableaux, which strictly increase along
rows from left to right and strictly increase along columns from top to bottom. We use
the variant of Hecke insertion for decreasing tableaux, which strictly decrease along rows
from left to right and strictly decrease along columns from top to bottom.
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It was not explicitly stated in [3] but all ingredients are there to define a Hecke
Robinson–Schensted–Knuth (RSK) bijection called Insert (and its inverse bijection RevIn-
sert)

C ⊔
λ(Decλ × RSVTλ) =: T

(a, i) (P, Q)

Insert

RevInsert

where Decλ is the set of decreasing tableaux of shape λ. Note that the set T as defined
by the above diagram, consists of pairs (P, Q) of tableaux of the same partition shape
with P decreasing and Q reverse set-valued.

Let (P, Q) = Insert(a, i). Let word(P) be the word we get if we read entries of P
from left to right, and move from bottom to top within each column. Then the bijection
satisfies

rev(a) ≡H word(P) and wt(Q) = wt(i). (6.2)

By Lemma 5.1, the bijection Insert restricts to a bijection

Cw−1 ↔
⊔
λ

(Decw
λ × RSVTλ) := Tw (6.3)

where Decw
λ = {T ∈ Decλ | word(T) ∈ Hw}. Taking the generating function of both

sides we obtain

G(β)
w = ∑

λ

|Decw
λ |G

(β)
λ . (6.4)

7 G
(β)
w to L

(β)
α by Hecke insertion and keys: restriction to

bounded compatible pairs

Let ⋆ denote the following right action of the monoid of words with letters in the set
Z>0, on the set of subsets of Z>0.

Let S ⊆ Z>0 and let m ∈ Z>0. Let m′ be the smallest number in S of value at
least m. If m′ does not exist, we let S ⋆ m = S ⊔ {m}. Otherwise, we define S ⋆ m =
(S − {m′}) ⊔ {m}.

More generally, if w = w1 . . . wn is a word of positive integers, we define S ⋆ w =
(S ⋆ w1) ⋆ (w2 . . . wn), and S ⋆ w = S if w is the empty word.

Example 7.1. We have:

∅ ⋆ 3414 = {1, 4},
{3, 4, 7} ⋆ 3414 = {1, 4, 7}.
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For each decreasing tableau P, we define its right key K+(P) to be the RSSYT whose
j-th column is the column given by ∅ ⋆ word(P≥j) where P≥j is the decreasing tableau
obtained by removing the first j − 1 columns of P.

The K-jeu-de-taquin (Kjdt) of Thomas and Yong [25] may be used (following [23] for
increasing tableaux) to give another definition of right key of decreasing tableau, and
two definitions of right key are shown to coincide.

Let T b be the subset of pairs (P, Q) ∈ T such that K+(P) ≥ K−(L(Q)). With Tw
defined as in (6.3), let T b

w = T b ∩ Tw. Then we show:

Theorem 7.2. Insert restricts to a bijection Cb ∼= T b.

Intersecting with the bijection (6.3), Insert restricts to a bijection

Cb
w−1

∼= T b
w for every w ∈ S+. (7.1)

Using Theorem 4.1 we obtain our second main theorem, the Grothendieck-to-Lascoux
expansion via decreasing tableaux.

Theorem 7.3.

G
(β)
w = ∑

λ
∑

P∈Decw
λ

L
(β)
wt(K+(P)). (7.2)

8 Connecting with the Reiner–Yong conjecture

The Reiner–Yong conjecture asserts:

Theorem 8.1 ([23]).

G
(β)
w = ∑

λ
∑

P∈Incw−1
λ

L
(β)
wt(K−(P)), (8.1)

where Incw
λ is similar to Decw

λ except that the tableaux are increasing and K−(P) is the left key
construction on the increasing tableau P using the Kjdt.

Proof sketch. We construct a map Decλ → Incλ : T 7→ T♯. For each T ∈ Decλ, we
anti-rectify it using Kjdt and then rotate the result by 180o. We show it is a bijection
satisfying: K+(T) = K−(T♯) and word(T♯) ≡K rev(word(T)). Using Lemma 5.1 we
see that T ∈ Hw if and only if T♯ ∈ Hw−1 . Thus the bijection restricts to a bijection
Decw

λ
∼= Incw−1

λ as required.
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9 Flagged Grothendieck to Lascoux

In this section we extend our expansion to flagged Grothendieck polynomials.
In the literature there is a definition of flagged Grothendieck polynomial whose gen-

erality extends to the case of 321-avoiding permutations [17]; see [10] for the case of
vexillary permutations. For 321-avoiding permutations there is a monomial tableau for-
mula and a determinantal formula.

We use a divided difference definition of flagged Grothendieck polynomial from [12],
which is valid for any permutation. This flagged Grothendieck polynomial has an ex-
plicit monomial expansion given in Proposition 9.1.

The main result of this subsection is a Lascoux polynomial expansion of flagged
Grothendiecks.

A flag is a sequence of integers f = ( f1, f2, · · · , fn) which is weakly increasing, sat-
isfies fi ≥ i for all i, and fn = n. Let fmin = (1, 2, · · · , n) and fmax = (n, n, · · · , n) be
the minimum and maximum flags respectively. Given a flag f , define the permutation
σf ∈ Sn as follows. For the minimum flag fmin let σfmin = id. For f ̸= fmin there is an
index j such that f j > j; take the minimum such. Define σf = siσf ′ where i + 1 = f j and
f ′ is obtained from f by replacing the i + 1 by i. The flagged Grothendieck polynomial is
defined by G

(β)
w, f = π

(β)
σf (G

(β)
w ).

The flagged Grothendieck polynomials have the following explicit monomial expan-
sion.

Proposition 9.1 ([12]).

G
(β)
w, f = ∑

(a,i)∈Cw−1
ik≤ fak

βex(a)xwt(i). (9.1)

Remark 9.2. Note that only the bound ik ≤ ak in (5.4) has been changed to ik ≤ fak .

The flagged Grothendieck polynomials interpolate between Grothendieck polynomi-
als and their symmetric counterparts.

Corollary 9.3. For w ∈ Sn, let w0 be the long element in Sn. Then

π
(β)
w0 (G

(β)
w ) = G(β)

w (x1, . . . , xn). (9.2)

Proof. We have

π
(β)
w0 (G

(β)
w ) = π

(β)
w0 (G

(β)
w, fmin

)

= G
(β)
w, fmax

= G(β)
w (x1, . . . , xn),
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where the last equality holds by the equality of (9.1) with (5.8) with xi set to 0 for
i > n.

Define the Demazure action ◦ of S+ on compositions by

si ◦ α =

{
si(α) if αi > αi+1,
α otherwise.

(9.3)

Theorem 7.3 implies the following.

Corollary 9.4.

G
(β)
w, f = ∑

λ
∑

P∈Decw
λ

L
(β)
σf ◦wt(K+(P)). (9.4)

Acknowledgements

The authors thank Alex Yong for helpful conversations and especially for sharing with
us the details of his conjecture with Vic Reiner. M. S. thanks Tomoo Matsumura for help
related to flagged Grothendieck polynomials. T. Y. thanks Brendon Rhoades for helpful
conversations.

References

[1] S. C. Billey, W. Jockusch, and R. P. Stanley. “Some combinatorial properties of Schubert
polynomials”. J. Algebraic Combin. 2.4 (1993), pp. 345–374.

[2] A. S. Buch. “A Littlewood–Richardson rule for the K-theory of Grassmannians”. Acta Math.
189.1 (2002), pp. 37–78.

[3] A. S. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong. “Stable Grothendieck
polynomials and K-theoretic factor sequences”. Math. Ann. 340.2 (2008), pp. 359–382.

[4] V. Buciumas, T. Scrimshaw, and K. Weber. “Colored five-vertex models and Lascoux poly-
nomials and atoms”. J. London Math. Soc. 102.3 (2020), pp. 1047–1066.

[5] P. Edelman and C. Greene. “Balanced tableaux”. Adv. Math. 63.1 (1987), pp. 42–99.

[6] S. Fomin and A. N. Kirillov. “Grothendieck polynomials and the Yang–Baxter equation”.
Proc. Formal Power Series and Alg. Comb. 1994, pp. 183–190.

[7] W. Fulton and A. S. Buch. “Chern class formulas for quiver varieties” (1999).

[8] A. N. Kirillov et al. “Notes on Schubert, Grothendieck and key polynomials”. SIGMA.
Symmetry, Integrability Geom. Methods Appl. 12 (2016), p. 034.



12 M. Shimozono and T. Yu

[9] A. Knutson, E. Miller, and M. Shimozono. “Four positive formulae for type A quiver
polynomials”. Invent. Math, 166.2 (2006), pp. 229–325.

[10] A. Knutson, E. Miller, and A. Yong. “Gröbner geometry of vertex decompositions and of
flagged tableaux”. J. Reine Angew. Math. (2009), pp. 1–31.

[11] T. Lam, L. Lapointe, J. Morse, A. Schilling, M. Shimozono, and M. Zabrocki. k-Schur Func-
tions and Affine Schubert Calculus. Vol. 33. Springer, 2014.

[12] T. Lam, S. J. Lee, and M. Shimozono. “Back stable K-theory Schubert calculus”. 2021.
arXiv:2108.10202.

[13] T. Lam, S. J. Lee, and M. Shimozono. “Back stable Schubert calculus”. Compos. Math. 157.5
(2021), pp. 883–962.

[14] T. Lam and M. Shimozono. “Quantum cohomology of G/P and homology of affine Grass-
mannian”. Acta Math. 204.1 (2010), pp. 49–90.

[15] A. Lascoux. “Schubert and Grothendieck: a bidecennial balance.(Schubert et Grothendieck:
un bilan bidécennal.)” Sém. Lothar. Combin. 50 (2003), B50i–32.

[16] A. Lascoux and M.-P. Schützenberger. “Structure de Hopf de l’anneau de cohomologie et
de l’anneau de Grothendieck d’une variété de drapeaux”. CR Acad. Sci. Paris Sér. I Math
295.11 (1982), pp. 629–633.

[17] T. Matsumura. “Flagged Grothendieck polynomials”. J. Algebraic Combin. 49.3 (2019),
pp. 209–228.

[18] E. Miller. “Alternating formulas for K-theoretic quiver polynomials”. Duke Math. J. 128.1
(2005), pp. 1–17.

[19] C. Monical. “Set-valued skyline fillings”. 2016. arXiv:1611.08777.

[20] O. Pechenik and T. Scrimshaw. “K-theoretic crystals for set-valued tableaux of rectangular
shapes”. 2019. arXiv:1904.09674.

[21] D. Peterson. “Quantum cohomology of G/P”. Lecture notes at MIT (1997).

[22] V. Reiner and M. Shimozono. “Key polynomials and a flagged Littlewood—Richardson
rule”. J. Combin. Theory Ser. A 70.1 (1995), pp. 107–143.

[23] V. Reiner and A. Yong. “The ‘Grothendieck to Lascoux’ conjecture”. 2021. arXiv:2102.12399.

[24] C. Ross and A. Yong. “Combinatorial rules for three bases of polynomials”. Sém. Lothar.
Combin. (2015).

[25] H. Thomas and A. Yong. “A jeu de taquin theory for increasing tableaux, with applications
to K-theoretic Schubert calculus”. Algebra Number Theory 3.2 (2009), pp. 121–148.

https://arxiv.org/abs/2108.10202
https://arxiv.org/abs/1611.08777
https://arxiv.org/abs/1904.09674
https://arxiv.org/abs/2102.12399

	Introduction
	Four expansions
	Grothendieck and Lascoux polynomials
	Tableau formula for Lascoux polynomials
	Fomin–Kirillov monomial formula
	Gw to Gla via Hecke insertion: restriction of compatible pairs according to w
	Gw to Lal by Hecke insertion and keys: restriction to bounded compatible pairs
	Connecting with the Reiner–Yong conjecture
	Flagged Grothendieck to Lascoux

