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1 Introduction

A generalized permutahedron in Rn is a convex polytope such that all its edges are parallel
to ei − ej for i ̸= j. Here e1, e2, . . . , en denote the standard basis vectors of Rn. Generalized
permutahedra were introduced by Postnikov [18], but they were known before under
different names, most notably in the context of submodular function optimization [9] and
discrete convex analysis [15]. Relevant examples of generalized permutahedra include
the regular permutahedra, Bruhat interval polytopes, hypersimplices and more general
matroid polytopes. In this way the topic is connected to group and representation theory,
algebraic and tropical geometry, optimization and beyond.

Here we continue the combinatorial study of polyhedral subdivisions of generalized
permutahedra into cells which are again generalized permutahedra [2, 1, 7]. We call
these permutahedral subdivisions. An important special case are the tropical linear spaces,
which amount to regular subdivisions of matroid polytopes with matroidal cells; see
[14, Section 4.4] and [12, Section 10.5]. Our first main contribution (Theorem 10) is a de-
scription of regular permutahedral subdivisions of the regular permutahedra in terms
of conditions on the 2-skeleton. This result is an adaptation of the characterization of
the uniform tropical linear spaces via the 3-term Plücker relations. One motivation for
research in this direction comes from the wish to understand flags of tropical linear
spaces and flag matroids. As a new tool, we prove a characterization of pairs of valuated
matroids in terms of tropical incidence relations (Theorem 7). Combined with [7], we
gain new insights in the flag Dressian, the space of incident valuated matroids. Speyer
and Williams [22] and, independently, Arkani-Hamed, Lam, and Spradlin [3] recently
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showed that the positive Dressian equals the positive tropical Grassmannian. Our sec-
ond main result (Theorem 12) is related, as it shows that the valuated flags which can
be realized by a totally positive flag of linear spaces correspond to the permutahedral
subdivisions whose cells are Bruhat interval polytopes.

2 Geometry of the regular permutahedron

We denote the symmetric group of degree n as Sym(n). The (regular) permutahedron
Πn ⊆ Rn is defined as the convex hull of the points (σ(1), σ(2), . . . , σ(n)), where σ ranges
over Sym(n). These points form the n! vertices of Πn, and Sym(n) acts on this set, e.g., by
multiplication on the right. We have dim Πn = n − 1. Throughout, we identify Sym(n)
with the vertices of Πn.

The face structure of Πn is well-known, and we will use the following description. A
flag (F1, . . . , Fk) in [n] with k constituents is a strictly increasing sequence F1 ⊂ · · · ⊂ Fk of
non-empty subsets of [n]; a flag is full if it has n constituents. We say that a flag extends
a pair (U, V) of subsets U ⊂ V ⊆ [n] if there are i, j ∈ [k] with U = Fi and V = Fj.
We set eA := ∑i∈A ei. For the flag F = (F1, . . . , Fk) we can pick real numbers λi with
λ1 ≫ · · · ≫ λk > 0 to obtain the vector

λF := λ1eF1 + λ2eF2\F1
+ · · ·+ λkeFk\Fk−1

.

The following summarizes results from [9, Section 3.3(d)] and [4, Proposition 1.3].

Proposition 1. The map which sends the flag F = (F1, . . . , Fk) in [n] to the non-empty proper
face of Πn which maximizes λF is a bijection. In particular,

1. the flag F with k constituents corresponds to a face of codimension k, which is affinely
equivalent with Π|F1| × Π|F2\F1| × · · · × Π|Fk\Fk−1| × Π|[n]\Fk|;

2. the facets correspond to non-empty proper subsets of [n];

3. the vertices correspond to the full flags;

4. the edges correspond to pairs of full flags which differ in exactly one constituent;

5. each 2-face, where k = n − 3, is either a hexagon (if there exists i with |Fi+1 \ Fi| = 3), or
it is a square (if there exist distinct i, j with |Fi+1 \ Fi| = 2 and |Fj+1 \ Fj| = 2).

6. for two sets A, B ⊂ [n] with |A| = |B| and |A△B| = 2, the edges defined by the flags
extending (A ∩ B, A ∪ B) span a face isomorphic with Π|A∩B| × Π2 × Πn−|A∪B|.

Here, ‘△’ denotes symmetric difference. Notice that Πn also arises as a secondary
polytope of the prism over an (n−1)-simplex; see [8, Theorem 6.2.6]. This leads to
another way to describe the face lattice.
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3 Flag matroids and subpermutahedra

Matroid polytopes and valuated matroids A subpolytope of a polytope is the convex
hull of a subset of the vertices. Each face is a subpolytope, but the converse is false.
Let P be a generalized permutahedron. A subpermutahedron of P is a subpolytope of P
which itself is a generalized permutahedron. A matroid (base) polytope M of rank d is a
subpermutahedron of the hypersimplex ∆(d, n). The bases B(M) ⊆ ([n]d ) of a matroid
consist of all subsets whose indicator vector is a vertex of M. In the sequel, we will
identify a matroid with its matroid base polytope. The uniform matroid Ud,n, whose bases
are exactly ([n]d ), corresponds to ∆(d, n).

For a lattice polytope P, we abbreviate PZ = P ∩ Zn. A function f : PZ → R is M-
convex if the regular subdivision of the point configuration PZ by the height function f
is permutahedral. We use the convention that regular subdivisions are induced by lower
convex hulls; see [8] or [12, Section 1.2] A valuated matroid µ over a matroid M is an M-
convex function on B(M). Equivalently, a function µ : B(M) → R is a valuated matroid
if the 3-term Plücker relations hold: for each S ∈ ( [n]

d−2) and i, j, k, l /∈ S, the minimum in

min(µ(Sij) + µ(Skl), µ(Sik) + µ(Sjl), µ(Sil) + µ(Sjk))

is attained at least twice; see [14, Section 4.4] and [12, Section 10.4].

Flag matroids Let M and N be matroids of ranks d and d + 1, respectively. Then the
pair (M, N) forms a quotient if the convex hull of M × {1} ∪ N × {0} is a matroid. We
denote this by M ↞ N. Two valuated matroids µ and ν, with respective underlying
matroids M and N, are a (valuated matroid) quotient if M ↞ N and the 3-term tropical
incidence relations are fulfilled; that is, for all S ∈ ( [n]

d−1) and i, j, k /∈ S,

min(µ(Si) + ν(Sjk), µ(Sj) + ν(Sik), µ(Sk) + ν(Sij)) (3TIR)

attains the minimum at least twice. Similarly, we denote this by µ ↞ ν.
We remark that (valuated) matroid quotients are often defined differently, but it is

always equivalent to inclusion of (tropical) linear spaces. For consecutive ranks, this is
equivalent to the existence of a (valuated) matroid ξ over [n + 1] such that µ = ξ/(n + 1)
and ν = ξ\(n + 1). Both equivalences can be found in [7]. As the 3-term Plücker
relations suffice to define valuated matroids, if its support is a matroid [19, Corollary
5.5], our definition coincides with this.

A sequence of matroids M = (M1, . . . , Mn) is a (full) flag matroid if the rank of Mi is
i and Mi ↞ Mj for every 1 ≤ i < j ≤ n. The flag matroid (base) polytope of M is

M1 + · · ·+ Mn = conv
{ n

∑
i=1

eBi

∣∣∣∣ (B1, . . . , Bn) ∈ (B(M1), . . . ,B(Mn))

}
.
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Figure 1: Left: regular hexagon Π3 subdivided into two flag polytopes, neither of
which are Bruhat interval polytopes. Right: Bruhat order of Sym(3).

The equivalence of (i) and (ii) in [6, Theorem 1.11.1] characterizes base polytopes of
flag matroids as those generalized permutahedra which arise as the convex hull over
sums of characteristic vectors of flags of bases of a sequence of matroids. We use a
reformulation adapted from [7, Theorem 4.1.5].

Theorem 2 ([6]). A polytope is the base polytope of a full flag matroid if and only if it is a
subpermutahedron of the regular permutahedron.

Similarly, a (full) valuated flag matroid is a sequence of valuated matroids (µ1, . . . , µn)
such that µi ↞ µj for every 1 ≤ i < j ≤ n.

Bruhat (interval) polytopes. We recall the (strong) Bruhat order of Sym(n). Consider the
simple transpositions τ1, . . . , τi−1, with τi = (i, i + 1), which generate the group Sym(n).
A sequence τi1 , . . . , τiℓ of minimal length with σ := τi1 · · · τiℓ , is a reduced word of σ. Now
σ1 ≤ σ2 if any (equivalently every) reduced word of σ2 contains a subsequence (not
necessarily consecutive) which is a reduced word of σ1. This imposes a lattice structure
on Sym(n) with rank function given by the lengths of reduced words. For σ1 ≤ σ2 the
convex hull of the interval [σ1, σ2] in the Bruhat order is a Bruhat (interval) polytope.

Proposition 3. A subpolytope of a permutahedron is a Bruhat interval polytope if and only if it
is the base polytope of a flag matroid which can be realized in the totally non-negative flag variety.

Proof. Any Bruhat interval [σ1, σ2] defines a stratum G>0
σ1,σ2

in the totally non-negative
(TNN) flag variety and by [13, Proposition 6.7 and Theorem 6.10] the polytope of any
flag associated to a point of G>0

σ1,σ2
is the Bruhat polytope of [σ1, σ2]. Since the strata of

the form G>0
σ1,σ2

cover the TNN flag variety the converse also follows.

This implies that every constituent of a Bruhat interval polytope is a positroid [13,
Corollary 6.11]. However, the converse is not true:
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Example 4. Consider the quadrangle conv(123, 213, 312, 321), which is a subpermutahe-
dron of the hexagon Π3; see Figure 1 (left). This is not a Bruhat interval polytope since
the inclusion of 123 and 321 would imply that it is the entire permutahedron. Yet it is a
flag matroid base polytope, with constituents ({1, 3}, {12, 13, 23}, {123}).

Compression of valuated flag matroids. A height function w : Sym(n) → R is a valu-
ated permutahedron if each cell in the induced subdivision of Πn is a subpermutahedron.
Remark 5. Alternatively, a height function w : Sym(n) → R is a valuated permutahedron
if and only if its piecewise-linear extension (i.e. linearly extending over each cell of the
subdivision) on the lattice points Πn ∩ Zn is an M-convex function. In the latter case, it
is the supremum over all M-convex functions that agree with w on Sym(n).

It turns out that these are essentially the same as full valuated flags of uniform
matroids. Let (µ1, . . . , µk) be a sequence of valuated matroids with rk(µ1) < · · · <
rk(µk) and underlying matroid M1, . . . , Mk. In [10], the compression u : ∑k

i=1 Mi → R of
(µ1, . . . , µk) is defined as the function

u(x) = min
{

∑
i∈[k]

µi(Yi)

∣∣∣∣ x = ∑
i∈[k]

eYi , for all i ∈ [k] : Yi ∈ B(Mi)

}
.

When (µ1, . . . , µk) in the former definition is a valuated flag matroid, by [7, Theorem
4.4.2], the cells in the subdivision of Πn ∩Zn induced by u are themselves base polytopes
of flag matroids. Therefore, using Theorem 2, the subdivision is composed of subper-
mutahedra of Πn. On the other hand, [7, Corollay 4.4.5] provides us with the converse,
namely that such subdivisions arise from the compression of a valuated flag matroid.

Theorem 6 ([7]). A height function w : Sym(n) → R is a valuated permutahedron if and only
if it is the restriction u|Sym(n) of the compression of a full flag of valuated uniform matroids.

Incidence relations imply Plücker relations Now, we deal with the interplay of the
valuated matroids in a flag. For (non-tropical) Plücker vectors, the implication of the
Plücker relation from the incidence relation occurred in [11]. On the combinatorial level,
this was studied in the context of “M♮-convex set functions”; cf. [17]. Indeed, imposing
supermodularity among the constituents of a valuated flag matroid gives rise to an M♮-
convex set function.

Theorem 7. Let ν : ([n]d ) → R and µ : ( [n]
d+1) → R be any two functions satisfying the tropical

incidence relations (3TIR). Then µ and ν are valuated matroids.

Proof. We show that µ satisfies the 3-term Plücker relations: for all S ∈ ( [n]
d−1) and i, j, k, l ∈

[n]\S the minimum in min(µ(Sij) + µ(Skl), µ(Sik) + µ(Sjl), µ(Sil) + µ(Sjk)) is attained
at least twice. For a contradiction, suppose there is a set S and i, j, k, l ∈ [n]\S with

µ(Sij) + µ(Skl) < µ(Sik) + µ(Sjl) and µ(Sij) + µ(Skl) < µ(Sil) + µ(Sjk) . (3.1)



6 M. Joswig, G. Loho, D. Luber, and J. A. Olarte

Let ξ = ν(Si)ei + ν(Sj)ej + ν(Sk)ek + ν(Sl)el. Defining µ′ with µ′(T) = µ(T)− ⟨ξ, eT⟩
for all T ∈ ( [n]

d+1) and defining ν′ by the same translation from ν, the pair (µ, ν) is a
valuated matroid quotient if and only if (µ′, ν′) is a quotient. Hence, we can assume
that ν(Si) = ν(Sj) = ν(Sk) = ν(Sl) = 0. With this, (3TIR) yields that the minima in
min(µ(Sij), µ(Sik), µ(Sjk)), min(µ(Sik), µ(Sil), µ(Skl)), min(µ(Sik), µ(Sil), µ(Skl)), are
attained twice. By (3.1), min(µ(Sij), µ(Skl)) ≤ max(µ(Sik), µ(Sjl), µ(Sil), µ(Sjk)), so
we can assume that µ(Sij) < µ(Sik).

Combining the two observations yields µ(Sij) = µ(Sjk). From the second inequality
in (3.1), we get µ(Skl) < µ(Sil). By the minimum condition, we have µ(Skl) = µ(Sik).
From the first inequality in (3.1), we get µ(Sij) < µ(Sjl). Again by the minimum con-
dition, µ(Sij) = µ(Sil). With the above, this yields µ(Sij) = µ(Sil) > µ(Skl) = µ(Sik),
which contradicts the original assumption. Hence µ satisfies all 3-term Plücker relations
and therefore it is a valuated matroid. By duality, ν must also be a valuated matroid.

4 Regular permutahedral subdivisions

Based on the structure of the permutahedron, we derive conditions for a regular subdi-
vision to be permutahedral: a height function induces a permutahedral subdivision of
Πn if and only if it does so in the 2-skeleton of Πn.

To this end consider an arbitrary polytope P with vertex-edge graph Γ = (V, E).
We duplicate each edge, equipped with two opposite orientations; this turns Γ into a
directed graph, which we denote Γ± = (V, E±). Now any function f : V → R defined
on the vertices yields a function g : E± → R on the directed edges by letting

g(v, w) = f (v)− f (w) for distinct v, w ∈ V, (4.1)

where g(w, v) = −g(v, w). We assume n := dim P ≥ 2, whence ∂P ≈ Sn−1 is simply
connected. The key observation is that f can be recovered from g under the conditions:

Proposition 8. Let g : E± → R be a function on the directed edges of P which satisfies
∑k

i=1 g(vi, vi+1) = 0 for every 2-face of P with vertices v1, v2, . . . , vk+1 = v1 (labeled cycli-
cally). Then there is a unique function f : V → R on the vertices with (4.1) and f (s) = f0 for
any fixed s ∈ V and f0 ∈ R.

Proof. Pick a directed spanning tree T of Γ± rooted at s, and define a function f : V → R

by inductively setting f (s) = f0 and f (v) = g(v, w) + f (w) along the directed edges
of T. We need to show that f satisfies f (v)− f (w) = g(v, w) for distinct vertices v, w.
To this end it suffices to prove that h(c) := ∑ℓ

i=1 g(wi, wi+1) = 0 holds for any directed
cycle c = (w1, w2, . . . , wℓ, wℓ+1 = w1) in Γ. The boundary complex ∂P is a polytopal
complex homeomorphic to Sn−1. A combinatorial procedure for computing the funda-
mental group of a polytopal complex is given in [20, Section 44] (where this is proved
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for simplicial complexes). This has the following consequences. First, any path in ∂P
is homotopic to a path in Γ. Second, due to n ≥ 2, the boundary ∂P ≈ Sn−1 is sim-
ply connected, and thus every closed path in Γ can be contracted to a constant path
within the 2-skeleton of P. In this way, up to homotopy, the cycle c can be contracted
combinatorially in the following sense: there is a sequence of cycles c1, c2, . . . , cm in Γ
such that c1 = c, the cycle cm is trivial (without any edges), and the symmetric differ-
ence between the edges in ci and ci+1 forms a 2-face. Now the assumption on g gives
0 = h(cm) = h(cm−1) = · · · = h(c0) = h(c), as we wanted to show. A similar argument
yields the uniqueness of f .

Before we will apply this statement to the hypersimplex, we need to relate functions
on the permutahedron and on the hypersimplex. To this end let G±

Π(n) be the directed
vertex-edge graph of Πn as above. Similarly, let G±

∆ (d, n) be a directed version of the
vertex-edge graph of the hypersimplex ∆(d, n). Recall that each edge of Πn gives rise
to a pair (A, B) of equicardinal subsets of [n] with |A△B| = 2, and that each edge of
∆(d, n) corresponds to a pair (A, B) of d-subsets of [n] with |A△B| = 2.

Lemma 9. Let g be a function on the directed edges of G±
Π(n) such that, on each 2-face of Πn

which is a square, parallel directed edges attain the same g-value. Then this yields a function g′

on the directed edges of
⋃n

d=0 G±
∆ (d, n) such that g′(A, B) = g(e) for all equicardinal subsets of

[n] with |A△B| = 2 and all edges e of Πn corresponding to (A, B).

Proof. Let (A, B) be a pair of equicardinal subsets of [n] with |A△B| = 2. By Proposi-
tion 1, the vertices given by the full flags extending (A∩ B, A∪ B) form a face isomorphic
with Π|A∩B| × Π2 × Πn−|A∪B|. In particular, any two of these edges are connected by a
sequence of squares on this face, where each square is composed by a pair of parallel
edges corresponding to (A, B) and are adjacent to each other in this sequence along
these edges. By the condition on the squares, all the edges in G±

Π(n) corresponding to
(A, B) have the same g-value. So we take that number to define g′ on the arc of G±

∆ (d, n)
corresponding to (A, B), where d = |A| = |B|.

Theorem 10. A height function w : Sym(n) → R induces a permutahedral subdivision if and
only if it induces a permutahedral subdivision of the 2-skeleton of Πn. That is:

(HEX) for every hexagon abcde f (labeled cyclically) in the 2-skeleton of Πn, we have

(HXE) w(a) + w(c) + w(e) = w(b) + w(d) + w( f ),

(HXM) the maximum in max(w(a)+w(d), w(b)+w(e), w(c)+w( f )) is attained twice;

(SQR) for every square face abcd of Πn (labeled cyclically): w(a) + w(c) = w(b) + w(d).

Proof. A subdivision of a polytope defines a subdivision on each face. Therefore, as
each cell in the subdivision is a subpermutahedron, the 2-faces are also subdivided into
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subpermutahedra. Since squares cannot be subdivided any further, the second condition
follows. To show the first condition, observe that at least four cyclically consecutive
vertices have to lie in the same hyperplane, the other two on or above. By relabeling and
subtracting a linear form, we can assume that w(a) = w(b) = w(c) = w(d) = 0 and that
w(e) = w( f ) ≥ 0. This implies that the conditions on the 2-skeleton are necessary.

For the converse, suppose that w satisfies the conditions (HEX) and (SQR). We will
show that w can be decomposed into a flag of valuated matroids (g1, . . . , gn) such that w
is the result of their compression. Then, by Theorem 6, w is a valuated permutahedron.

On each directed edge (a, b) in G±
Π(n), we let h′(a, b) = w(a)− w(b) as above. Using

(SQR), by Lemma 9, this defines a function hd on the directed edges of G±
∆ (d, n) for any

d. We fix an arbitrary vertex u of Πn, which corresponds to a full flag G = (G1, . . . , Gn)
in [n]. Recall that a hexagon corresponds to the flags extending (S, Sijk) for some S and
i, j, k ∈ [n] \ S. With this notation the condition (HXE) amounts to

h(Si, Sj) + h(Sj, Sk) + h(Sk, Si) = h(Sij, Sjk) + h(Sjk, Sik) + h(Sik, Sij) = 0.

It follows that h sums to zero along each oriented 2-face of ∆(d, n) (i.e., a triangle). Thus
Proposition 8 yields a function g on the vertices of ∆(d, n) with ∑n

d=1 g(Gd) = w(u).
Let v be an arbitrary vertex of Πn, which corresponds to a full flag F = (F1, . . . , Fn)

in [n]. As a path from u to v decomposes into paths from Gd to Fd on ∆(d, n), we have
w(v) = ∑n

d=1 gd(Fd). For a hexagon face described by the flags extending (S, Sijk) with
some S ⊂ [n] and i, j, k ∈ [n] \ S, the sum representation of w agrees in all terms with
d ≤ |S| and d ≥ |S|+ 3. Hence, by (HXM), the maximum is attained at least twice in

max
(

g(Si) + g(Sij) + g(Sk) + g(Sjk), g(Sj) + g(Sjk) + g(Si) + g(Sik),
g(Sk) + g(Sik) + g(Sj) + g(Sij)

)
.

Subtracting g(Si) + g(Sj) + g(Sk) + g(Sij) + g(Sik) + g(Sjk) and multiplying by −1
yields that min(g(Sj)+ g(Sik), g(Sk)+ g(Sij), g(Si)+ g(Sjk)) attains the minimum twice.
This is the 3-term incidence relation. Summarizing, we have proven that (g1, . . . , gn)
satisfy the 1-step Plücker relations. By Theorem 7 all of the gd are valuated matroids and
so (g1, . . . , gn) is a valuated flag matroid.

5 Total positivity

The positive tropical Grassmannian TGr+(d, n) is the tropicalization of the positive part
of the Grassmannian Gr+(d, n) consisting of linear spaces over the reals with all Plücker
coordinates positive; see [21, 22, 3]. Following [3, Equation (1.1)], a valuated matroid v is
positive if it fulfills the three-term positive tropical Plücker relations; i.e., for every S and
i < j < k < l not in S, we have

v(Sik) + v(Sjl) = min(v(Sij) + v(Skl), v(Sil) + v(Sjk)) . (3TPR+)
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Similarly, the positive part of the (full) flag variety can be defined as the space of
full flags L = (L1, . . . , Ln) where Ld ∈ Gr+(d, n). Let us formulate an “untropicalized”
analog of one of the directions of Theorem 10. The Plücker coordinates of a linear space
Ld ⊆ Kn over some field K can be organized into a polynomial:

fLd(x) = ∑
B∈([n]d )

pB ∏
i∈B

xi ∈ K[x1, . . . , xn],

whose support is the base polytope of the matroid M(Ld). Given the flag L, the coeffi-
cients of these polynomials satisfy

pSi pSjk − pSj pSik + pSk pSij = 0 . (5.1)

for all S ⊆ [n] and i < j < k not in S. To give an analog of (3TPR+), we work our way
from the equation above to reach the condition (HXM).

The product fL1 · · · fLn is a polynomial whose support is the flag matroid base poly-
tope M(L1) + · · ·+ M(Ln). Suppose this polytope is the regular permutahedron Πn and
let qσ be the coefficient of xσ(1)

1 · · · xσ(n)
n in fL1 · · · fLn . Hence, for n = 3, we have that

qσ = pσ−1(3)pσ−1(2)σ−1(3)pσ−1(1)σ−1(2)σ−1(3) yielding with (5.1) then

q(321)q(123)q(231)q(213) − q(231)q(213)q(312)q(132) + q(312)q(132)q(321)q(123)

= p1p2p3p12p13p23p4
123 (p12p3 − p13p2 + p23p1) = 0 .

Notice as well that p1p2p3p12p13p23 = q(123)q(231)q(312) = q(321)q(213)q(132). From here we
can deduce the following relations that must be satisfied for any n:

• For every hexagonal face abcde f (labeled cyclically) of Πn we have qaqcqe = qbqdq f
and qbqcqeq f − qaqcqbq f + qaqbqdqe = 0. By [23, Section 4.3] hexagons are Bruhat
interval polytopes, and the negative term qaqcqbq f is the one not containing the
lowest and largest elements of this interval.

• For every square face abcd (labeled cyclically) of Πn we have qaqc = qbqd.

This suggests the following positivity condition for the tropicalization of the positive
part of the flag variety; see Example 4:

(HXM+) For every (cyclically labeled) hexagon abcde f of Πn, where b is the lowest per-
mutation in the Bruhat order, w(b) + w(e) = max(w(a) + w(d), w(c) + w( f )).

We will need the following positivity adaptation of Theorem 7:

Lemma 11. Let ν : ([n]d ) → R and µ : ( [n]
d+1) → R be any two functions such that for every

S ∈ ( [n]
d−1) and i < j < k /∈ S,

ν(Sj) + µ(Sik) = min(ν(Si) + µ(Sjk), ν(Sk) + µ(Sij)) .

Then ν ∈ TGr+(d, n) and µ ∈ TGr+(d + 1, n).
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Proof. By Theorem 7 we know already that ν and µ are valuated matroids. Again we
can do a translation to assume ν(Si) = ν(Sj) = ν(Sk) = ν(Sl) = 0. Suppose µ does
not satisfy (3TPR+). Then without loss of generality µ(Sik) + µ(Sjl) > µ(Sij) + µ(Skl).
However, by the assumption of the lemma, µ(Sik) ≤ µ(Sij) and µ(Sjl) ≤ µ(Skl), a
contradiction.

Theorem 12. Let u : Sym(n) → R. Then the following are equivalent:

1. The function u is the compression of a valuated flag (w1, . . . , wn) which can be realized by
a totally positive flag of linear spaces.

2. All polytopes in the subdivision induced by w are Bruhat interval polytopes.

3. The function u satisfies conditions (HXE) and (SQR) from Theorem 10 as well as (HXM+).

Proof. “(1) → (2)”. Consider a totally positive flag L = (L1, . . . , Ln) that realizes
(w1, . . . , wn), e.g., over the field of Puiseux series, or a suitable extension for irrational
coefficients; see [12, Section 2.6]. For any polytope P in the subdivision induced by w,
we can obtain a flag L̃ = (L̃1, . . . , L̃n) that realizes the flag matroid corresponding to P
by taking a suitable rescaling of the flag L and taking its quotient to the residue field,
which is a subfield of R. By construction, L̃ is in the totally non-negative part; yet some
Plücker coordinates may vanish in the quotient. Due to Proposition 3, P is a Bruhat
polytope.

“(2) → (3)”. By Theorem 10 and Proposition 3, if the subdivision consists of Bruhat
polytopes then (HXE) and (SQR) are satisfied. Suppose (HXM+) fails, so there is a
hexagon where the maximum is not attained by the diagonal connecting the lowest and
largest terms in the Bruhat order. Then this diagonal appears in the subdivision and it
is not a Bruhat interval polytope; see Figure 1.

“(3) → (1)”. First notice that by Theorem 10 the function u is the compression of
the valuated flag matroid (w1, . . . , wn). Now consider the valuated matroid µ on the
uniform matroid Un,2n given by µ(B) = w|B∩[n]|(B ∩ [n]); this construction appears, e.g.,
in [16]. That µ is actually a valuated matroid depends on the right choice of wd, which
vary up to adding a constant. To see this and that, moreover, µ ∈ TGr+(n, 2n) we look at
the 3-term Plücker relations (3TPR+). These are given by a set S ∈ ( [2n]

d−2) and i, j, k, l /∈ S
and suppose i < j < k < l. We have the following cases:

• |{i, j, k, l} ∩ [n]| ≤ 1. In this case all terms in the Plücker relation are equal.

• |{i, j, k, l} ∩ [n]| = 2. Assuming i, j ∈ [n], we have that µ(Sik) + µ(Sjl) = µ(Sil) +
µ(Sjk) = wm+1(Ti) + wm+1(Tj) and µ(Sij) + µ(Skl) = wm+2(Tij) + wm(T), for
T = S ∩ [n] and m = |T|. Here is where we need to ensure supermodularity, i.e.
wm+2(Tij) + wm(T) ≥ wm+1(Ti) + wm+1(Tj). Since we have the freedom to choose
each wd up to addition of a constant, we can achieve this by adding to each wd
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a suitably scaled convex function on d. As such a transformation preserves the
compression u, we can ensure that µ(Sik) + µ(Sjl) does attain the minimum.

• |{i, j, k, l} ∩ [n]| = 3. The positive Plücker relation here is equivalent to the positive
3-term incidence relation between w|S∩[n]|+1 and w|S∩[n]|+2. The proof of Theo-
rem 10 shows that the 3-term incidence relations are already implied by (HXM).
Further, (HXM+) strengthens this to imply (3TPR+), since the terms of different
sign agree under the correspondence of this implication, as seen in the discussion
preceding the formulation of (HXM+).

• |{i, j, k, l} ∩ [n]| = 4. In this case the Plücker relation is equivalent to a Plücker
relation in w|S∩[n]|+2. By Lemma 11, the positive variation of this relation follows
from the last case.

It was recently shown in [22, 3] that the positive tropical Grassmannian equals the pos-
itive Dressian. Hence, µ is realizable by some totally positive subspace L ∈ Gr+(n, 2n).
Consider π to be the projection to the first n coordinates and let Ld = π(L ∩ {xn+d+1 =
· · · = x2n = 0}). The tropicalization of Ld corresponds to the valuated matroid

µ\{n + 1, . . . , n + d}/{n + d + 1, . . . , 2n} = wd .

We have L1 ⊂ · · · ⊂ Ln, all of which are positive. So (w1, . . . , wd) is in the positive
tropical flag variety.
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