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Abstract. In this extended abstract, we show how a bijection between parking functions
and regions of the Shi arrangement from Athanasiadis and Linusson [3] (in type An)
and Armstrong, Reiner, and Rhoades [1] (in type Bn, Cn, Dn) allows for the computation
of the minimal elements of the Shi regions. This gives a combinatorial interpretation of
these minimal elements: they can be seen as counting non-crossing arcs in non-nesting
arc diagrams.
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The Shi arrangements are a well studied subject in algebraic combinatorics, and their
investigation has generated a number of results of bijective nature (for instance [5, 6,
11]). Recently, a push has been made to understand the minimal elements of Shi re-
gions in connection with [4, Conjecture 2] from Dyer and Hohlweg. In the case of a
crystallographic root system Φ, Shi gives in [8] a description of the elements of the affine
Weyl group associated to Φ as vectors in ZΦ+

. Shi [9] also proves in the crystallographic
case that the Shi regions can be described by a so called sign type and that they have a
unique minimal element. Given these two results, we ask ourselves how to compute the
minimal element of a given sign type.

In [3], Athanasiadis and Linusson give a simple bijection between parking functions
and Shi regions of type An, specifically as described by their sign type. In [1], Armstrong,
Reiner, and Rhoades extend this bijection to all crystallographic root systems. We show
in this extended abstract that this bijection can, in the classical type An, Bn, Cn, Dn be
used to precisely describe the minimal element of each Shi region. This description is
essentially combinatorial: in the simplest case An, if the parking function is described
as a permutation together with a non-nesting partition, the coefficient of ei − ej is the
number of non-crossing arcs between the values i and j.

Although we assume some familiarity with crystallographic root systems and Weyl
groups, we give some light background in Section 1 to fix the notations. In Section 2 we
describe the minimal elements in type An with a detailed proof. Finally, in Section 3, we
discuss how to extend the result in type Bn, Cn, Dn with sketches of proofs. As this is an
extended abstract, we do not include the proofs in this last section.
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1 Affine Weyl groups and Shi regions

1.1 Affine Weyl Groups

Let V be an Euclidean space with inner product ⟨· | ·⟩. Let Φ be an irreducible crystallo-
graphic root system in V. Additionally, we suppose that Φ spans V. For α ∈ Φ, k ∈ Z,
consider the orthogonal affine reflections:

sα,k = x 7−→ x − 2 (⟨x | α⟩ − k)
α

⟨α, α⟩ .

The Weyl group W (resp. affine Weyl group W̃) associated with Φ is the group generated
by {sα,0 | α ∈ Φ} (resp. {sα,k | α ∈ Φ, k ∈ Z}).

Let f be a linear form such that Φ ∩ ker f = ∅. This gives a choice of positive roots
Φ+ = Φ ∩ f−1{R+} and of simple roots, defined as the roots in Φ+ that generate the ex-
treme rays of cone(Φ+) = ∑α∈Φ+ R+α. We denote the set of simple roots by ∆. Because
we supposed that Φ spans V, ∆ is a basis of V.

Since Φ is crystallographic, it has the property that Φ+ ⊂ N∆. This allows for the
definition of the root poset on (Φ+,≤) where for α, β ∈ Φ+ we say α ≤ β if β − α ∈ N∆.
This poset is graded by the height function h : Φ+ → N where h(α) is the sum of the
coefficients in the (unique) decomposition of α over ∆. The root poset has a unique
maximal element called the highest root that will be denoted by α0.

1.2 Alcoves and Shi relations

Consider the collections of affine hyperplanes (respectively, half-spaces):

Hα,k = {x ∈ V | ⟨α | x⟩ = k}, H+
α,k = {x ∈ V | ⟨α | x⟩ > k}, H−

α,k = {x ∈ V | ⟨α | x⟩ < k}

for α ∈ Φ+ and k ∈ Z. We denote the arrangement of the Hα,k hyperplanes by:

A =
⋃

α∈Φ+,k∈Z

Hα,k.

The connected components of V \ A are called alcoves. The fundamental chamber and the
fundamental alcove are, respectively:

C =
⋂

α∈∆

H+
α,0, Ae = C ∩ H−

α0,1.

It is well known that the set of alcoves is in bijection with the affine Weyl group W̃, the
bijection being w 7→ wAe. Given w ∈ W̃ and its corresponding alcove Aw, define:

K(w) = (k(w, α))α∈Φ+ , where k(w, α) = max{i ∈ Z | Aw ⊂ H+
α,i}.
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The map K is an injection of W̃ in ZΦ+
as it essentially is a description of the so-called

inversion set of w (see [8]). We are interested in the elements of ZΦ+
of the form K(w)

which we call Shi vectors. Shi vectors are characterized by Shi:

Theorem 1 ([10, Theorem 1.1]). Consider v ∈ ZΦ+
. There exists some w ∈ W̃ such that

K(w) = v if and only if, for all α, β, γ ∈ Φ+ such that α + β = γ, we have vα + vβ + εα,β = vγ

for some εα,β ∈ {0, 1}. We call these equations the Shi relations.

Remark. We want to bring the attention of the reader to the fact that in Shi’s original
formulation given as reference, the condition on α, β, γ in the previous theorem is α∨ +
β∨ = γ∨ where for some non zero vector v ∈ V, v∨ is defined as 2v/⟨v | v⟩. However,
this is because the Hα,k are instead defined as {x ∈ V | ⟨α∨ | x⟩ = 0}. In our convention,
the successive applications of α 7→ α∨ “cancel out”, giving this formulation.

1.3 Shi arrangement and Shi regions

Definition 2. We denote by A1 the Shi arrangement defined by:

A1 =
⋃

α∈Φ+

(Hα,0 ∪ Hα,1).

The connected components of V \ A1 are called the Shi regions.

The Shi arrangement A1 being a sub-arrangement of A which defines the alcoves, for
a Shi region R we have R =

⋃
Aw∩R ̸=∅ Aw: said more loosely, a Shi region is a union of

alcoves. Using this fact, for w ∈ W̃ we (abusively) write that w ∈ R to mean Aw ⊂ R.
Setting, for a real number x, sign(x) = − if x < 0, sign(x) = 0 if x = 0 and

sign(x) = + if x > 0, we can define sign(w) for w ∈ W̃ as (sign(k(w, α)))α∈Φ+ . We have
the following (see [9] for a discussion):

Proposition 3. Let R be a Shi region. The value of sign(w) is constant for all w ∈ R. The sign
type of R, denoted by sign(R), is defined as sign(w) for any w ∈ R. The map R 7→ sign(R) is
an injection of the set of Shi regions in {−, 0,+}Φ+

.

Example 4. A consequence of Theorem 1 is that not all sign types are possible. In type
A2 for instance, we have 3 roots e1 − e2, e2 − e3, e1 − e3. Giving the signs in the order
(e1 − e2, e1 − e3, e2 − e3) (as we do everywhere a A2 sign type appears in the remainder
of this paper), the A2 sign types are the following:

(+,+,+), (−,−,−), (+,+,−), (−,+,+), (−,−,+), (+,−,−),
(+,+, 0), (0,+,+), (+, 0,−), (−, 0,+), (−,−, 0), (0,−,−),

(0,+, 0), (0, 0,−), (−, 0, 0), (0, 0, 0)

 .

Notice that replacing all the zeros of a possible A2 sign type with pluses gives one of the
possible A2 sign types of the first row above. This is an important example as we will,
in Sections 2 and 3, interpret triples of signs as an A2 sign type.
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Given the sign type sign(R) of some Shi region R, it seems natural to ask to exhibit
an element w ∈ W̃ such that sign(w) = sign(R). We can actually do slightly better
than exhibit any element: in [9, Proposition 7.2], Shi proves that every Shi region has a
minimal element. We set out to describe these minimal elements in Sections 2 and 3.

Proposition 5. Let R be a Shi region. There exists a unique minimal element min(R) ∈ R in
the sense that for every w ∈ R and every α ∈ Φ+, |k(min(R), α)| ≤ |k(w, α)|.

Remark. The minimal element can be defined in other equivalent ways: it is also the
unique element such that ∑α∈Φ+ |k(w, α)| is minimized, or the unique minimal element
of R for the left weak order of W̃. We refer to [9, Section 7] for details. For our application,
the version of Proposition 5 is the most convenient.

2 Type An

In this section we systematically refer to root systems, Weyl groups, Shi regions.???? of
type An, with the following usual conventions for the underlying root system Φ:

Φ+ = {ei − ej | 1 ≤ i < j ≤ n + 1}, ∆ = {ei − ei+1 | 1 ≤ i ≤ n}.

If v is a vector indexed by Φ+, we abreviate the notation vei−ej to vi,j. It will sometimes
be useful to write vi,j as vj,i: this is non-ambiguous as ei − ej ∈ Φ+ if and only if i < j.

As usual, we have a realization of An as Sn+1. Let π be a permutation of J1, n + 1K.
If a, b ∈ J1, n + 1K are distinct, let c = π(a), d = π(b). We define an arc on π as
{(a, c), (b, d)}: this choice of definition is motivated by the fact that we are interested
both in the values at the extremities of an arc, and by the positions. Thus, π being
fixed, we will designated the arc {(a, c), (b, d)} by [a, b] or [b, a] when we care about po-
sitions, and (c, d) or (d, c) if we care about values. An arc diagram is a pair (π, P) where
π ∈ Sn+1 and P is a partition of J1, n + 1K. If P = {P1, . . . , Pk} and Pi = {pi,1, . . . , pi,ki}
with pi,j ≤ pi,j+1 for all i ∈ J1, kK, j ∈ J1, ki − 1K, the set of arcs of (π, P) is:

Arcs(π, P) = {[pi,j, pi,j+1] | i ∈ J1, kK, j ∈ J1, ki − 1K}.

Note that we can recover P from the set of arcs, meaning we can graphically represent
P by an arc diagram as in Figure 1. Two arcs [a, b] and [c, d] with a < b, c < d and a < c
are crossing if a < c < b < d. They are nesting (in what we call a “pictorial” sense) if
a < c < d < b. An arc diagram is non-crossing (resp. non-nesting) if no two of its arcs are
crossing (resp. nesting).

2.1 The Athanasiadis–Linusson bijection with parking functions

In this section, we present a bijection between Shi regions of type An−1 and certain types
of arc diagrams given by Athanasiadis and Linusson in [3].
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Consider a Shi region of type An−1 given by its sign type v = (vi,j)1≤i<j≤n. Construct
the vector I = (|{vi,j = 0 or + | j ∈ J1, nK}|)1≤i<n. From [3], this is the inversion vector
of some π ∈ Sn, meaning that there exists a unique π ∈ Sn such that Ii is equal to the
number of values lower than i that appear to the left of i. Finally, for every 1 ≤ i < j ≤ n,
if vi,j = +, add an arc between i and j, removing any arc that contains another.

5 4 0 1 1
0 + - - +

+ + - 0
+ 0 -

+ +
+

1 2 5 4 6 3

Figure 1: Example of computation of the Athanasiadis–Linusson bijection. The sign
type v is given as a pyramid: vi,j is the i-th sign from the left on the j − i-th row from
the bottom. For instance, the “middle 0” is v2,5.

By construction, the set of arcs is non-nesting, and any block of the partition is sorted
(meaning if the positions p < q are in the same block, then π(p) < π(q)).

Theorem 6 ([3, Theorem 2.2]). This defines a bijection between Shi regions in type An−1 and
non-nesting arc diagrams with sorted blocks on J1, nK. For the purpose of this paper, we call (type
An−1) parking function any such diagram (π, P).1

2.2 The minimal elements

In this section, we prove the following result:

Proposition 7. Let R be a Shi region, v = sign(R). Let (π, P) be the parking function associated
to v. We define ηi,j to be the maximal number of non-crossing arcs of P between the values i and j.
The vector m ∈ ZΦ+

defined as follows is R’s minimal element:

mi,j =

{
ηi,j if vi,j = 0,+,
−(ηi,j + 1) if vi,j = −.

This, together with Theorem 6, gives an explicit bijection between parking functions
and the minimal elements of the Shi regions. The following lemma is the main ingredient
for proving our proposition.

Lemma 8. Let P be a non-nesting partition of J1, nK (meaning it forms a non-nesting arc diagram
with the identity permutation). Let η ∈ NΦ+

as defined in Proposition 7. Then for any 1 ≤ a <
b < c ≤ n, ηa,c = ηa,b + ηb,c + εη, with εη ∈ {0, 1}.2

1Because from [3, Theorem 2.2], these diagrams are in bijection with the usual parking functions.
2Although εη depends on a, b, c, we do not signify it by the notation, as it is always clear in context.
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Proof. For i, j ∈ J1, nK, let Si,j be a set of non-nesting, non-crossing arcs between i and j
of maximal cardinality. It is clear that ηa,c ≥ ηa,b + ηb,c since Sa,b ∪ Sb,c is a set of non-
crossing, non-nesting arcs. Conversely, in Sa,c, by definition of η, at most ηa,b arcs are
between a and b and similarly for b and c. Any arc in Sa,b that is not between a and b or
b and c must therefore be of the form (d, e) with d < b < e and two such arcs must be
either nesting or crossing. Thus Sa,b contains at most ηa,b + ηb,c + 1 elements.

ηa,c

ηa,b ηb,c

a b c a b c

ηa,c

ηa,b ηb,c

Figure 2: Illustration of Lemma 8: the arcs of Sa,b are represented in bold. On the left,
the case where εη = 0, on the right, the case where εη = 1. Note that we need not to
choose the same set of non-nesting non-crossing arcs to compute ηa,b, ηb,c and ηa,c.

Proof of Proposition 7. Firstly, we show that the vector m is a Shi vector, meaning it ver-
ifies the Shi relations ma,c = ma,b + mb,c + εm

3 for 1 ≤ a < b < c ≤ n + 1. Interpret
(va,b, va,c, vb,c) as an A2 sign type: applying the Athanasiadis–Linusson bijection, we as-
sociate it to a permutation of S{a,b,c} called its pattern. The pattern is unchanged when
replacing all zeros with pluses in a sign type, leaving 6 cases to check: we do so in
Table 1 (patterns are given on {a, b, c} = {1, 2, 3} for simplicity).

Sign type Pattern m1,3 = m1,2 + m2,3 + εm
(+,+,+) 1, 2, 3 η1,2 + η2,3 + εη = η1,2 + η2,3 + εη

(+,+,−) 1, 3, 2 η1,2 − η2,3 − εη = η1,2 + −(η2,3 + 1) + 1 − εη

(−,+,+) 2, 1, 3 η2,3 − η1,2 − εη = −(η1,2 + 1) + η2,3 + 1 − εη

(−,−,+) 2, 3, 1 −(η1,2 − η2,3 − εη + 1) = −(η1,2 + 1) + η2,3 + εη

(+,−,−) 3, 1, 2 −(η3,2 − η1,2 − εη + 1) = η1,2 + −(η2,3 + 1) + εη

(−,−,−) 3, 2, 1 −(η3,2 + η1,2 + εη + 1) = −(η1,2 + 1) + −(η2,3 + 1) + 1 − εη

Table 1: In each case we translate the Shi relation according to our Proposition 7.
Notice that every time, the εη given by Lemma 8 gives εm ∈ {0, 1}: m is a Shi vector.

Secondly, we show that m is minimal. Let 1 ≤ a < b ≤ n + 1 and c = π−1(a), d =
π−1(b). We proceed by strong induction on |c − d|. If |c − d| = 1, the definition of the
Athanasiadis–Linusson bijection authorizes only three cases: either c < d, ηa,b = 1 so
ma,b = 1; c < d, ηa,b = 0 so ma,b = 0 or c > d, ηa,b = 0 so ma,b = −1. In all 3 cases, this is

3Same remark as footnote 2.
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the minimal possible value that respects the sign type. Suppose now that |c− d| = k > 1.
If Sa,b = {(a, b)} or Sa,b = ∅ we are in the same situation as before and m could not be
smaller. Otherwise, we may choose an extremity e of some arc in Sa,b, strictly between
the positions c and d such that Lemma 8 applied to a, e, b yields εη = 0. Depending on
the pattern formed by a, e, b, we have again six cases, which we check in Table 2.

a, e, b Sign type ma,b ma,e me,b εm
1, 2, 3 (+,+,+) η1,2 + η2,3 = + η1,2 + η2,3 + 0
1, 3, 2 (+,+,−) η1,3 + η3,2 = + η1,3 - −(η2,3 + 1) - 1
2, 1, 3 (−,+,+) η2,1 + η1,3 = - −(η1,2 + 1) + η1,3 - 1
2, 3, 1 (−,−,+) −(η2,3 + η3,1 + 1) = - η2,3 + −(η1,3 + 1) - 0
3, 1, 2 (+,−,−) −(η3,1 + η1,2 + 1) = + −(η2,3 + 1) - η1,2 - 0
3, 2, 1 (−,−,−) −(η3,2 + η2,3 + 1) = + −(η2,3 + 1) + −(η1,2 + 1) + 1

Table 2: The formula for m gives a minimal vector. We first express ma,b as given by
our Proposition, and then using the Shi relations. Notice the last column: in every
case, depending on the sign of ma,b and whether εm is added or subtracted, εm takes
the value that minimizes the absolute value of ma,b.

If we make the induction hypothesis that our formula gives the minimal possible co-
efficient for mi,j with |π−1(i)− π−1(j)| < k, then ma,e and me,b are minimal and, from
Table 2, so is ma,b.

3 Generalization to classical types

3.1 Generalized parking functions

In this section it will be useful to see a Shi region R with sign type v as defined by
inequalities. Specifically, R can be defined as the set of vectors x ∈ V such that:

for all α ∈ Φ+, ⟨x|α⟩ < 0 if vα = −, 0 < ⟨x|α⟩ < 1 if vα = 0, 1 < ⟨x|α⟩ if vα = +.

The floors of R are the roots α ∈ Φ+ such that the inequality 1 < ⟨x|α⟩ is irredundant
in the above set of inequalities (equivalently, such that Hα,1 contains a facet of R and
R ⊂ H+

α,1). The set of floors of R is denoted by f l(R).
The philosophy of Athanasiadis and Linusson’s bijection is to encode a Shi region by

two things: an element w ∈ W and the floors of R. The element w allows to situate R with
respect to the hyperplanes Hα,0, while the floors give the missing information about the
(relevant) Hα,1. The fact that these floors form a non-nesting partition is not a “type An
miracle” and the objective of this paragraph is to state a result from Armstrong, Reiner
and Rhoades [1] that generalizes this labeling of Shi regions to the other crystallographic
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groups. To that end, we need to define the notions of non-nesting partition (following
Postnikov [7, Remark 2]), and of parking functions (using a slightly modified, low-tech
version of the definition from [1]) in other Weyl types.

Definition 9. Recall the definition of root poset from §1.1. A non-nesting partition (of type
W) is an antichain of the root poset Φ+.

Importantly, this definition coincides with the “pictorial” notion of non-nesting parti-
tion in type An. The question of interpreting this definition in the “pictorial” sense used
in Section 2 for the types Bn, Cn, Dn is discussed in the next paragraph.

Definition 10 (Parking function). Let W be a Weyl group and Φ+ the set of its positive
roots. A (type W) parking function is a pair (w, P) where P is a non-nesting partition of
type W and w is an element of W such that for all α ∈ P, w(α) ∈ Φ+.

Theorem 11 ([1, Proposition 10.3]). Let W be a Weyl group.

• Let R be a region of the Shi arrangement of W and w the unique element of W such that
R ⊂ wC. Then w−1 f l(R) is a non-nesting partition.4

• The map that associates to a region R the pair (w, w−1 f l(R)) is a bijection between Shi
regions and parking functions.

Comparing this result with Theorem 6, the roots in w−1( f l(R)) can be seen as the
arcs of the arc diagram. The use of w−1 comes from the fact that two arcs are nesting or
not only depends on the positions of their extremities: the root α gives the values of the
arc while w−1(α) gives its positions.

3.2 Types Bn, Cn, Dn

Definition 12. The root systems described in Table 3 are called the classical root systems.

Type Φ+ ∆
An ei − ej for i, j ∈ J1, nK, i < j ei − ei+1 for i ∈ J1, nK
Bn ei ± ej for i, j ∈ J1, nK, i < j, ei for i ∈ J1, nK en, ei − ei+1 for i ∈ J1, n − 1K
Cn ei ± ej for i, j ∈ J1, nK, i < j, 2ei for i ∈ J1, nK 2en, ei − ei+1 for i ∈ J1, n − 1K
Dn ei ± ej for i, j ∈ J1, nK, i < j en−1 + en, ei − ei+1 for i ∈ J1, n − 1K

Table 3: The classical root systems.

4Note that in [1], the authors actually prove the result for the ceilings of R, that is the roots α such that
the inequality ⟨v|α⟩ < 1 for v ∈ R is irredundant. However, the proof is the same, replacing “ceilings
inequalities” with “floor inequalities” wherever they appear.
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When examining the proof of Proposition 7, the essential element appears to be
Lemma 8. Thus we need to check mainly two things:

1. In type An, we used the fact that a relation α + β = γ corresponds to a triple of
integers in J1, nK on which we applied Lemma 8. This implicitly used the realization
of An as a permutation group. As Bn, Cn, Dn can also be realized as permutation
groups of J−n, nK, this extends to all classical groups, using the correspondence
between roots and pairs of integers given in Table 4.

Root ei − ej ei + ej 2ei ei
Extremities i to j and −j to −i i to −j and j to −i i to −i i to 0 and 0 to −i

Table 4: Roots and corresponding arcs in classical types. The table gives the positions
of the extremities of the arcs when constructing the arc diagram from a partition P,
and the values of the extremities when computing the minimal Shi vector.

It is easy to check that all the relations between roots on which Theorem 1 applies
correspond to suitable integer triples (for instance, the relation ei − ej + ei + ej = 2ei
can correspond to (i, j,−i) or (−i,−j, i))

2. Lemma 8 applies only for the “pictorial” notion on non-nesting arcs, meaning for
two arcs [a, b], [c, d] with a < b, c < d and a < c we do not have a < c < d < b. Thus,
to use Theorem 11, we need to get a “pictorial” representation of the “antichain”
definition of non-nesting. We discuss this point below. In particular, this requires
an extension of Lemma 8 in the case Dn.

Type Bn, Cn: The groups Bn and Cn are isomorphic to the permutation group:

{π ∈ SJ−n,nK | for all i ∈ J1, nK, π(i) = −π(−i)}.

Note that although Bn and Cn are isomorphic, they require a slightly different treatment
as their Shi arrangements are not the same. Given such a permutation π, we write it as
the sequence of its values in the following order:

π(1) π(2) . . . π(n) 0 π(−n) . . . π(−2) π(−1)

By convention, we say that the identity permutation written in this format is sorted.
We define arc diagrams as before: given a Shi region R, we compute the corresponding
parking function (π, P), we write π as above, and then, for every root in P, we draw arcs
between positions encoded by the root as specified in Table 4: the difference between Bn
and Cn is reflected in the fact that 2ei and ei do not correspond to the same arcs. It is
known (see for instance [2]) that, using these conventions, a non-nesting partition in the
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“antichain” sense corresponds to a non-nesting partition in the “pictorial” sense as we
have used in Section 2.

Given i, j ∈ J−n, nK and for T ∈ {Bn, Cn}, we define ηT
i,j as the maximal number of

non-nesting non-crossing arcs that can be chosen between the i and j.

Type Dn: The group Dn is isomorphic to the permutation group:

{π ∈ Bn | {i ∈ J1, nK |π(i) < 0} has even cardinality}.

Given such a permutation π, we will write it as the sequence of its values in the following
order:

π(1) π(2) · · · π(n − 1)
π(n)

π(−n)
π(−n + 1) · · · π(−2) π(−1)

Again, by convention, we say that the identity permutation written in this format is
sorted, meaning n and −n are incomparable, both greater than n− 1 and both lesser than
−n + 1. We do this to “solve” an issue noted in [2]: if we simply ordered the elements
of J−n, nK as we did in case Bn, Cn, the antichain {en−1 − en, en−1 + en} in type Dn would
correspond to two nesting arcs. By making n and −n incomparable we preserve the
correspondence between the “antichain” definition of non-nesting and the “pictorial”
definition. This has the advantage to (almost) allow us the use of Lemma 8 when we
define arc diagrams as before: for (π, P), write π in the above format, then draw arcs as
indicated by Table 4. The drawback is that the definition of the arc-counting vector η is
slightly more complicated. See Figure 3 for a sketch of a proof the following Lemma.

Lemma 13. Let (IdJ−n,nK, P) be a non-nesting arc diagram of type Dn. Let a, b ∈ J−n, nK \ {0}.
We define η+

a,b (resp. η−
a,b) as the maximal number of non-nesting, non-crossing arcs between a

and b, excluding arcs connected to −n (resp. to n). Define ηD
a,b = max(η+

a,b, η−
a,b). Then we have

ηD
a,c = ηD

a,b + ηD
b,c + εη, with εη ∈ {0, 1}.

Describing the minimal elements. Given the preceding points, the proof of the fol-
lowing Proposition is, with small caveats, essentially the same as in type An.

Proposition 14. Let R be a Shi region of type T ∈ {Bn, Cn, Dn} of sign type v = sign(R). Let
(π, P) be the arc diagram of type T associated to v. We define m as:

mα =

{
ηT

i,j if vα = 0,+,

−(ηT
i,j + 1) if vα = −,

where i, j are given by Table 3 depending on α. Then m is R’s minimal element.
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n − 1

n

n − 1

n

(a) Except in ±n, a symmetric choice of
arcs to compute ηa,b can be made, thus

η+
a,c

η−
a,c

η+
a,b η+

b,c

η−
a,b η−

b,c

a b c

(b) allowing to reason on this kind of picture.
Different cases corresponding to the positions of
a, b, c must be checked.

Figure 3: Idea of proof for Lemma 13.

As in type An, this construction together with the bijection from Theorem 11 give an
explicit bijection between parking functions of type T and the minimal elements of the
Shi regions of type T.

4 Final remarks

Two main questions arise when considering this construction. Firstly, how to extend it
to exceptional types? An analysis of this arc counting method prompts a formulation
only in terms of roots: given an antichain P, ηα can be defined as the maximal possible
number of occurrences of elements of P when writing α as a sum of positive roots.
In the classical types this corresponds to the definition used in this paper, and it still
makes sense in all crystallographic types. However, to prove that this definition verifies
Lemma 8, we have strongly used the permutation groups realizations in the classical
types but no equivalent realization exists in the exceptional cases. As of now, it appears
that further examination of the root poset is needed in this context.

Secondly, for m ∈ N>0, a m-Shi arrangement can be defined. Can this construction
be extended to the m-Shi arrangements? In [3], Athanasiadis and Linusson extend their
bijection the m-Shi regions. Due to the similar use of non-nesting arc diagrams, it seems
that our description of the minimal elements can be extended to m-Shi arrangements, at
least in type An.
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