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Abstract. This work regards the order polytopes arising from the class of generalized
snake posets and their posets of meet-irreducible elements. Among generalized snake
posets of the same rank, we characterize those whose order polytopes have minimal
and maximal volume. We give a combinatorial characterization of the circuits in these
order polytopes and then conclude that every triangulation is unimodular. For a gen-
eralized snake word, we count the number of flips for the canonical triangulation of
these order polytopes. We determine that the flip graph of the order polytope of the
poset whose lattice of filters comes from a ladder is the Cayley graph of a symmetric
group. Lastly, we introduce an operation on triangulations called twists and prove that
twists preserve regular triangulations.
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1 Introduction

Stanley [8] introduced two geometric objects associated to a finite partially ordered set,
or poset, known as the order polytope and the chain polytope. It is well-known that the
set of all regular triangulations of a polytope correspond to the vertices of its secondary
polytope, and that these triangulations are connected via flips. Various triangulations of
order polytopes have been constructed or considered, often for special classes of posets.
See, for example, Santos, Stump, and Welker for products of chains [7], Féray and Reiner
for non-unimodular triangulations related to graph-associahedra [4], Bränden and Solus
for s-lecture hall order polytopes [2], and others. However, the general space of regular
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triangulations of an order polytope, i.e., the 1-skeleton of the secondary polytope of an
order polytope, does not appear to have been studied in detail and motivates our work.

Our contributions in this paper add to the literature on order polytopes and further
the study of the general space of regular triangulations of order polytopes. Specifically,
we investigate circuits, flips, and regular triangulations of order polytopes arising from
a certain class of posets, called generalized snake posets. This article is an extended
abstract of [1] and is organized as follows. In Section 2, we review some background
and establish notation. In Section 3, we introduce the family of generalized snake posets
P and study volumes of their corresponding order polytopes. The characterization of
circuits of the order polytope O(Q) of the poset of filters of P is given in Section 4.
Lastly, Section 5 is devoted to introducing twists, and then presenting four theorems
regarding twists, flips, and triangulations of O(Q).

2 Background and Notation

2.1 Triangulations

Definition 2.1. Given a point configuration A ⊆ Rd, let conv(A) denote the convex
hull of A. A triangulation of A is a collection T of d-simplices all of whose vertices are
points in A that satisfies that the union of all of these simplices equals conv(A) (Union
Property) and that any pair of these simplices intersects in a (possibly empty) common
face (Intersection Property).

A triangulation is unimodular if every simplex has normalized volume one. A trian-
gulation of a point configuration A ⊆ Rd is regular if it can be obtained by projecting the
lower envelope of a lifting of A from Rd+1.

Definition 2.2. A point configuration A with index set J has corank one if and only if it
has an affine dependence relation ∑j∈J λjvj = 0 with ∑j∈J λj = 0 that is unique up to
multiplication by a constant. This affine dependence partitions J into three subsets:

J+ := {j ∈ J : λj > 0}, J0 := {j ∈ J : λj = 0}, and J− := {j ∈ J : λj < 0}.

In the case when A has corank one, J+ and J− are the only disjoint subsets of J
with the property that their relative interiors intersect at the point ∑

j∈J+
λjvj = ∑

j∈J−
|λj|vj,

where the λj are assumed to be normalized so that ∑j∈J+ λj = ∑j∈J− |λj| = 1. The set
J+

⋃
J− is called a circuit in J and the pair (J+, J−) is called the oriented circuit, or Radon

partition , of A.

Definition 2.3. Let A be a point configuration with index set J. In general, a subset Z
of J is a circuit if it is a minimal dependent set (that is, it is dependent but every proper
subset is independent). Let (Z+, Z−) be a partition of Z, such that conv(Z+)∩ conv(Z−)
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is nonempty. The partition (Z+, Z−) is called an oriented circuit. We say the circuit is of
type (|Z+|, |Z−|).

From the circuits we can generate triangulations by using flips to locally transform
one triangulation into another.

Lemma 2.4 ([3, Lemma 2.4.2]). Let A be a point configuration of corank one and J = J+ ∪
J0 ∪ J− be its label set, partitioned by the unique oriented circuit of A. Then the following are the
only two triangulations of A : T+ = {J r {j} : j ∈ J+}, and T− = {J r {j} : j ∈ J−}.

Triangulation of A is a simplicial complex on A. Recall that an (abstract) simplicial
complex ∆ on a set X is a collection of subsets of X such that if σ ∈ ∆ and τ ⊆ σ, then
τ ∈ ∆. The elements of a simplicial complex are called faces and a subcomplex ∆′ of ∆
is a subcollection of ∆ which is also a simplicial complex. The link of a face σ ∈ ∆ is
the simplicial complex lk∆(σ) = {τ ∈ ∆ : σ ∪ τ ∈ ∆ and σ ∩ τ = ∅}. If ∆ and ∆′ are
simplicial complexes, then their join is ∆ ∗ ∆′ = {σ ∪ σ′ : σ ∈ ∆ and σ′ ∈ ∆′}.

Theorem 2.5 ([3, Theorem 4.4.1]). Let T1 and T2 be two triangulations of a point configuration
A. Then T1 and T2 differ by a flip if and only if there is a circuit Z of A such that

(i) They contain, respectively, the two triangulations T +
Z and T −Z of Z.

(ii) All the maximal simplices of T +
Z and T −Z have the same link L in T1.

(iii) Removing the subcomplex T +
Z ∗ L from T1 and replacing it by T −Z ∗ L gives T2.

Two triangulations of A are adjacent if they differ by a flip. The set of all triangulations
of A, under adjacency by flips, forms the graph of triangulations, or flip graph, of A.

In Sections 4 and 5, we will take a look at the secondary polytope whose vertices are in
bijection with regular triangulations of a point configuration. Recall that we can define
for each triangulation of a point configuration A a GKZ-vector. As stated in the following
definition, the convex hull of the GKZ-vectors for A is the secondary polytope. See [3,
Section 5.1] for a further discussion of secondary polytopes and GKZ-vectors.

Definition 2.6 (Secondary Polytope). For a point configuration A the secondary polytope
of A is conv{ϕA(T ) : T regular triangulation of A}, where ϕA(T ) represents the GKZ-
vector of T in A.

The flip graph, which is the graph of all triangulations connected by flips, is in general
not connected, but the flip graph of regular triangulations is connected and contains the
1-skeleton of the secondary polytope as a spanning subgraph.
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2.2 Order polytopes

Let P be a poset on the set of elements [d] := {1, . . . , d}. We abuse notation and write P
to denote the elements of P. The order polytope of P, introduced by Stanley [8], is defined
as

O(P) =
{

x = (x1, . . . , xd) ∈ [0, 1]d : xi ≤ xj for i <P j
}

.

An upper order ideal of P, also called a filter, is a set A ⊆ P such that if i ∈ A and i <P j,
then j ∈ A. Let J(P) denote the poset of upper order ideals of P, ordered by reverse
inclusion. We use 〈p1, . . . , pk〉 to denote the ideal generated by elements p1, . . . , pk ∈ P.
Let e1, . . . , ed denote the standard basis vectors of Rd. For an upper order ideal A ∈ J(P),
define the characteristic vector vA := ∑i∈A ei. The vertices of O(P) are given by

V(O(P)) = {vA : A ∈ J(P)} .

Define a hyperplane Hi,j = {x ∈ Rd : xi = xj} for 1 ≤ i < j ≤ d. The set of all
such hyperplanes, called the d-dimensional braid arrangement of type A, induces a
triangulation T of O(P) known as the canonical triangulation, which has the following
three fundamental properties: T is unimodular, the simplices are in bijection with the
linear extensions of P, so the normalized volume of the order polytope vol(O(P)) is
equal to the number of linear extensions of P, and the simplex corresponding to a linear
extension (a1, . . . , ad) of P is

σa1,...,ad =
{

x ∈ [0, 1]d : xa1 ≤ xa2 ≤ · · · ≤ xad

}
,

with vertex set {0, ead , ead−1 + ead , . . . , ea1 + · · ·+ ead = 1}.

3 Generalized snake posets

We introduce the family of generalized snake posets P(w), which are distributive lattices
with width two, and give a recursive formula for the normalized volume of the order
polytope of P(w).

Definition 3.1. For n ∈ Z≥0, a generalized snake word is a word of the form w =
w0w1 · · ·wn where w0 = ε is the empty letter and wi is in the alphabet {L, R} for
i = 1, . . . , n. The length of the word is n, which is the number of letters in w which
belongs to {L, R}.

Definition 3.2. Given a generalized snake word w = w0w1 · · ·wn, we define the general-
ized snake poset P(w) recursively in the following way:

• P(w0) = P(ε) is the poset on elements {0, 1, 2, 3} with cover relations 1 ≺ 0, 2 ≺ 0,
3 ≺ 1 and 3 ≺ 2.
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• P(w0w1 · · ·wn) is the poset P(w0w1 · · ·wn−1) ∪ {2n + 2, 2n + 3} with the added
cover relations 2n + 3 ≺ 2n + 1, 2n + 3 ≺ 2n + 2, and{

2n + 2 ≺ 2n− 1, if n = 1 and wn = L, or n ≥ 2 and wn−1wn ∈ {RL, LR},
2n + 2 ≺ 2n, if n = 1 and wn = R, or n ≥ 2 and wn−1wn ∈ {LL, RR}.

In this definition, the minimal element of the poset P(w) is 0̂ = 2n + 3, and the maximal
element of the poset is 1̂ = 0.

If w = w0w1 · · ·wn is a generalized snake word of length n, then P(w) is a distributive
lattice of width two and rank n + 2. We point out two special cases of generalized snake
posets. For the length n word εLRLR · · · , Sn := P(εLRLR · · · ) is the snake poset, and for
the length n word εLLLL · · · , Ln := P(εLLLL · · · ) is the ladder poset. For an example,
refer to Figure 1.
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Figure 1: The snake poset S5 = P(εLRLRL) and the ladder poset L5 = P(εLLLLL).

3.1 Volume of the order polytope of generalized snake posets

Recall that the volume of an order polytope O(P) is determined by the number of linear
extensions of the poset P. Thus, to study the volume of O(P(w)) we consider the
recursive structure of the poset of upper order ideals of P(w). Because of the definition
of the generalized snake poset P(w), the minimal element of J(P(w)) is 0̂ = 〈2n + 3〉 =
P(w) and the maximal element is 1̂ = ∅.

Lemma 3.3. Let w = w0w1 · · ·wn be a generalized snake word. If k ≥ 0 is the largest index
such that wk 6= wn, then J(P(w)) =

J(P(w0w1 · · ·wn−1)) ∪ {〈2n + 3〉, 〈2n + 2〉, 〈2n + 2, 2k + 2〉} ∪ {〈2n + 2, 2k + 2i + 1〉}n−k
i=1 .

Remark 3.4. Thus, we see that J(P(w)) can be constructed by adding a chain of n− k + 3
elements to the bottom of J(P(w0w1 · · ·wn−1)). In the Hasse diagram for J(P(w)), this
corresponds to drawing a strip of n− k + 1 squares. See Figure 2 for an illustration.
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Figure 2: An illustration of Lemma 3.3. On the left is a portion of a generalized snake
poset P(w) and on the right is the corresponding poset of upper order ideals J(P(w)).
To construct J(P(w)) from J(P(w0 · · ·wn−1) is to add n− k + 3 elements, with cover
relations shown in red in the Hasse diagram on the right.

The normalized volume of the order polytope O(P(w)) can be computed by a recur-
sive formula involving Catalan numbers.

Definition 3.5. For m ≥ 0, the m-th Catalan number is Cat(m) = 1
m+1(

2m
m ).

Theorem 3.6. For n ≥ 0, let w = w0w1 · · ·wn be a generalized snake word. If k ≥ 0 is the
largest index such that wk 6= wn, then the normalized volume vn ofO(P(w)) is given recursively
by vn = Cat(n − k + 1)vk + (Cat(n− k + 2)− 2 ·Cat(n− k + 1)) vk−1, with v−1 = 1 and
v0 = 2.

For the snake poset Sn = P(εLRLR · · · ), the letters alternate so we have n− k = 1 at
every step. In the case of the ladder poset Ln = P(εLLLL · · · ), we have k = 0 at every
step, and hence we have the following corollary.

Corollary 3.7. The normalized volume of O(Sn) with n ≥ 0 is given recursively by vn =
2vn−1 + vn−2, with v−1 = 1 and v0 = 2. These are the Pell numbers. Also, the normalized
volume of O(Ln) with n ≥ 0 is given by vn = Cat(n + 2).

We end this section by showing that the normalized volume of an order polytope
O(P(w)) of a generalized snake poset is bounded above and below by the volume of the
order polytope of the ladder poset and the snake poset, respectively.

Theorem 3.8. For any generalized snake word w = w0w1 · · ·wn of length n,

volO(Sn) ≤ volO(P(w)) ≤ volO(Ln).
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4 A combinatorial interpretation of circuits

In the remainder of this article, we study the properties of the order polytope of a poset
Qw whose lattice of filters is a generalized snake poset.

Define P̂(w) to be the generalized snake poset P(w) with 0̂ and 1̂ adjoined, and when
w is clear from context we write P̂. Given w = w0w1 · · ·wn, P̂ = P̂(w) is a distributive
lattice with order 2n + 6 because P̂ does not contain a copy of the smallest non-modular
lattice with five elements and does not contain a sublattice isomorphic to a three-element
antichain with a 0̂ and 1̂ added. Let Qw = Irr∧(P̂) denote the poset of meet-irreducibles
of P̂. Heuristically, Irr∧(P̂) is obtained from P̂ by removing 1̂, and every vertex which is
at the bottom of a bounded face in the Hasse diagram. See Figure 3. By the fundamental
theorem of finite distributive lattices, P̂ ∼= J(Qw), where J(Qw) is the lattice of filters of
Qw, ordered by reverse inclusion.

We construct a graph G = G(w) associated to P̂ as follows. If w = w0w1 · · ·wn, the
vertex set of G is V(G) = {w0, w1, . . . , wn}. The edge set of G is given by

E(G) = {(wi, wi+1) : i = 0, . . . , n− 1} ∪ {(wi, wi+2) : if wiwi+1wi+2 = LLR or RRL}.

In other words, G consists of the path of length n on the vertices w0, . . . , wn, with a 3-
cycle for each turn LLR or RRL in w. We denote the set of nonempty connected induced
subgraphs of G(w) by G(w).

The Hasse diagram of P̂ can be embedded on the plane so that its edges are non-
crossing where each bounded face of the embedded Hasse diagram has degree 4 given
by the length of the cycle bounding the face. We call the bounded faces the squares of P̂.
There is a one-to-one correspondence between the squares of P̂(w) and the letters of w
by realizing G = G(w) as follows. Consider each square in the Hasse diagram Hasse(P̂)
as a vertex, then form an edge between squares when they intersect in the plane, as
shown in Figure 3. For each vertex wi of G, let Sq(wi) denote the four elements of P̂
contained in the 4-cycle which bounds the face of Hasse(P̂) corresponding to wi.

Next, we study the circuits of the order polytope O(Qw). Understanding this for
arbitrary words w is a challenge, therefore we instead restrict our attention in this section
to the following set of words.

Definition 4.1. Let V denote the subset of words which do not contain the substring LRL
or RLR.

Theorem 4.2 shows that for w ∈ V , circuits in the vertices of O(Qw) have a combina-
torial interpretation as the nonempty connected induced subgraphs of the graph G(w).

Theorem 4.2. Let w ∈ V be a generalized snake word of length n. There exists a bijection
Γ : G(w) → C(Qw) between the set G(w) of nonempty connected induced subgraphs of G(w)
and the set C(Qw) of circuits of the vertex set of the order polytope O(Qw).
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Figure 3: In the center is the lattice P̂(w) for w = εL3R2L4R5L2. Its poset of meet-
irreducibles Qw = Irr∧(P̂) is shown to the right, and the associated graph G(w) is
shown to the left.

Remark 4.3. Theorem 4.2 does not hold for a generalized snake word w outside of V .
Computational evidence suggests that the size of G(w) is an upper bound for the num-
ber of circuits of O(Qw).

Next, we obtain a number of corollaries about the structure of the circuits in the
vertex set of O(Qw).

Corollary 4.4. Let w ∈ V . A circuit Z with partition (Z+, Z−) in the vertex set of O(Qw) has
an affine dependence relation of the form ∑

j∈Z+

vj = ∑
j∈Z−

vj. In particular, |Z−| = |Z+|.

Corollary 4.5. Let H = {wi1 , . . . , wik} be a connected induced subgraph of G induced by the
subword wi1 · · ·wik of w = w0 · · ·wn ∈ V such that i1 < · · · < ik. Suppose H′ = H ∪ {wij} is
a connected induced subgraph of G such that ik < ij. Then

if wij = wik , then |Γ(H′)| = |Γ(H)| or if wij 6= wik , then |Γ(H′)| = |Γ(H)|+ 2.

In the case where H = {ε}, |Γ(H′)| = |Γ(H)|. Thus, the smallest circuits in the vertex set
of O(Qw) have four vertices. The largest circuits have 4 + 2t vertices where t is the number of
turns (an occurrence of LLR or RRL) in w.

Using the bijection of Theorem 4.2, we can recursively compute the number of circuits
in the vertex set of O(Qw).
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Corollary 4.6. Let u = w0 · · ·wn−1 ∈ V and w = uwn ∈ V . Let Nk be the number
of connected induced subgraphs of G(u) that contain wk but not wk+1. Then |G(ε)| = 1,
|G(εw1)| = 3, and (a) if wn = wn−1, then |G(w)| = |G(u)|+ Nn−1 + 1, or (b) if wn 6= wn−1,
then |G(w)| = |G(u)|+ Nn−1 + Nn−2 + 1.

Remark 4.7. When w = εRRLLRRLL . . ., the poset Qw = P(εRLRLRL . . .) = Sk is the
snake poset. The number of circuits of the order polytope of the snake poset is equal to
the number of nonempty connected induced subgraphs of the graph TS2k+1. The graph
TSn is known as a triangular snake graph [5].

Circuit properties imply the following result regarding triangulations of O(Qw).

Theorem 4.8. For w ∈ V , every vertex of the secondary polytope of O(Qw) is a unimodular
triangulation. Thus, every triangulation of O(Qw) is unimodular.

Moreover, all of our computations support the following conjecture.

Conjecture 4.9. If w ∈ V , all triangulations of O(Qw) are regular.

5 Flips and a twist action on triangulations

In this section we will take a deeper look at the 1-skeleton of the secondary polytope.
Starting from the canonical triangulation of O(Qw) we will see that for a length k word
there are exactly k + 1 flips, where a single flip corresponds to a local move along an
edge in the flip graph. As a consequence, we fully determine the flip graph of regular
triangulations in the special case of the ladder. We will also introduce the notion of
twists which act globally by inducing automorphisms on the flip graph.

Using the notation from Section 4, let w be a generalized snake word in V and
consider the associated poset Qw. In this section, we present four theorems about flips
of regular triangulations for O(Qw). First, we classify the flips that can be made from
the canonical triangulation of O(Qw).

Theorem 5.1. Let w ∈ V have length k. The canonical triangulation of O(Qw) admits exactly
k + 1 flips.

As an application, we determine the flip graph of regular triangulations for the spe-
cial case of a ladder. When w = εLn−1, P̂\{0̂, 1̂} is the product of a (n + 1)-chain and a
2-chain. Thus, the next result is a rephrasing of the result that the secondary polytope
of the Cartesian product of an n-simplex and 1-simplex is an n-dimensional permutahe-
dron [6, Section 16.7.1].

Theorem 5.2. Let w = εLn−1, and Qw = Irr∧(P̂(w)). The flip graph of triangulations of
O(Qw) is the Cayley graph of the symmetric group Sn+1 with the simple transpositions as the
generating set.
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Figure 4: Ladder Li in P̂ containing boxes with labels wp, . . . , wq, where wp < wp+1 <

· · · < wq. The left (right) represents the case where wq = L (wq = R).

Third, we introduce the following group. Let P̂ = P̂(w) be defined as in the previous
section. We can then think of P̂ as being made up of 0̂, 1̂, and ladders L1, . . . ,Lt for
t ≥ 1 defined as follows. Given the vertices w0, . . . , wk of G(w), let wi1 be the first index
such that there is an edge from wi1 to wi1+2. Then L1 is the ladder in P̂ induced by the
elements of ∪i1+1

j=0 Sq(wj). Let wi2 be the next vertex where there is an edge from wi2 to

wi2+2. Then L2 is the ladder in P̂ induced by the elements of ∪i2+1
j=i1+1Sq(wj). Inductively

define Li in a similar fashion. Note that by definition these ladders are disjoint except
that Li ∩ Li+1 is a single square corresponding to a corner box in P̂. That is, Li ∩ Li+1

comes from the underlined letter · · · RRL · · · or · · · LLR · · · in the expression for w.
Moreover, we index the ladders so that y, the top element of L1, is covered by 1̂ in P̂.
That is, y ≺ 1̂. Since w avoids subwords LRL and RLR, each Li, for 1 < i < t, consists of
at least three squares and L1,Lt consist of at least two squares, except for the case where
w = ε, in which case we have one square and one ladder.

Let V0 denote the set of vertices of P̂. Next, we define a collection of certain permu-
tations on elements of V0. Consider the ladder Li for i ∈ [t] in the poset P̂. Then Li has
the following structure up to a reflection of P̂ in a vertical axis. Label the vertices of Li

as x1, . . . , xs for some even integer s as in Figure 4. In the case where w = ε, we resolve
the ambiguity of the labeling by choosing the convention that the left and right elements
in the antichain of the square have labels x2 and x3 respectively.

Definition 5.3. Given a ladder Li, define τi ∈ S|V0| to be the permutation of V0 such that
for v ∈ V0,

τi(v) =


xj−1 if v = xj and j ∈ [s] is even,
xj+1 if v = xj and j ∈ [s] is odd,
v otherwise.
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Hence, τi acts on V0 by reflecting the vertices of Li across a diagonal and fixing
the remaining vertices. The next lemma says that the set of τi for i ∈ [t] generate a
commutative subgroup of S|V0|.

Lemma 5.4. For all τi, τr ∈ S|V0|, the following properties hold: (a) τ2
i = 1 and (b) τiτr = τrτi.

Definition 5.5. Let T(w) denote the subgroup of S|V0| generated by the set of the τi’s.
We call T(w) the twist group of Qw. Elements of T(w) are called twists and the elements
τi are called elementary twists.

Note that by Lemma 5.4, T(w) = 〈τi : i ∈ [t]〉 is isomorphic to Zt
2. As the next

theorem demonstrates, the twist group acts on the component of the flip graph of tri-
angulations of O(Qw) containing the canonical triangulation, and flips are preserved by
twists. A priori, a simplex σ in the triangulation T after twisting becomes a collection of
vertices τ(σ) of O(Qw) that may or may not also form a simplex. Hence, a twist τ(T )
of a triangulation T is a collection of subsets of vertices obtained by applying the twist
τ to every simplex in T , so τ(T ) is not necessarily a triangulation. However, in the case
when twisting results in a triangulation, the following theorem says that twists and flips
behave well with each other. Further note that twists act on the set of circuits, so τ(Z) is
well-defined.

Recall that if Z is a circuit in O(Qw) and T is a triangulation of O(Qw) that admits
a flip using Z, then T = T +

Z and T −Z are the triangulations related by flips at Z. Below
τ(T +

Z ) = τ(T +
Z )+

τ(Z) and τ(T +
Z )−

τ(Z) = τ(T −Z ) denote the two triangulations obtained
that related by a flip through τ(Z).

Theorem 5.6. Let w ∈ V , Qw = Irr∧(P̂(w)), and let T and τ(T ) be two triangulations of
O(Qw) where τ is a twist. If T = T +

Z can be flipped at circuit Z, then τ(T +
Z ) = τ(T +

Z )+
τ(Z)

and τ(T +
Z )−

τ(Z) = τ(T −Z ). In other words, the following diagram commutes:

T +
Z

flip in Z
//

twist
��

T −Z
twist
��

τ(T+
Z ) = τ(T +

Z )+
τ(Z)

flip in τ(Z)
// τ(T +

Z )−
τ(Z) = τ(T −Z )

Corollary 5.7. Let w ∈ V , Qw = Irr∧(P̂(w)), and let T and τ(T ) be two triangulations of
O(Qw) where τ is a twist. Then T and τ(T ) admit the same number of flips.

Lastly, we show that twists of regular triangulations lead to regular triangulations.

Definition 5.8. If xi is the k-th element in the canonical order, let ρ(xi) = k − 1. The
canonical height function is the function ω : A → R given by ω(xi) = 2ρ(xi). Furthermore,
we define the twisted height function ωτ : A→ R to be given by ωτ(xi) = ω(τ(xi)). Note
that taking τ = id gives the canonical height function.
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Theorem 5.9. Let w ∈ V , Qw = Irr∧(P̂(w)), and let Tw be the canonical triangulation
of O(Qw). Then Tw is a regular triangulation with height function ω(xi) = 2ρ(xi) defined
in Definition 5.8. Furthermore, for any twist τ, τ(Tw) is a regular triangulation with the
corresponding twisted height function.

When w ∈ V , a twist of a canonical triangulation of O(Qw) again yields a regular
triangulation, by Theorem 5.9. Therefore, if Conjecture 4.9 holds, we obtain an action
of the twist group on the set of all (regular) triangulations. Hence, the number of trian-
gulations would be divisible by the order of the twist group. In the special case when
Qw = Sn the twist group has order 2n+1. We conjecture the following.

Conjecture 5.10. The number of regular triangulations of O(Sn) is 2n+1 ·Cat(2n + 1).
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