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Abstract. Matrix Schubert varieties are affine varieties arising in the Schubert calculus
of the complete flag variety. We give a formula for the Castelnuovo–Mumford regular-
ity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her
proposed strategy of studying the highest-degree homogeneous parts of Grothendieck
polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the
regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford
polynomials and for their leading terms, as well as a complete description of when
two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of
the Grothendieck polynomial is a new permutation statistic, which we call the Rajch-
got index; we develop the properties of Rajchgot index and relate it to major index and
to weak order.

1 Introduction

The flag variety Flagsn, the parameter space for complete flags of nested vector subspaces
of Cn, has a complex cell decomposition given by its Schubert varieties. The geometry
and combinatorics of this cell decomposition are of central importance in Schubert cal-
culus. These Schubert varieties are closely related to certain generalized determinantal
varieties Xw of n × n matrices called matrix Schubert varieties (see [1] and Section 2 for
the definition). It is natural to desire a measure of the algebraic complexity of matrix
Schubert varieties. One such measure is the Castelnuovo–Mumford regularity of Xw, a
commutative-algebraic invariant determining the extent to which the defining ideal of
Xw can be resolved by low-degree polynomials.
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Jenna Rajchgot (cf. [7]) observed that, since matrix Schubert varieties are Cohen–
Macaulay, the regularity of Xw is given by the difference between the highest-degree
and lowest-degree homogeneous parts of the K-polynomial for Xw. These particular K-
polynomials have been much studied. They were introduced by Lascoux and Schützen-
berger [5], under the name of Grothendieck polynomials Gw(x), as polynomial representa-
tives for structure sheaf classes in K-theoretic Schubert calculus of Flagsn. Grothendieck
polynomials are inhomogeneous polynomials Gw(x) in n variables x = x1, x2, . . . , xn,
indexed by permutations w in the symmetric group Sn.

The lowest-degree homogeneous part of Gw(x) is the Schubert polynomial Sw(x) [4];
Schubert polynomials are well-understood from a combinatorial perspective, and the
degree of Sw(x) equals the codimension of Xw or equivalently the Coxeter length inv(w)
of the permutation w. Hence, determining the regularity of Xw reduces to answering the
following question of Rajchgot: “What is the degree of a Grothendieck polynomial?”

We term the top-degree part of (−1)degGw(x)−inv(w)Gw(x) the Castelnuovo–Mumford
polynomial and write it CMw(x). (The power of −1 makes the coefficients positive.)
The goal of this paper is to answer Rajchgot’s question by understanding these homoge-
neous polynomials and in particular their degrees, thereby obtaining a formula for the
Castelnuovo–Mumford regularity of Xw. In the special case of symmetric Grothendieck
polynomials, [7] gives a formula for the degree of CMw(x). Our first main result is a
degree formula for arbitrary CMw(x), answering Rajchgot’s question in full generality.
Since our work appeared as a preprint, additional formulas have been given for the case
of vexillary permutations w in [2, 8].

Write a permutation w ∈ Sn in one-line notation as w(1)w(2) · · ·w(n). For each k,
find an increasing subsequence of w(k)w(k + 1) · · ·w(n) containing w(k) and of great-
est length among such subsequences. Let rk be the number of terms from w(k)w(k +
1) · · ·w(n) omitted from this subsequence. We call the sequence (r1, . . . , rn) = rajcode(w)
the Rajchgot code of w and its sum raj(w) the Rajchgot index of w.

Theorem 1.1. For w ∈ Sn, we have degCMw(x) = raj(w). Moreover, for any term order
satisfying x1 < x2 < · · · < xn, the leading term of CMw(x) is a scalar multiple of the monomial
xrajcode(w) = xr1

1 xr2
2 · · · x

rn
n . In particular, the Castelnuovo–Mumford regularity of the matrix

Schubert variety Xw is raj(w)− inv(w).

Example 1.2. Consider w = 293417568 ∈ S9. A longest increasing subsequence starting
from 2 is 2 • 34 • •568, which omits three terms, so r1 = 3. In full,

rajcode(w) = (r1, r2, . . . , r9) = (3, 7, 2, 2, 1, 2, 0, 0, 0).

Hence, by Theorem 1.1, the leading term of CMw(x) is a scalar multiple of the monomial
x3

1x7
2x2

3x2
4x5x2

6 and the degree of CMw(x) is raj(w) = 3+ 7+ 2+ 2+ 1+ 2+ 0+ 0+ 0 = 17.
Since inv(w) = 12, it follows that the Castelnuovo–Mumford regularity of the matrix
Schubert variety Xw is raj(w)− inv(w) = 17− 12 = 5.
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Our remaining results explore the combinatorics of Castelnuovo–Mumford polyno-
mials and the associated permutation statistics.

While Schubert polynomials are all distinct and have distinct leading monomials,
we observe that many Castelnuovo–Mumford polynomials differ only by a scalar mul-
tiple. In fact, we will show that CMu(x) and CMv(x) differ by a scalar precisely if
rajcode(u) = rajcode(v). This phenomenon is best understood in the context of double
Castelnuovo–Mumford polynomials, as we now explain. The double Grothendieck polyno-
mials are certain polynomials Gw(x1, . . . , xn; y1, . . . , yn) in 2n variables, also indexed by
w ∈ Sn. They represent Schubert classes in the torus-equivariant K-theory of Flagsn, and
obey the relations Gw(x; 0) = Gw(x) and Gw(x; y) = Gw−1(y; x). We define the double
Castelnuovo–Mumford polynomial CMw(x; y) to be the highest-degree part of Gw(x; y).
We will show (Corollary 2.3) that Gw(x; y) has terms whose x-degree and y-degree are
simultaneously maximal, so CMw(x; y) is homogeneous in both x and y.

We find that double Castelnuovo–Mumford polynomials factor as a polynomial in x
times a polynomial in y. We identify a special family of single Castelnuovo–Mumford
polynomials, the Rajchgot polynomials Rπ(x), indexed by set partitions of {1, . . . , n}.
For each w ∈ Sn, we associate a set partition π(w) so that the following holds.

Theorem 1.3. Double Castelnuovo–Mumford polynomials factor into Rajchgot polynomials as

CMw(x; y) = Rπ(w)(x)Rπ(w−1)(y).

For any term order satisfying x1 < · · · < xn and y1 < · · · < yn, the leading term of CMw(x; y)
is exactly xrajcode(w)yrajcode(w−1). In particular, CMw(x) = Rπ(w−1)(1, . . . , 1)Rπ(w)(x) has
leading term Rπ(w−1)(1, . . . , 1)xrajcode(w).

In particular, Theorem 1.3 shows that, up to scalar multiple, the number of distinct
Castelnuovo–Mumford polynomials for w ∈ Sn is not n!, but rather the number of set
partitions of n, which is also known as the nth Bell number.

The Rajchgot index is related to the classical major index statistic.

Theorem 1.4. For all w ∈ Sn, we have

raj(w) = max{maj(v) : v ≤R w} = max{maj(u−1) : u ≤L w} = degCMw(x),

where ≤L and ≤R denote the left and right weak orders, respectively.

To the best of our knowledge, none of the equalities in Theorem 1.4 has been observed
previously. This paper is an extended abstract of [6], which contains complete proofs.

2 Background

Let [n] := {1, 2, . . . , n}. Let Sn denote the symmetric group of permutations of [n].
We consider w ∈ Sn as a map w : [n] → [n] and write w in one-line notation as the
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string w(1)w(2) · · ·w(n). We will often write wi := w(i). We identify w ∈ Sn with the
permutation matrix having a 1 in each position (i, wi) and 0s elsewhere. We write id for
the identity permutation 12 · · · n and w0 for the reverse permutation n(n− 1) · · · 1.

Let si := (i i + 1) denote the simple transposition that exchanges i and i + 1, and
recall that s1, . . . , sn−1 generate Sn. An inversion of w ∈ Sn is a pair i, j ∈ [n] such that
i < j and wi > wj. We write inv(w) for the number of inversions in w and call it the
Coxeter length of w. Note inv(w) is the length of the shortest expression for w as a
product of the si. A factorization w = si1 · · · siinv(w)

is called a reduced expression for w,
and the sequence of subscripts i1 · · · iinv(w) is called a reduced word for w.

We need three partial orders on Sn. If w = uv with inv(w) = inv(u) + inv(v), then
we say v ≤L w and u ≤R w; the relations ≤L and ≤R are known as left and right weak
order, respectively. We write ≤LR for the partial order obtained as the transitive closure
of the union of left and right weak orders and call it two-sided weak order. For u ≤R v,
we write [u, v]R for the interval from u to v in right weak order. Similarly, we define the
notations [u, v]L and [u, v]LR. A descent of w ∈ Sn is a value i such that wi > wi+1.

The 0-Hecke monoid Hn is the free monoid on generators τ1, . . . , τn−1 subject to the
“idempotent braid relations” τ2

i = τi, τiτj = τjτi, for j 6= i± 1, and τiτi+1τi = τi+1τiτi+1.
There is a natural action of Hn on Sn induced by

τi ∗ w :=

{
siw, if inv(siw) > inv(w);
w, otherwise.

For each w ∈ Sn, there is a unique element w in Hn with w ∗ id = w. We define the
Demazure product on Sn to be the binary operation u ∗ v given by u ∗ v = u ∗ v ∗ id.

The graph of w ∈ Sn is obtained by plotting bullets • in the n× n grid in positions
(i, wi) for i ∈ [n] (in matrix coordinates). The Rothe diagram RD(w) is constructed from
its graph as follows. From each •, fire a laser directly to the right and another straight
down. The cells of the n× n grid that are hit by no laser are the Rothe diagram RD(w).
The number of cells in RD(w) is inv(w). Write `i for the number of cells in row i. We
call the sequence invcode(w) := (`1, . . . , `n) the inv code of w.

The matrix Schubert variety Xw is an affine variety cut out by certain determinants.
Let Z = (zij)1≤i,j≤n be a matrix of distinct indeterminates. Then Xw is a subvariety of
the n2-dimensional affine space Spec C[Z]. Consider the Rothe diagram RD(w). For each
cell (i, j) of RD(w), let ri,j be the number of 1s appearing in the permutation matrix w
northwest of the cell (i, j). Let Iw be the ideal generated by, for each such (i, j), the
(ri,j + 1)× (ri,j + 1) minors of the matrix northwest of (i, j). The matrix Schubert variety
Xw is the subvariety of n× n matrices defined by the ideal Iw. By work of Fulton [1], the
ideal I is prime, so Xw is a reduced and irreducible affine variety; a n× n matrix A lies
in Xw if the rank of each northwest submatrix of A is less than or equal to the rank of
the same submatrix of w.
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Let R := C[Z] be a polynomial ring and let I ⊆ R be a homogeneous ideal. We
write R(−i) for R with all degrees shifted by i. A free resolution of R/I is a diagram of
graded R-modules 0 → ⊕

i∈Z R(−i)bk
i → · · · → ⊕

i∈Z R(−i)b0
i → R/I → 0 that is exact,

that is, such that the image of each map is the kernel of the next. There always exists
such a free resolution with k ≤ n2. Up to isomorphism there is a unique free resolution
simultaneously minimizing all bj

i , the minimal free resolution of R/I. In this case, the
bj

i are invariants of R/I. The Castelnuovo–Mumford regularity reg(R/I) of R/I is the
greatest i− j such that bj

i 6= 0. Conflating affine varieties with their coordinate rings, we
also refer to this number as the Castelnuovo–Mumford regularity of Spec R/I. When
R/I is Cohen–Macaulay, the projective dimension of R/I equals the height of the ideal
I as well as the codimension of Spec R/I in Spec R.

Write (R/I)a for the degree a piece of R/I. The Hilbert series of R/I is the formal
power series H(R/I; t) = ∑a∈N dimC(R/I)ata. If we write the Hilbert series as

H(R/I; t) =
K(R/I; t)
(1− t)n2

the numerator K(R/I; t) is the K-polynomial of R/I. The height ht(I) of a prime ideal I
is the maximum k so that there is a nested chain of prime ideals I0 ( I1 ( · · · ( Ik = I.
If I is prime, ht(I) is the codimension of Spec R/I in Spec R.

Lemma 2.1. Suppose R/I is Cohen–Macaulay. Then reg(R/I) = deg(K(R/I; t))− ht(I).

Matrix Schubert varieties are Cohen–Macaulay [1] and the codimension of Xw is the
inversion statistic inv(w). Hence, computing the regularity of matrix Schubert varieties
amounts to finding the degree of their K-polynomials.

We recall an explicit combinatorial formula for (double) Schubert polynomials and
(double) Grothendieck polynomials. A pipe dream is a subset P of the cells in the strictly
upper left triangular part of the n× n grid, i.e., P ⊆ {(i, j) : 1 < i + j ≤ n}. We represent
this subset pictorially by placing a crossing tile in each cell of P and bumping tiles
in the other cells. If there is a crossing tile in cell (i, j), we associate to it the simple trans-
position si+j−1. We then associate a reading word word(P) to P by reading these simple
transpositions within rows from right to left, working from the top row downwards. We
say P is a pipe dream for w if w is the Demazure product of word(P). Write Pipes(w)
for the set of pipe dreams for w. We say P ∈ Pipes(w) is reduced if word(P) is a reduced
word for w and write Pipes0(w) for the subset of reduced pipe dreams.

Definition 2.2. For any w ∈ Sn, we have

Gw(x; y) = ∑
P∈Pipes(w)

(−1)|P|−inv(w) ∏
(i,j)∈P

(xi + yj − xiyj).
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Below are the reduced (blue) and nonreduced (red) pipe dreams for w = 42153.

We obtain the (single) Grothendieck polynomials by specializing y to 0, that is to
say, Gw(x) := Gw(x; 0). The double Schubert polynomial Sw(x, y) is the lowest-degree
homogeneous part of the double Grothendieck polynomial Gw(x, y) substituting yj 7→
−yj, while the (single) Schubert polynomial Sw(x) is the lowest-degree homogeneous
part of Gw(x). The degree of the Schubert polynomial Sw(x) is inv(w).

Lemma 2.3. Let w be a permutation and let d be the degree of Gw(x). Then Gw(x; y) has terms
which are of bidegree (d, d) in the x and y variables, and no term in Gw(x; y) has x-degree or
y-degree higher than d.

Define the Castlenuovo–Mumford polynomial CM(x) to be (−1)degGw(x)−inv(w) times
the highest degree part of Gw(x) and define the double Castlenuovo–Mumford poly-
nomial, CMw(x; y), to be (−1)inv(w) times the highest degree part of Gw(x; y). These
sign factors make CMw(x; y) and CMw(x) have positive coefficients. So the degree of
CMw(x), and the bidegree of CMw(x; y), are both given by the maximal number of
crosses in any pipe dream for w.

If we specialize the single Grothendieck polynomial Gw(x) by setting xi 7→ 1 − t,
we obtain the K-polynomial of the matrix Schubert variety Xw [3]. Note that this spe-
cialization does not affect the degrees of the polynomials, since all top-degree terms of
Gw(x) have the same sign. Moreover, degSw(x) = codim Xw = inv(w) [1]. Thus, we
can rewrite Lemma 2.1 as follows.

Corollary 2.4. Let Xw be a matrix Schubert variety. Then reg Xw = degGw(x)− inv(w).

3 Simple properties of Rajchgot index

Lemma 3.1. Let w be a permutation and let (`1(w), `2(w), . . . , `n(w)) be its inversion code.
Then ri(w) ≥ `i(w) with equality if and only if w has no 132 pattern starting at position i.
Hence, raj(w) ≥ inv(w), with equality if and only if w avoids the pattern 132, i.e. if and only if
w is dominant.

Say w ∈ Sn is fireworks if the initial elements of its decreasing runs are in increasing
order. Say w is inverse fireworks if w−1 is fireworks. For example, the permutation
41|62|853|97 is fireworks because 4 < 6 < 8 < 9.

Let w ∈ Sn and let mi(w) equal the number of j ≥ i such that wj > wj+1. The major
index of w is maj(w) = ∑n

i=1 mi(w). Theorem 4.16 will establish a formula for raj as a
maximum of many values of maj. At the moment, we have an inequality:
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Lemma 3.2. Let w be a permutation and let mi(w) equal the number of j ≥ i such that wj >
wj+1. Then ri(w) ≥ mi(w). Hence, raj(w) ≥ maj(w), with equality if and only if w is
fireworks.

A set partition of [n] is a collection π of pairwise-disjoint nonempty subsets of [n]
with union [n]; the subsets are called the blocks of π. We order the blocks of π by their
largest elements and index them as (πt, πt+1, . . . , πn), where max(πt) < max(πt+1) <
· · · < max(πn). For brevity, we omit commas and braces from our notation, for example,
writing (1, 3, 45, 67, 8, 29) rather than {{1}, {3}, {4, 5}, {6, 7}, {8}, {2, 9}}.

Proposition 3.3. Fireworks permutations are enumerated by the Bell numbers.

For example, the fireworks permutation 416285397 corresponds to (14, 26, 358, 79).
A permutation w is valley if there is some index a with w(1) > w(2) > · · · >

w(a) < w(a + 1) < · · · < w(n). There are 2n−1 valley permutations in Sn, because a
valley permutation is uniquely determined by the subset {w(1), w(2), . . . , w(a− 1)} of
{2, 3, . . . , n}. A permutation w is inverse valley if w−1 is valley.

Lemma 3.4. A permutation w is a valley permutation if and only if w is both dominant and
inverse fireworks; w is inverse valley if and only if w is both dominant and fireworks.

4 Main results

We give a pictorial description of Rajchgot code. Draw the graph of w. Now, draw a
lasso around the set of dots that are maximally southeast in the grid. Call this set of dots
Bn(w). Then draw another lasso around the dots that are maximally southeast among
dots that are not lassoed. This next set of dots is Bn−1(w), etc. We call this the blob
diagram of w (see example below).

•
•

•
•

•
•

•
•

•

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

B9

B8

B7

B6B5

Lemma 4.1. Let (i, wi) be in blob Bk. Then the longest increasing subsequence starting at (i, wi)
contains n + 1− k elements.
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Corollary 4.2. Let (r1(w), r2(w), . . . , rn(w)) be the Rajchgot code of w, and let (i, wi) be in
blob Bk. Then ri(w) = k− i.

Define πk(w) to be the set of column labels of the dots in Bk(w). (By symmetry,
πk(w−1) is the row labels of the dots in Bk(w).) Then π(w) is the set partition of w. Note
that i and j are in the same block of the set partition exactly if (w−1(i), i) and (w−1(j), j)
are in the same blob. In our example, π(w) is the set partition {2, 34, 56, 17, 89}.
(We obtain π(w−1) by recording the row labels of the entries in each blob.) The or-
dering of the blocks of π(w) is recoverable from π(w), since the maximum elements
of the blocks occur in increasing order. Index the blocks of π(w) as (πt, πt+1, . . . , πn),
so that πk corresponds to block Bk, and set αk(w) = #πk(w). Define the composition
(αt(w), αt+1(w), . . . , αn(w)) to be the shape of w. We can express Rajchgot index in terms
of shape.

Lemma 4.3. For w ∈ Sn, we have

raj(w) =
n

∑
k=1

kαk −
(

n + 1
2

)
=

n

∑
k=1

(αk + αk+1 + · · ·+ αn)−
(

n + 1
2

)
.

Corollary 4.4. We have raj(w) = raj(w−1).

For compositions (αj, αj+1, . . . , αn) and (βk, βk+1, . . . , βn) of n, say α dominates β (α �
β) if αm + αm+1 + · · ·+ αn ≥ βm + βm+1 + · · ·+ βn for all m. We write α � β to mean
α � β and α 6= β.

Corollary 4.5. Let u and v be permutations of shapes α and β. If α � β, then raj(u) ≥ raj(v);
if α � β, then raj(u) > raj(v).

We now provide some lemmas without proof that are key to establishing our main
results. For more details, see [6].

Lemma 4.6. For each composition α of n, there is exactly one valley permutation, fα of shape α,
and likewise one inverse valley permutation of shape α, which is f−1

α .

Lemma 4.7. Let u and v be permutations with u ≥LR v. Then raj(u) ≥ raj(v). We have
raj(u) = raj(v) if and only if u and v have the same shape.

Lemma 4.8. If w >L siw and raj(w) = raj(siw), then rajcode(w) = rajcode(siw). Suppose
that w >R wsi and raj(w) = raj(wsi). Let rajcode(w) = (r1, r2, . . . , rn). Then rajcode(wsi) =
(r1, r2, . . . , ri+1 + 1, ri − 1, . . . , rn).

Lemma 4.9. The permutation w ∈ Sn is fireworks if and only if the dots in each blob occupy
consecutive rows of the graph of w. Likewise, w is inverse fireworks if and only if the dots in each
blob occupy consecutive columns.
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•
•

•
•

•
•
•

•
•

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

B9

B8B7B6

B5

Figure 1: For α = (2, 1, 2, 3, 1), the proof of Lemma 4.6 gives R = {1 < 3 < 4 <

6 < 9} and [9]\R = {8 > 7 > 5 > 2}. So the corresponding valley permutation is
f = 875213469. Here we have drawn the blob diagram of f .

We now describe a fireworks map that turns an arbitrary permutation w into a fire-
works permutation Φ(w). The fireworks permutation Φ(w) corresponds to the set par-
tition π(w) using the bijection of Proposition 3.3. In other words, we take the dots
in the graph of w and shove the dots of each blob into consecutive rows. We define
Φinv(w) = Φ(w−1)−1.

For example, let w = 462357918. We computed before that π(w) = {2, 34, 56, 17, 89}.
The corresponding fireworks permutation is 243657198 with blob diagram below.

•

•

•

•

•
•

•
•

•

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Lemma 4.10. For any permutation w, we have Φ(w) ≤R w and Φinv(w) ≤L w.

Remark 4.11. Although Φ(w) ≤R w, this does not mean that Φ is order-preserving! For
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example, Φ(4312) = 1432 and Φ(3412) = 3142. Now 4312 = 3412 · s1, so 3412 <R 4312,
but 3142 6≤R 1432 since 1 and 3 are noninverted in 1432, but inverted in 3142.

Lemma 4.12. The blobs Bk of Φ(w) and of w consist of dots in the same columns, the permutation
w is fireworks if and only if Φ(w) = w, and the permutations w and Φ(w) have the same shape.
Corresponding statements hold for Φinv and being inverse fireworks.

Corollary 4.13. For w ∈ Sn, we have raj(w) = raj(w−1) = raj(Φ(w)) = raj(Φinv(w)).

In the case of the inverse fireworks map, we can state a stronger result.

Corollary 4.14. For any permutation w, we have rajcode(w) = rajcode(Φinv(w)).

For a composition α = (α1, . . . , αr), let Sα be the Young subgroup Sα1 × Sα2 × · · · × Sαr

and let eα be its longest element. A permutation w is called layered if w = eα for some α.

Lemma 4.15. Let w be a permutation of shape α. Then Φ(Φinv(w)) = Φinv(Φ(w)) = eα.

Theorem 4.16. For w ∈ Sn, raj(w) = max{maj(v) : v ≤R w} = max{maj(u−1) : u ≤L w}.

We now discuss interactions between the fireworks maps and weak orders.

Lemma 4.17. If w ∈ Sn has shape α, then w has a unique length-additive factorization w =
ueαv, for some permutations u, v ∈ Sn. Moreover, we have Φ(w) = ueα and Φinv(w) = eαv.

We can use this factorization to understand the ≤LR interval [eα, w]LR.

Lemma 4.18. Let w be a permutation of shape α, and let w = ueαv be the unique length-additive
factorization of w. Then the map µ : (u′, v′) 7→ u′eαv′ is a poset isomorphism from the product
[eα, u]L × [eα, v]R to the two-sided weak interval [eα, w]LR.

Weak order gives a new perspective on fireworks permutations of a given shape.

Lemma 4.19. Let fα be the unique valley permutation of shape α (introduced in Lemma 4.6).
Then the set of fireworks permutations of shape α is the left interval [eα, f−1

α ]L, and the set of
inverse fireworks permutations of shape α is the right interval [eα, fα]R.

Lemma 4.20. Let x be any permutation in Sn, let α = (αk, αk+1, . . . , αn) be a composition of n,
and let y = eα ∗ x ∗ eα, where ∗ denotes the Demazure product. Then raj(y) ≥ raj(eα) and we
have equality if and only if y = eα.

Example 4.21. We list all permutations of shape α = (1, 1, 2), their factorizations in the
form ueαv, and the corresponding double Castelnuovo–Mumford polynomials:

2341
1342
1243 1423 4123

s1s2e112
s2e112

e112 e112s2 e112s2s1
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(x1x2x3)(y3
1)

(x1x2x3)(y2
1y2 + y1y2

2)
(x1x2x3)(y1y2y3) (x2

1x2 + x1x2
2)(y1y2y3) (x3

1)(y1y2y3)

The layered permutation e112 = 1243 is in the lower left, the valley permutation f112 =

4123 is in the lower right and the inverse valley permutation f−1
112 = 2341 is in the upper

left. The permutations in the left column are fireworks; the permutations in the bottom
row are inverse fireworks, and the permutations which are maximally northeast are
dominant. The maps Φ and Φinv are the orthogonal projections onto the left column and
bottom row, respectively.

Lemma 4.22. If u ≤LR w, then degCMu(x) ≤ degCMw(x).

Example 4.23. Note that the analogous result does not hold for the strong order. For
instance, 1432 ≤ 3412 but degG1432(x) = 5 and degG3412(x) = 4.

Lemma 4.24. If w is dominant, then degCMw(x) = degSw(x) = inv(w) = raj(w).

Lemma 4.25. If w = eα, then degCMw(x) = raj(w).

Proposition 4.26. Let w ∈ Sn have shape α. The permutation w is ≤LR-maximal among
permutations of shape α if and only if w is dominant.

Theorem 4.27. Let w ∈ Sn. Then degCMw(x) = raj(w).

Definition 4.28. Let π be a set partition of [n] and let w be the unique fireworks permu-
tation with π(w) = π. We define the Rajchgot polynomial Rπ(x) to be CMw(x).

Theorem 4.29. For any w ∈ Sn, we have CMw(x; y) = Rπ(w)(x)Rπ(w−1)(y).

Lemma 4.30. Let p ∈ [Φinv(w), w]L and q ∈ [Φ(w), w]R. Then q ∗ p = w if and only if
p = Φinv(w) and q = Φ(w).

By Lemma 4.17, each permutation w ∈ Sn with α(w) = α has a unique length-additive
factorization w = ueαv, where Φ(w) = ueα and Φinv(w) = eαv. Therefore, the interval
[Φinv(w), w]L is {u′eαv : id ≤L u′ ≤L u} and [Φ(w), w]R is {ueαv′ : id ≤R v′ ≤R v}.
Theorem 4.31. Let w be a permutation, let rajcode(w) = (r1, . . . , rn) and let rajcode(w−1) =
(s1, . . . , sn). For any term order satisfying x1 < x2 < · · · < xn and y1 < y2 < · · · < yn, every
monomial of CMw(x; y) is at most xr1

1 · · · x
rn
n ys1

1 · · · y
sn
n .

The primary statement now outstanding from Theorems 1.1 and 1.3 is that there is
a pipe dream for w with rajcodei(w) crossing tiles in row i and rajcodej(w−1) crossing
tiles in column j, thereby contributing the monomial xrajcode(w)yrajcode(w−1) to CMw(x; y).
We call such a pipe dream a maximal pipe dream for w.

Theorem 4.32. Let w be a permutation, let rajcode(w) = (r1, . . . , rn) and let rajcode(w−1) =
(s1, . . . , sn). There is a unique pipe dream for w with ri crosses in row i and sj crosses in column
j. Hence, the monomial xrajcode(w)yrajcode(w−1) appears with coefficient 1 in CMw(x; y).
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