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Abstract. We give two combinatorial rules for the intersections of ψ and ω classes
on the Deligne–Mumford moduli space of stable rational curves with n + 3 marked
points. The first, via lazy tournaments, describes products of ω classes in dimension 0
using boundary points of the moduli space. We use this rule to give a simple proof
that the total degree of M0,n+3 in the iterated Kapranov embedding is (2n − 1)!!, and
we give a bijection with the column-restricted parking functions known to enumerate
each multidegree. The second rule, via slides, expresses products of ω or ψ classes in
all dimensions as positive, multiplicity-free sums of boundary strata. We show that
these strata can moreover be obtained as limits of complete intersections of M0,n+3

with explicitly-defined families of hyperplanes.

Résumé. On donne deux règles combinatoires pour les intersections des classes de
cohomologie ψ et ω sur l‘espace de modules des courbes stables (au sens de Deligne–
Mumford) avec n + 3 points marqués. Le premier, qu’on appelle un tournoi des pa-
resseux, associe à un produit de classes ω en dimension zéro une collection de points
limites de M0,n+3. Cela nous permet de démontrer de façon très simple que le de-
gré total de M0,n+3 dans l’immersion itérée de Kapranov équivaut à (2n − 1)!!. On
donne aussi une bijection avec les fonctions de stationnement restreintes par colonne qui
énumèrent les multidegrés. Le deuxième, qu’on appelle une glissade, exprime tout
produit de classes ψ ou ω, en toute dimension, comme une somme, positive et sans
multiples, de strates limites de M0,n+3. On démontre aussi que les strates énumérées
ainsi peuvent être obtenues en tant que limites d‘intersections complètes de M0,n+3

avec certaines familles explicites d‘hyperplans.
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1 Introduction

We give two new combinatorial rules for certain intersections of divisor classes on the
moduli space M0,n+3 of stable (n + 3)-pointed rational complex curves (n ≥ 0). Such
a curve consists of a union of P1s with nodal intersections and n + 3 labeled marked
points pa, pb, pc, p1, p2, . . . , pn, joined in a tree structure (see Figure 1 and Section 1.2).

The geometry and intersection theory of M0,n+3 are of intensive and ongoing inter-
est, particularly questions of an enumerative nature (see [1, 2, 9, 12, 16, 17] for a range
of enumerative work on M0,n and related spaces). These problems also have applica-
tions connecting M0,n+3 to questions in birational geometry, mathematical physics, and
graph theory (among others). A broad question is to understand to what extent M0,n+3
resembles more well-understood varieties such as toric varieties and flag varieties. No-
tably, M0,n+3 has a boundary stratification akin to the Schubert stratification, and maps
to projective space similar to the Plücker embeddings.

Our combinatorial rules are for calculating divisor products coming from these fun-
damental maps to projective space. Just as the flag variety Flags(Cn) has Plücker mor-
phisms Flags(Cn) → Gr(i, Cn) → P(n

i )−1 for each i, describing the i-th part of the flag,
the moduli space M0,n+3 has for each i a Kapranov morphism

|ψi| : M0,n+3 → Pn, (1.1)

which describes the part of the stable curve near the marked point pi (see Section 3.1).
The corresponding divisor class, given by a hyperplane section from this map, is called
the i-th psi class. There is a closely-related “reduced” Kapranov morphism for each i,

|ωi| : M0,n+3 → Pi, (1.2)

a slight modification of ψi, whose corresponding divisor class is called the i-th omega
class ωi, following the notation in [4]. Just as combining all the Plücker morphisms gives
an embedding of the flag variety in a product of Grassmannians (or projective spaces),
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Figure 1: A stable curve (left) and its dual tree (right). Possible coordinate values are
shown for the component with five special points (the large circle). Up to isomorphism,
on each other component the special points are at (0, 1, ∞).
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the maps |ψi| and |ωi| for all i produce two basic maps to projective space, namely

Ψn : M0,n+3 → Pn × Pn × · · · × Pn, (1.3)

Ωn : M0,n+3 ↪→ P1 × P2 × · · · × Pn. (1.4)

where the i-th factor is |ψi| (for Ψn) and |ωi| (for Ωn). These are called the total and
iterated Kapranov morphisms, respectively. The psi classes have been extensively studied,
and the map Ψn is birational onto its image. The map Ωn, meanwhile, is in fact a
projective embedding [10, 13] and has been studied in more recent papers [4, 6, 15].

1.1 Intersection products and combinatorics

Let k = (k1, . . . , kn) be a weak composition with n parts. We consider the intersection
products in the Chow ring A•(M0,n+3) (equivalently, in the cohomology ring),

ψk := ψk1
1 · · ·ψkn

n , ωk := ωk1
1 · · ·ωkn

n ∈ A•(M0,n+3). (1.5)

When ∑n
i=1 ki = n, these products give the multidegrees of the maps Ψn and Ωn: they

count the number of intersection points of M0,n+3 with the pullbacks of ki general hy-
perplanes from the i-th projective space factor (i = 1, . . . , n). The string equation recur-
rence for the ψ classes implies in this case that deg(ψk) is the multinomial coefficient
(n

k) := ( n
k1,...,kn

). The ω classes, meanwhile, satisfy an ‘asymmetric’ string recurrence,
which was given a combinatorial interpretation via parking functions in [4]. There it
was also shown, by an insertion algorithm on parking functions, that the total degree of
Ωn is

deg(Ωn) := ∑
k

deg(ωk) = (2n − 1)!!. (1.6)

The odd double factorial is also the total number of trivalent trees with n + 2 labeled
leaves, that is, the total number of boundary vertices in the boundary stratification of
M0,n+2 (not n + 3). This is highly suggestive of the existence of a geometric realization
of the multidegrees in terms of boundary points; we give such a realization (below).

When ∑n
i=1 ki < n, the intersection products ψk and ωk can be expressed, using stan-

dard formulas (see, e.g., [3]), as sums of positive-dimensional boundary strata XT of
M0,n+3, which are indexed by at-least-trivalent trees T with n + 3 labeled leaves. How-
ever, the resulting expressions are not unique (unlike the Schubert classes on Flags(Cn),
the classes [XT] of boundary strata satisfy many linear relations in the Chow ring of
M0,n+3). It is also unclear which such expressions, if any, are actually achievable as com-
plete intersections of M0,n+3 by hyperplanes. Finally, many such expansions result in
alternating sums, despite the fact that all these products are necessarily effective. (See
the related work on intersections of tropical psi classes in [5, 8, 11, 14, 18].)

In this extended abstract we give two new combinatorial rules for the intersection
products in Equation (1.5), via tournaments (Section 2, following [6]) and slides (Section 3,
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following [7]). The tournaments apply to the products ωk when ∑ ki = n and result in
a simple proof of Equation (1.6). We also give a bijection between tournaments and the
column-restricted parking functions introduced in [4]. The slide rules express the products
ψk and ωk for all k as sums of boundary strata. These combinatorial sums arise from
geometry: for each k we construct an explicit parametrized family of hyperplane sections
of M0,n+3, coming from the maps Ψn and Ωn, whose intersection on M0,n+3 degenerates
to the desired union of boundary strata.

1.2 Background and notation

A stable or at least trivalent tree is a tree T with labeled leaves, such that every non-leaf
vertex has degree at least 3. If the degrees are exactly 3, T is trivalent. We always take
leaf labels to be from the ordered set S = {a < b < c < 1 < · · · < n} for some n ≥ 0.

An S-marked stable curve C of genus 0 is a union of P1’s with simple nodal intersec-
tions to form a tree structure, along with a tuple (pi ∈ C)i∈S of distinct, smooth marked
points, such that each P1 ⊆ C has at least 3 nodes and/or marked points. The dual
tree of C is the stable tree T with a vertex for each i ∈ S, a vertex v for each component
P1 ⊆ C, a leaf edge i — v when pi is on component v, and an internal edge v — v′

when the components v and v′ are connected by a nodal singularity. See Figure 1 for an
example of a stable curve and its dual tree.

For each stable tree T, there is a closed boundary stratum XT ⊆ M0,S: the closure of
the locus of stable curves C with dual tree T. Its dimension of this stratum is dim(XT) =

∑v∈T(deg(v)− 3), the sum ranging over the non-leaf vertices. In particular, T is trivalent
if and only if XT is a point.

For each i ∈ S, there is a forgetful map πi : M0,S → M0,S\{i}. We obtain πi(C) by
forgetting pi, then if the P1 containing it is left with only 2 nodes and/or marked points,
we contract that P1 to a point.

2 Lazy tournaments for ωk in dimension 0

Our first rule, called a lazy tournament, enumerates ωk in the special case when ∑ ki = n,
and explains the odd double factorial phenomenon (Equation (1.6)). Throughout, we
assume the ordering a < b < c < 1 < · · · < n.

Definition 2.1. The lazy tournament of a trivalent tree T is the edge labeling computed by first
labeling each leaf edge by the label of the corresponding leaf, then iterating the following steps:

1. Identify which pair ‘face off’. Among all pairs of labeled edges (i, j) (ordered so that
i < j) that share a vertex and have a third unlabeled edge E attached to that vertex, choose
the pair with the largest value of i.
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Figure 2: From left to right: A leaf-labeled trivalent tree T, its initial labeling of the
leaf edges, and its full lazy tournament edge labeling. Winners of each round of the
tournament are shown in boldface at right, indicating T ∈ Tour(1, 0, 1, 2).

2. Determine the winner. The larger number j is the winner, and the smaller number i is
the loser of the round.

3. Determine whether the winner or the loser advances. Label E by i or j as follows:

(a) If E is adjacent to a labeled edge u ̸= j with u > i, label E by i. (We say i advances.)

(b) Otherwise, label E by j. (We say j advances.)

We repeat steps 1-3 until all edges of the tree are labeled. We record the winners composition
win(T) = (k1, . . . , kn), where ki is the number of rounds won by the label i.

We refer to Step 3(a) as the laziness rule, since j drops out of the tournament despite
winning its match against i. This happens when j can “see” that its opponent i will be
defeated, again, in its next round against u. An example of a lazy tournament is shown
in Figure 2.

Definition 2.2. For any weak composition k = (k1, . . . , kn) of n, we let Tour(k) be the set of
trivalent trees T such that the leaf edges of a and b share a vertex and win(T) = k.

Our first main result is as follows. The proof can be found in [6], and relies on
reproducing the recurrence of Definition 2.4 satisfied by the ωk.

Theorem 2.3. We have deg(ωk) = |Tour(k)|.
Definition 2.4 (Asymmetric string recurrence). Let k = (k1, . . . , kn) be a composition of n.
Let i0 = i0(k) be the position of the rightmost zero in k. For each j > i0, let k̃j be the composition
obtained by decrementing k j by 1, then deleting the rightmost 0 (which is in position i0 or j).

The following recurrence, which is due to [4], is shown by using the forgetful morphism
πi0 : M0,S → M0,S\{i0}, together with certain relabelings:

deg(ωk) = ∑
j>i0(k)

deg(ωk̃j). (2.1)
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Proof sketch of Theorem 2.3. We introduce an operation πlazy on tournaments T, closely
related to step 3 of Definition 2.1: we first delete the ‘facing-off’ pair i and j from T; in fact
i = i0(k). We then relabel the shared vertex v to i and decrement the labels i + 1, . . . , n
by one (non-lazy case, when k j > 1) or relabel v to j and decrement j + 1, . . . , n by one
(lazy case, when k j = 1). We show that this restricts, for each k, to a bijection

πlazy : Tour(k) ∼−−→
⊔

j>i0(k)

Tour(k̃j).

We then identify these deletions and relabelings with the maps used in the asymmetric
string recurrence. An example is shown below.

Example 2.5. For k = (1, 0, 0, 0, 2, 1, 3), we have a bijection

Tour(1, 0, 0, 0, 2, 1, 3)
πlazy−−→ Tour(1, 0, 0, 1, 1, 3) ⊔ Tour(1, 0, 0, 0, 2, 3) ⊔ Tour(1, 0, 0, 2, 1, 2).

Geometrically, viewing Tour(k) as a set of boundary points of M0,n+3, πlazy maps those
points to M0,n+2 as in the diagram

M0,abc123456 ⊃ Tour(1, 0, 0, 1, 1, 3)

M0,abc1234567
π4 // M0,abc123567

∼=
(∼=)′

∼=
M0,abc123456 ⊃ Tour(1, 0, 0, 0, 2, 3)

Tour(1, 0, 0, 0, 2, 1, 3)

⊂

M0,abc123456 ⊃ Tour(1, 0, 0, 2, 1, 2).

(2.2)

Here, the relabelings indicated by ∼= are non-lazy (decrementing 5, 6 and 7 by 1) and
the middle relabeling (∼=)′ is lazy: it is given by first sending 6 7→ 4, then decrementing
only 7 7→ 6. These are the maps used in the asymmetric string equation. The map πlazy
corresponds to these maps, applied to the appropriate subsets of Tour(1, 0, 0, 0, 2, 1, 3).

Finally, we give a simple calculation of the total degree deg(Ωn) = ∑k deg(ωk).

Corollary 2.6. The total degree of Ωn is the odd double factorial (2n − 1)!!.

Proof. As k varies over all compositions, the sets Tour(k) partition the complete set of
trivalent trees in which the leaves a, b share a vertex. These points are in bijection with
all trivalent trees on n + 2 labels, by deleting b and contracting. It is well known that
there are exactly (2n − 1)!! of these. (Geometrically, these are the boundary points on
the divisor δa,b ⊂ M0,S, and the forgetful map πb gives δa,b

∼= M0,{a,c,1,...,n} = M0,n+2.)
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2.1 Bijection with parking functions

Finally, we give a bijection to the column-restricted parking functions defined in [4].
Recall that a Dyck path of height n is a down-right lattice walk from (0, n) to (n, 0) in the
plane that stays weakly above the diagonal line x + y = n.

Definition 2.7. A parking function P of size n is a Dyck path of height n along with a labeling
of the unit squares just left of the up-steps by 1, 2, . . . , n (called the cars of P) such that each
column of cars is increasing from bottom to top.

The dominance index d(i) of car i is the number of columns to its right in which all entries
are < i (including empty columns). We say P is column-restricted if d(i) < i for all i. We let
CPF(k) be the set of column-restricted parking functions with ki cars in column i for all i.

Theorem 2.8. The following is a bijection τ : Tour(k) ∼−−→ CPF(k): for each round r of the
tournament, place car r in column j, where j is the winner of the round.

See [6, Section 4.2] for full details and proofs. As an example, the tree and parking
function below correspond under the bijection τ.

a c

b

2

1
4

3

2

4

1

3

τ

Indeed, by Figure 2, the tree T shown above is in Tour(1, 0, 1, 2). Note that i = 1 wins
round 3, i = 2 does not win any round, i = 3 wins round 1, and i = 4 wins rounds 2, 4.
Thus τ(T) is the parking function shown at right, and it is column-restricted because
car 3 has dominance index 2 (it dominates two columns to its right, but not the final
column) and the other cars have dominance index 0. In particular, τ(T) ∈ CPF(1, 0, 1, 2).

3 Slide rules

If T is a stable (at-least-trivalent) tree with leaves labeled by S and i ∈ T is a leaf, let
vi denote the non-leaf vertex adjacent to i. The branches of T at i are the connected
components of T \ {i, vi}. We write Bra for the branch containing the leaf a and ea for the
edge connecting vi and Bra. The i-minimal branch Brm is the branch with the minimal
leaf m of T \ (Bra ∪ {i}).
Definition 3.1 (Slide at i). An i-slide on T is performed as follows: we add a vertex v in the
middle of ea, move Brm to v, and attach each other branch (excluding Bra) to either vi or v.

We write slidei(T) for the set of stable trees obtained this way. Note that stability requires at
least one branch to remain at vi, so |slidei(T)| = 2deg(vi)−3 − 1.
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Example 3.2. We calculate slide3(T), where T is shown at right in Figure 1 with v3 indi-
cated by a dot. The P1 corresponding to v3 is drawn in bold in the accompanying stable
curve picture. Then Bra is the subtree with leaves {a, b, 5}, and the other branches at 3
have leaves {4}, {1, 6}, and {c, 2}. So m = c and Brm is the branch with leaves {c, 2} (the
minimal leaf outside Bra). Moving Brm and distributing the other two branches gives the
following set of trees:

slide3(T) =

{ a

b

c2

1

3
4

5
6

,

a

b

c2

1

3
4

5
6

,

a

b

c2

1

3
4

5
6

}
.

The following lemma, while simple, is essential to the multiplicity-freeness and
generic reducedness results.

Lemma 3.3 (Injectivity). For T ̸= T′, the sets slidei(T) and slidei(T′) are disjoint.

Proof. Let R ∈ slidei(T). Recall that ea ∈ R is the edge connecting the branch Bra of R at
i to the vertex vi. Contracting ea recovers T.

Let k = (k1, . . . , kn) be a composition. We write (resp. ) for the unique tree with
a single internal vertex and leaves a, b, c (resp. a, b, c, 1, . . . , n).

Definition 3.4 (Slide rule for ψk). We define Slideψ(k) as the set of trees obtained as follows.
1. Start with as step i = 0.

2. For i = 1, . . . , n, apply ki successive i-slides all possible ways to all trees from step i − 1.

Definition 3.5 (Slide rule for ωk). We define Slideω(k) as the set of trees obtained as follows.
1. Start with as step i = 0.
2. For i = 1, . . . , n:

a. For each tree obtained in step i − 1, consider all trees formed by inserting i at any
existing non-leaf vertex.

b. For each tree obtained in step a, apply ki successive i-slides in all possible ways.

Example 3.6. We compute Slideψ(1, 0, 2). We start with the unique tree with a single
internal vertex and six leaves labeled a, b, c, 1, 2, 3. The 1-slide produces seven trees:

a

b c 1
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We then apply two successive 3-slides. Notice that deg(v3) < 5 for the trees in the
bottom row, so only the trees in the top row generate nonempty sets after two 3-slides.
We obtain three trees:

Slideψ(1, 0, 2) =
{

T1 = T2 = T3 =
a

b c 1

3

2

a

b c 3

1

2

a

b c 1

3

2

}
.

Theorem 3.7. For all k, we have in A•(M0,n+3) that

ψk = ∑
T∈Slideψ(k)

[XT], and ωk = ∑
T∈Slideω(k)

[XT].

By the Injectivity Lemma 3.3 (and the obvious injectivity of Step 2(a) in the ω-slide
rule), the above sums are both multiplicity-free. We will deduce Theorem 3.7 from an
explicit geometric construction. We first recall some background on the Kapranov maps.

3.1 Kapranov morphisms

We describe the Kapranov morphism |ψi| : M0,S → Pn, for each i ∈ S \ {a}, defined
in [10]. We give Pn the projective coordinates [Zi,b : Zi,c : Zi,1 : · · · : Ẑi,i : · · · : Zi,n]; the
notation Ẑi,i means there is no coordinate named Zi,i.

Let C be an S-marked stable curve, and let T be its dual tree. Let C′ ⊆ C be the
irreducible component containing pi. Each node or marked point q ∈ C′ corresponds to
a branch of T at i. For each marked point j ̸= i, let q(j) ∈ C′ be the node or marked
point corresponding to the branch containing j. (If j, j′ are on the same branch of T at i,
then q(j) = q(j′) is a node on C′. If pj itself is on C′, then q(j) = pj.)

Then |ψi|(C) is computed as follows: since C′ ∼= P1, we change coordinates on C′ so
that pi = ∞ and q(a) = 0. The remaining special points have well-defined coordinates
up to a common scalar, and we put (where the notation q̂(i) means q(i) is omitted)

|ψi|(C) = [q(b) : q(c) : q(1) : · · · : q̂(i) : · · · : q(n)] ∈ Pn.

Example 3.8. For i = 4, the curve C in Figure 1 has |ψ4|(C) = [0 : u : t : u : s : 0 : t].

The ‘reduced‘ Kapranov morphism |ωi| : M0,S → Pi is the composition of the forget-
ful map

fi = πi+1 ◦ · · · ◦ πn : M0,abc1···n → M0,abc1···i,

followed by the Kapranov morphism |ψi| of the smaller moduli space. Thus ωi = f ∗i ψi.
We write [Yi,b : Yi,c : Yi,1 : · · · : Yi,i−1] for the projective coordinates on the target Pi.
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3.2 Hyperplanes

Definition 3.9. Let t be a parameter. We define hyperplanes Hψ
i (t) ⊆ Pn and Hω

i (t) ⊆ Pi by

Hψ
i (t) := V(Zi,b + tZi,c + · · ·+ tiZi,i−1 + ti+1Zi,i+1 + · · ·+ tnZi,n), (3.1)

Hω
i (t) := V(Yi,b + tYi,c + · · ·+ tiYi,i−1). (3.2)

By abuse of notation, we also write Hψ
i (t) and Hω

i (t) for the loci

Pn × · · · × Pn × Hψ
i (t)× Pn × · · · × Pn ⊆ Pn × Pn × · · · × Pn, (3.3)

P1 × · · · × Pi−1 × Hω
i (t)× Pi+1 × · · · × Pn ⊆ P1 × P2 × · · · × Pn. (3.4)

A key feature of Ψ−1
n (Hψ

i (t)) (similarly Ω−1
n (Hω

i (t))) is that its intersection with any
boundary stratum is either transverse or empty. We will consider families of hyperplanes
consisting of, for each i, ki copies of Hψ

i (t) or Hω
i (t) with independent parameters t.

Definition 3.10 (Family of hyperplanes). Let k = (k1, . . . , kn) be a composition. Let t⃗ = (ti,j)
for 1 ≤ i ≤ n and 1 ≤ j ≤ ki be a tuple of independent complex parameters. We define

Vψ(k; t⃗) :=
n⋂

i=1

ki⋂
j=1

Ψ−1
n

(
Hψ

i (ti,j)
)
, (3.5)

Vω(k; t⃗) :=
n⋂

i=1

ki⋂
j=1

Ω−1
n

(
Hω

i (ti,j)
)
, (3.6)

where Ψn is the total Kapranov map and Ωn is the iterated Kapranov embedding.

Example 3.11. Let k = (1, 0, 2). The equations defining Vψ(k; t⃗) pulled back from P3 ×
P3 × P3 are

0 = Z1,b + t1,1Z1,c + t2
1,1Z1,2 + t3

1,1Z1,3, (3.7)

0 = Z3,b + t3,1Z3,c + t2
3,1Z3,1 + t3

3,1Z3,2, (3.8)

0 = Z3,b + t3,2Z3,c + t2
3,2Z3,1 + t3

3,2Z3,2, (3.9)

whereas Vω(k; t⃗) is pulled back from the following equations on P1 × P2 × P3,

0 = Y1,b + t1,1Y1,c, (3.10)

0 = Y3,b + t3,1Y3,c + t2
3,1Y3,1 + t3

3,1Y3,2, (3.11)

0 = Y3,b + t3,2Y3,c + t2
3,2Y3,1 + t3

3,2Y3,2. (3.12)

The second and third equations are the same, but with independent parameters ti,j.
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Theorem 3.12. Let k and t⃗ = (ti,j) be as in Definition 3.10. Let lim
t⃗→0⃗

denote the iterated limit

lim
t⃗→0⃗

(
−
)

:= lim
tn,kn→0

· · · lim
tn,1→0

· · · · · · lim
t2,k2

→0
· · · lim

t2,1→0
lim

t1,k1
→0

· · · lim
t1,1→0

(
−
)
.

(The i-th block is empty if ki = 0, and lim denotes the flat limit.) Then we have set-theoretically

lim
t⃗→0⃗

Vψ(k; t⃗) =
⋃

T∈Slideψ(k)

XT and lim
t⃗→0⃗

Vω(k; t⃗) =
⋃

T∈Slideω(k)

XT. (3.13)

Moreover, each boundary stratum XT appearing in the union is an irreducible component and is
generically reduced in the limit.

Proof. We take the limits sequentially. We show inductively that at each step, we have a
generically reduced union of strata

⋃
XT, and that taking the limit with one additional

hyperplane of type ψi or ωi cuts out, from each XT, the sub-strata indexed by slidei(T).
By the Injectivity Lemma 3.3, no stratum ever arises twice, so the resulting union is
multiplicity-free, i.e., generically reduced.

Equation (3.13) immediately implies Theorem 3.7.

3.2.1 Application to kappa classes

Theorem 3.7 also immediately yields boundary formulas for the kappa classes, answering
a question of Cavalieri [3]. Let 0 ≤ i ≤ n and let r = (r1, . . . , rm) be a weak composition.

Definition 3.13. Let πn+1 : M0,abc1...n+1 → M0,abc1···n and πn+1,...,n+m : M0,abc1···n+m →
M0,abc1···n be the forgetting maps. The (generalized) kappa classes κi and Rn;r are given
by

κi := (πn+1)∗(ψi+1
n+1), (3.14)

Rn;r := (πn+1,...,n+m)∗(ψ
r1
n+1 · · ·ψrm

n+m). (3.15)

Definition 3.14 (Boundary strata for kappa classes). Let K(n; i) ⊆ Slideψ(0n, i + 1) be the
subset of trees T such that deg(vn+1) = 3.

Let R(n; r) ⊆ Slideψ(0n, r1, . . . , rm) be the subset of trees T such that, for all n + 1 ≤ j ≤
n + m, the tree πj+1,...,n+m(T) has deg(vj) = 3.

Theorem 3.15. We have κi = ∑
T∈K(n;i)

[Xπn+1(T)] and Rn;r = ∑
T∈R(n;r)

[Xπn+1,...,n+m(T)] on M0,S.

Proof. We push forward the expression from Theorem 3.7 and check which terms π∗[XT]
vanish. Note that these sums have repeated terms (in fact no multiplicity-free boundary
formula can exist for Rn;r in general).



12 M. Gillespie, S. T. Griffin, and J. Levinson

Acknowledgements

We thank Vance Blankers and Renzo Cavalieri for several helpful discussions.

References

[1] V. Alexeev and G. M. Guy. “Moduli of weighted stable maps and their gravitational
descendants”. J. Inst. Math. Jussieu 7.3 (2008), 425–456. doi.

[2] E. Arbarello and M. Cornalba. “Combinatorial and algebro-geometric cohomology classes
on the moduli spaces of curves”. J. Algebraic Geom. 5.4 (1996), pp. 705–749.

[3] R. Cavalieri. “Moduli spaces of pointed rational curves”. Combinatorial Algebraic Geom-
etry summer school. 2016. Link.

[4] R. Cavalieri, M. Gillespie, and L. Monin. “Projective embeddings of M0,n and parking
functions”. J. Combin. Theory Ser. A 182 (2021), p. 105471.

[5] A. Gibney and D. Maclagan. “Equations for Chow and Hilbert quotients”. Algebra Number
Theory 4.7 (2010), pp. 855–885. doi.

[6] M. Gillespie, S. T. Griffin, and J. Levinson. “Lazy tournaments and multidegrees of a
projective embedding M0,n”. 2021. arXiv:2108.00050.

[7] M. Gillespie, S. T. Griffin, and J. Levinson. “Degenerations and positive formulas for prod-
ucts of ψ and ω classes on M0,n”. in preparation.

[8] M. A. Hahn and S. Li. “Intersecting ψ-classes on Mtrop
0,w ”. 2021. arXiv:2108.00875.

[9] B. Hassett. “Moduli spaces of weighted pointed stable curves”. Adv. Math. 173.2 (2003),
pp. 316–352.

[10] M. Kapranov. “Veronese curves and Grothendieck-Knudsen moduli space M0,n”. J. Alge-
braic Geom 2.2 (1993), pp. 239–262.

[11] E. Katz. “Tropical intersection theory from toric varieties”. Collect. Math. 63 (2012), pp. 29–44.

[12] S. Keel. “Intersection theory of moduli space of stable N-pointed curves of genus zero”.
Trans. Amer. Math. Soc. 330.2 (1992), 545––574.

[13] S. Keel and J. Tevelev. “Equations for M0,n”. Int. J. Math. 20.09 (2009), pp. 1159–1184.

[14] M. Kerber and H. Markwig. “Intersecting Psi-classes on tropical M0,n”. Int. Math. Res. Not.
IMRN 2 (2009), pp. 221–240.

[15] L. Monin and J. Rana. “Equations of M0,n”. Combinatorial Algebraic Geometry. Vol. 80. Fields
Inst. Commun. Fields Inst. Res. Math. Sci., Toronto, ON, 2017, pp. 113–132.

[16] D. Mumford. “Towards an enumerative geometry of the moduli space of curves”. Arith-
metic and Geometry, Vol. II. Vol. 36. Progr. Math. Birkhäuser Boston, 1983, pp. 271–328.

[17] R. Silversmith. “Cross-ratio degrees and perfect matchings”. 2021. arXiv:2107.04572.

[18] D. Speyer and B. Sturmfels. “The tropical Grassmannian”. Adv. Geom. 4 (2004), pp. 389–411.

https://dx.doi.org/10.1017/S1474748008000108
http://www.mast.queensu.ca/~ggsmith/Fields/cavalieriExercises.pdf
https://dx.doi.org/10.2140/ant.2010.4.855
https://arxiv.org/abs/2108.00050
https://arxiv.org/abs/2108.00875
https://arxiv.org/abs/2107.04572

	Introduction
	Intersection products and combinatorics
	Background and notation

	Lazy tournaments for k in dimension 0
	Bijection with parking functions

	Slide rules
	Kapranov morphisms
	Hyperplanes
	Application to kappa classes



