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Abstract. The extended weak order is a partial order associated to a Coxeter system
(W, S). It is the containment order on “biclosed” sets of positive roots in the (real)
root system associated to W. When W is finite, this order coincides with the weak
order on W, and is a lattice; when W is infinite, the weak order on W is a proper order
ideal in the extended weak order. It is a longstanding conjecture of Matthew Dyer
that the extended weak order is a lattice for any W. We prove this conjecture for the
affine Coxeter groups. Furthermore, we give a parametrization of the extended weak
order for these groups in terms of the face lattice of the Coxeter arrangement for the
associated finite group.
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1 Key examples: The finite and affine symmetric groups

This is a paper about Coxeter groups, root systems, and the weak order. Discussing
these topics in general requires a lot of notation, so we begin with two examples: The
symmetric group Sn and the affine symmetric group S̃n. Some of the notation in this
section will be replaced with more general notation in the following sections.

The symmetric group Sn is the group of permutations of [n] := {1, 2, . . . , n}. Put
T = {(i, j) : 1 ≤ i < j ≤ n}. For σ ∈ Sn, the set of inversions of σ is

I(σ) := {(i, j) ∈ T : σ−1(i) > σ−1(j)}.

The (right) weak order on Sn is the partial order on Sn defined by σ ≤ τ if and only
if I(σ) ⊆ I(τ). Surprisingly, weak order is a lattice, meaning that every subset of Sn has
a unique least upper bound and a unique greatest lower bound.

The group S̃n is the group of bijections σ̃ : Z→ Z, obeying the conditions:

σ̃(i + n) = σ̃(i) + n,
n

∑
k=1

( f (k)− k) = 0.
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Put T̃ = {(i, j) ∈ Z2/
(
Z · (n, n)

)
: i < j, i 6≡ j mod n}. To be clear, Z2/

(
Z · (n, n)

)
is the

quotient of Z2 by the subgroup Z · (n, n). For σ̃ ∈ S̃n, the set of inversions of σ̃ is

I(σ̃) := {(i, j) ∈ T̃ : σ̃−1(i) > σ̃−1(j)}.

We once again define weak order on S̃n by σ̃ ≤ τ̃ if and only if I(σ̃) ⊆ I(τ̃).
This time, weak order is only a semilattice. This means that, if a subset X of S̃n has

an upper bound, then it has a least upper bound, but no upper bound need exist at all.
(Every non-empty subset of S̃n continues to have a greatest lower bound.)

Weak order has many applications, for example in the representation theory of quiv-
ers [5] and in the structure of cluster algebras [8]. These applications are well-understood
for Sn. When applied to S̃n, however, the weak order fails to capture all of the structure
we would like. For instance, in using Cambrian (semi-)lattices to model cluster algebra
exchange graphs, the framework in [8] gives only “half” of the exchange graph for S̃n.
Since quotients of the Sn weak order as a lattice are important for these constructions, we
are motivated to find an extension of the weak order on S̃n to some larger poset which
is a (complete) lattice.

It is natural to imagine doing this by defining a collection of subsets of T̃ that would
play the role of “generalized inversion sets”. Such a definition was proposed and studied
by Matthew Dyer (see, e.g., [2]); we will describe it here for the case of Sn and S̃n, and
for any Coxeter group in the next section. The main result of this paper will be that
Dyer’s construction (the extended weak order) is a lattice for all affine Coxeter groups.

We define a subset J of T to be closed if, whenever 1 ≤ i < j < k ≤ n and (i, j) and
(j, k) ∈ J, then (i, k) ∈ J.

We define a subset J of T̃ to be closed if it obeys the three conditions
1. If i < j < k with (i, j) and (j, k) ∈ J, and i 6≡ k mod n, then (i, k) ∈ J.
2. If i < j < k with (i, j) and (j, k) ∈ J, and i ≡ k mod n, then (i, j + `n) and (j, k +

`n) ∈ J for all ` ≥ 0.
3. If i < j < k with (i, j) and (i, k) ∈ J, and j ≡ k mod n, then (i, j + `n) ∈ J for all

` ≥ 0 such that j + `n ≤ k.
We define J to be coclosed if the complement of J is closed, and we define J to be

biclosed if J is both closed and coclosed. We note that the intersection of any collection
of closed sets is closed, and, for an arbitrary subset K of T or T̃, we define the closure K,
to be the intersection of all closed sets containing K. Similarly, the union of any collection
of coclosed sets is coclosed; we define the interior K◦ to be the union of all coclosed sets
contained in K. The following is a special case of a result for all Coxeter groups:

Proposition 1.1. The finite biclosed subsets of T (respectively T̃) are exactly the sets of inversions
of the permutations in Sn (respectively S̃n).

The set T is finite, so all subsets of T are finite. But T̃ is infinite, so it is natural to
consider all biclosed subsets of T̃, without the assumption of finiteness. The following is
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a special case of Dyer’s conjectures and Dyer tells us that he already checked this case;
we will provide the first published proof here:

Theorem 1.2. The collection of all biclosed subsets of T̃, ordered by containment, is a complete
lattice. For any collection of biclosed sets X , we have

∨X =
⋃

J∈X J and
∧X =

(⋂
J∈X J

)◦.
Furthermore, we give a combinatorial model for the biclosed subsets of T̃. Define a

translationally invariant total order on Z to be a total order ≺ obeying the condition
that i ≺ j if and only if i + n ≺ j + n. Each translationally invariant total order ≺ defines
a biclosed subset I(≺) of T̃ by I(≺) = {(i, j) ∈ T̃ : i � j}.

It turns out that any biclosed subset of T̃ is of this form, but not in a unique way. To
see the issue, take n = 2, and consider the following total orders on Z:

· · · ≺1 −5 ≺1 −3 ≺1 −1 ≺1 1 ≺1 3 ≺1 5 ≺1 · · · ≺1 −4 ≺1 −2 ≺1 0 ≺1 2 ≺1 4 ≺1 · · · ,
· · · ≺2 −5 ≺2 −3 ≺2 −1 ≺2 1 ≺2 3 ≺2 5 ≺2 · · · ≺2 4 ≺2 2 ≺2 0 ≺2 −2 ≺2 −4 ≺2 · · · .

In other words, both ≺1 and ≺2 put all the odd numbers before all the even numbers,
but ≺1 preserves the standard ordering within each parity class whereas ≺2 reverses the
even numbers. Then I(≺1) = I(≺2) = {(i, j) : i < j, i ≡ 0 mod 2, j ≡ 1 mod 2}.

Theorem 1.3. Biclosed subsets of T̃ are in bijection with translationally invariant total orders,
modulo reversing the order on intervals of the form

· · · ≺ k− 3n ≺ k− 2n ≺ k− n ≺ k ≺ k + n ≺ k + 2n ≺ k + 3n ≺ · · · .

The main results of this paper are not simply Theorems 1.2 and 1.3, but generaliza-
tions of these results to all affine Coxeter types, and a reduction of Dyer’s conjectures in
general to a more precise conjecture for rank three Coxeter groups. In the next section,
we will introduce the vocabulary necessary to state our results.

2 Background

2.1 Coxeter groups and root systems

Let (mij)
n
i,j=1 be a symmetric matrix of nonnegative integers such that mii = 1 for all i,

and such that mij ≥ 2 for i 6= j. We further allow ∞ to appear in the matrix. Such a
matrix is a Coxeter matrix. A Coxeter group is a group with a presentation of the form

W = 〈s1, . . . , sn : (sisj)
mij = 1, 1 ≤ i, j ≤ n〉

for some Coxeter matrix (mij). In this case we say (W, S) is a rank n Coxeter system,
where S = {s1, . . . , sn} is the set of simple reflections. The length `(w) of an element w is
the minimal number k of simple reflections in any word s1 · · · sk = w. We further write

T = {wsw−1 : w ∈W, s ∈ S}



4 G. T. Barkley and D. E Speyer

for the set of reflections in W.
Associated to each Coxeter group is a faithful n-dimensional representation V called

the geometric or reflection representation. Fix a Cartan matrix (Aij)
n
i,j=1 such that Aii =

2, such that Aij = 0 if mij = 2, such that Aij, Aji < 0 with Aij Aji = 4 cos2 π
mij

if 3 ≤ mij <

∞, and such that Aij, Aji < 0 with Aij Aji ≥ 4 if mij = ∞.
The geometric representation has a basis α1, . . . , αn. We will also want to work with

the dual representation V∨, which has dual basis ω1, ω2, . . . , ωn. We put α∨j = ∑i aijωi,
so 〈αi, α∨j 〉 = aij. (Note that α∨i need not be a basis of V∨.) Then W acts on V by
si(v) = v− 〈α∨i , v〉αi and acts on V∨ by the dual formula si( f ) = f − 〈 f , αi〉α∨i . It is a
standard result that V and V∨ are faithful representations of W.

The (real) roots are the vectors of the form wαi for w ∈ W, 1 ≤ i ≤ n. Each root is
either positive, meaning in the positive linear span of the αi, or negative, meaning the
negation of a positive root. We write Φ and Φ+ for the sets of roots and positive roots
respectively; these are called the root system and the positive root system. Similarly, we
define the co-root system Φ∨ = {wα∨i : w ∈W, i ∈ I}.

The reflections in T are precisely those elements of W which act on V and V∨ by
involutions fixing a codimension 1 subspace. Specifically, for each t ∈ T, there is a
unique positive root βt and co-root β∨t such that t(v) = v− 〈β∨t , v〉βt.

We are interested in the weak order on W. To this end, define the set of (left) inver-
sions of a group element w ∈W to be

N(w) = {t ∈ T : `(tw) < `(w)}.

The inversion set also admits a geometric description: Take a point f in V∨ such that
〈 f , αi〉 > 0 for each i, then t is an inversion of w if and only if 〈w f , βt〉 < 0. We say w ≤ v
in weak order if N(w) ⊆ N(v).

A subset Φ′ of Φ is called a subsystem of Φ if Φ′ is preserved by reflections over any
β ∈ Φ′. We define Φ′+ = Φ′ ∩Φ+ and Φ′− = Φ′ ∩Φ−. The following is a collection of
results from [3] and [4].

Proposition 2.1. Let Φ′ be a subsystem of Φ. There is a unique minimal set Π′ ⊆ Φ′+ such that

R≥0Π′ ∩Φ′ = Φ′+ = −Φ′−.

Let W ′ be the reflection subgroup of W generated by reflections over the roots in Φ′, and let S′ be
the reflections over elements of Π′. Then (W ′, S′) is a Coxeter system, and the bijection between
T and Φ+ restricts to a bijection between Φ′+ and reflections in W ′. Furthermore,

S′ = {t ∈ T : N(t) ∩W ′ = {t}}.

If additionally the span of Φ′ is 2-dimensional, then |Π′| = 2.



Biclosed Sets in Affine Root Systems 5

The elements of Π′ are called the simple roots of Φ′. The cardinality of Π′ is called
the rank of Φ′. The group W ′ is called the reflection subgroup generated by Φ′. We say a
subsystem Φ′ is full if whenever α and β ∈ Φ′, it follows that any γ in the span Rα +Rβ

is also in Φ′. The type of Φ′ is a description of the Coxeter matrix of (W ′, S′). If Xn
is a Coxeter type, then a full subsystem of Φ with type Xn is called an Xn-subsystem.
(E.g., an A2-subsystem consists of roots α, β, α+ β and their negations, such that no other
elements of Φ are in their span.)

A root system is indecomposable when it cannot be written as the disjoint union of
two nonempty full subsystems. A Coxeter group with an indecomposable root system
is called irreducible. Every root system can be written uniquely as a disjoint union
of indecomposable subsystems, and each Coxeter group can be written uniquely as a
product of irreducible factors.

2.2 Finite and affine Coxeter groups

Let (Aij) be a Cartan matrix with integer entries such that the associated root system Φ0
is finite and indecomposable. Such matrices are classified by Dynkin diagrams. There
is a unique root θ ∈ (Φ0)+ such that θ − α is in the positive span of (Φ0)+ for any
α ∈ (Φ0)+. The root θ is called the highest root of Φ0.

We now construct a new root system Φ. If Φ0 is of type Xn, then we say Φ is of type
X̃n, and call it the affine root system associated to Φ0. If V0 is the ambient n-dimensional
vector space of Φ0, then let V := V0⊕Rδ to be an (n+ 1)-dimensional vector space, with
new basis vector δ. We define 〈α∨i , δ〉 = 0 for all simple coroots αi. Then Φ is the set

Φ = {α + kδ : α ∈ Φ0, k ∈ Z}.

We endow Φ with the set of simple roots α1, . . . , αn, α0, where α1, . . . , αn are the simple
roots of Φ0 and α0 = δ − θ. The corresponding new coroot is α∨0 := −θ∨. Then Φ is
a root system [6]. The associated Coxeter group is called the affine Coxeter group of
type X̃. Up to isomorphism, the irreducible affine Coxeter groups are classified into
the families Ãn, B̃n, C̃n, D̃n, or one of the exceptional types Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2. The affine
symmetric group S̃n from the introduction is the affine Coxeter group of type Ãn−1.

For each pair ±β of roots in Φ0, there is a type Ã1 root subsystem of Φ, whose
elements are {±β + kδ : k ∈ Z}. Each root of Φ lies in exactly one such Ã1 subsystem.

To give a concrete model for biclosed sets in affine type in Section 3, we recall the
definition of the Coxeter fan of a finite Coxeter group W0. This is a complete fan living
in the coroot representation V∨0 of W0. The set F0 of f ∈ V∨0 such that 〈 f , α〉 ≥ 0 for
all α ∈ (Φ0)+ is called the dominant chamber. A chamber is any cone of the form wF0
for w ∈ W0. The Coxeter fan consists of all cones formed by intersections of chambers.
These cones are called the faces of the fan. Let Faces(W0) denote the set of faces of the
Coxeter fan of W0. The action of W0 on V∨0 permutes the elements of Faces(W0).



6 G. T. Barkley and D. E Speyer

There is also an action of the affine Coxeter group W associated to W0 on Faces(W0),
described as follows. If V∨ is the coroot representation for W, then notice that W pre-
serves the subspace consisting of functionals which annihilate the vector δ ∈ V. This
subspace has a basis given by α∨1 , . . . , α∨n and thus can be canonically identified with V∨0 ;
we do so from here on. This identification respects the action of W0 ⊆ W. Given a face
F ∈ Faces(W0), let WF denote the stabilizer of F under the W action, and let ΦF be the
set of roots in Φ which are annihilated by all functionals in F. Then WF is the reflection
subgroup corresponding to the root subsystem ΦF, called a parahoric subgroup of W.

2.3 Closed and biclosed sets

A subset J of Φ+ is called closed if, for any three roots α, β and γ with γ ∈ R>0α+R>0β,
if α and β ∈ J then γ ∈ J. A subset J of Φ+ is called coclosed if Φ+ \ J is closed. The set
J is biclosed if it is both closed and coclosed. As in the introduction, for a subset A of
Φ+, we define the closure A to be the intersection of all closed sets containing A and we
define the interior A◦ to be the union of all coclosed sets contained in A.

We pause to connect this notion to the closed subsets from the introduction. Let
e1, e2, . . . , en be the standard basis of Rn, then {ei − ej : 1 ≤ i < j ≤ n} form a root
system of type An−1, which spans an (n− 1)-dimensional subspace of Rn. The rank two
subsystems of Φ+ come in two forms: The type A2 subsystems are {ei − ej, ei − ek, ej −
ek} for i < j < k, and the type A1 × A1 subsystems are {ei − ej, ek − e`} for i < j and
k < ` distinct. The closure conditions for the A2-subsystems are the conditions from the
introduction; the closure conditions for the A1 × A1-subsystems are trivial, since they
only have two positive roots.

Similarly, define V̂ to be the n + 1-dimensional vector space spanned by a collection
of vectors ẽi, for i ∈ Z, modulo the relation ẽi+n − ẽi = ẽj+n − ẽj for all i, j. Then the
vectors {ẽi − ẽj : i < j, i 6≡ j mod n} form a copy of the positive Ãn−1-system, inside
an n-dimensional subspace of V̂. There are three types of full rank two subsystems: For
i < j < k all distinct modulo n, we have an A2-subsystem {ẽi − ẽj, ẽi − ẽk, ẽj − ẽk}; for
i < j < i + n we have an Ã1-subsystem {ẽi+pn− ẽj+qn : i + pn < j + qn} ∪ {ẽj+pn− ẽi+qn :
j + pn < i + qn} and, for i < j, k < ` distinct modulo n, we have an A1 × A1-subsystem
{ẽi− ẽj, ẽk− ẽ`}. The closure conditions for the A2 and Ã1-subsystems are the conditions
from the introduction; the closure conditions for the A1 × A1-subsystems are trivial.

Recall that the set of inversions of a Coxeter group element can be described geo-
metrically: N(w) = {t ∈ T : 〈w f , βt〉 < 0}, where f ∈ V∨ obeys 〈 f , αi〉 > 0. From this
geometric description, it is clear that {βt : t ∈ N(w)} is biclosed for any w ∈ W. This
characterizes the finite biclosed sets:

Proposition 2.2 ([2]). A set B of positive roots is finite and biclosed if and only if there exists
w ∈W such that B = {βt : t ∈ N(w)}. In this case, w is uniquely defined.
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∅
{ẽ2 − ẽ3}{ẽ1 − ẽ2}

{ẽ1 − ẽ2, ẽ1 − ẽ4} {ẽ2 − ẽ3, ẽ2 − ẽ5}

{ẽ1 − ẽ2k : k ≥ 1} {ẽ2 − ẽ2k+1 : k ≥ 1}

Φ+ \ {ẽ2 − ẽ3, ẽ2 − ẽ5}
Φ+ \ {ẽ2 − ẽ3}

Φ+

Φ+ \ {ẽ1 − ẽ2, ẽ1 − ẽ4}
Φ+ \ {ẽ1 − ẽ2}

Figure 1: The extended weak order for Ã1. The finite biclosed sets are shaded in blue.
The subposet consisting of the finite biclosed sets is the usual weak order for Ã1; note
the usual weak order is not a lattice, but the extended weak order is a complete lattice.

Define the extended weak order to be the poset of biclosed sets ordered by inclusion.
This paper is motivated by Dyer’s conjecture, first discussed in [1, Remark 2.14]:

Conjecture 2.3. The extended weak order is a complete lattice. For X a collection of biclosed
sets, we have

∨
X =

⋃
J∈X J and

∧
X =

(⋃
J∈X J

)◦.
This conjecture is known in finite type [2, Theorem 1.5] and rank two, and was re-

cently shown by Weijia Wang to hold for rank three affine Coxeter groups [10]. In
Section 4, we give the first proof of Dyer’s conjecture for all affine Coxeter groups. In
Section 3, we give a useful parametrization of biclosed sets for these groups (which is
independent of Section 4).

3 A combinatorial model for biclosed sets in affine type

We now use the material from Section 2.2 to give a description of the biclosed sets for
affine Coxeter groups generalizing Theorem 1.3. We omit proofs in this section.

We define two biclosed sets, B and C, to be commensurable if the symmetric differ-
ence B⊕ C := (B \ C) t (C \ B) is finite. We will begin by describing biclosed sets up to
commensurability. For a biclosed subset B of Φ+, we define

B∞ = {β ∈ Φ0 : β + kδ ∈ B for k� 0}.

It is easy to see that B∞ = C∞ if and only if B and C are commensurable. To understand
the sets which can appear as B∞, we will use the Coxeter fan described in Section 2.2.

Let F be a face of the W0-Coxeter fan and let f lie in the relative interior of F. Then
{β ∈ Φ+ : 〈 f , β〉 < 0} and {β ∈ Φ+ : 〈 f , β〉 ≤ 0} are both biclosed sets. More
generally, let ΦF = {β ∈ Φ : 〈 f , β〉 = 0}, then ΦF is the root system associated to the
parahoric subgroup WF. If Φ′ is any union of indecomposable components of ΦF, then
B(F, Φ′) := {β ∈ Φ+ : 〈 f , β〉 < 0} ∪ (Φ′ ∩Φ+) is biclosed.
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Proposition 3.1. Each biclosed set is commensurable to a unique biclosed set of the form B(F, Φ′)
for F ∈ Faces(W0) and Φ′ a (possibly empty) union of indecomposable components of ΦF.

We note that B(0, ∅) = ∅ and that the commensurability class of B(0, ∅) consists of
the finite biclosed sets which, by Proposition 2.2, are in bijection with the elements of W.
Following [2, Section 4.1], we define an action of W on the set of biclosed classes by

w · B = (wB ∩Φ+) ∪
(
{βt : t ∈ N(w)} \ (−wB)

)
.

Then we can generalize our description of B(0, ∅) to

Proposition 3.2. The set of biclosed sets commensurable to B(F, Φ′) is the WF-orbit of B(F, Φ′),
and WF acts freely on this orbit.

Combining our results, biclosed sets are in bijection with triples (F, Φ′, w) where F
is a face of Faces(W0), where Φ′ is a union of indecomposable components of ΦF, and
where w ∈WF.

Remark 3.3. The limit weak order of Lam and Pylyavskyy [7] corresponds to triples
(F, ∅, w).

Let us work out what this looks like for W = S̃n, the affine Coxeter group of type
Ãn−1. We will reuse the notation V̂ from Section 2.3 and we let V be the subspace of
V̂ spanned by ẽi − ẽj. Similarly, we let V0 be the subspace of Rn spanned by ei − ej.
The projection V → V0 is induced by the map V̂ → Rn sending ẽi to ei mod n. So the
dual vector space, (V0)

∨, is Rn/R(1, 1, . . . , 1), and we will write elements of (V0)
∨ as

( f1, f2, . . . , fn).
The faces of the Sn Coxeter fan are in bijection with ordered set partitions (equiv-

alently, total preorders) of [n]. For example, with n = 4, the ordered set partition
({1, 3}, {2, 4}) corresponds to the face { f1 = f3 ≤ f2 = f4}. Given an ordered set
partition (B1, B2, . . . , Br) of [n] with corresponding face F, a permutation w ∈ Sn sta-
bilizes F if and only if w sends each block Bi to itself. For example, the stabilizer of
{ f1 = f3 ≤ f2 = f4} is 〈(13), (24)〉.

The parahoric subgroup WF is the preimage of this stabilizer in S̃n. To describe this,
put B̃a = {i ∈ Z : i mod n ∈ Ba}. Then ΦF is

⋃r
a=1{ẽi − ẽj : i, j ∈ B̃q, i 6≡ j mod n}. The

irreducible components of ΦF correspond to the non-singleton blocks of the set partition.
So, to give a pair (F, Φ′) is to give an ordered set partition (B1, B2, . . . , Br) of [n] and a
subset R of the non-singleton blocks of this partition.

The biclosed set B(F, Φ′) corresponds to the inversions of a translation invariant total
order defined as follows: If a < b, i ∈ B̃a and j ∈ B̃b, then we put i ≺ j. If Ba is a
non-singleton block, and i and j ∈ B̃a with i < j, then we put i ≺ j if Ba 6∈ R and i � j
if Ba ∈ R. If Ba is a singleton block, the order on B̃a is undetermined, this will give the
indeterminacy in Theorem 1.3.
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More generally, an element w of WF is a permutation in S̃n which takes each B̃a to
itself. Applying such permutations to the translation invariant total orders described
above gives the whole of Theorem 1.3.

4 Dyer’s conjecture and the CU-property

In this section we prove Conjecture 2.3 for affine Coxeter groups. Conjecture 2.3 would
follow from the following conjecture (also due to Dyer, see [2, Conjecture 2.6]).

Conjecture 4.1. Let U be a coclosed subset of Φ+, then U is also coclosed. Dually, let K be a
closed subset of Φ+, then K◦ is also closed.

The statements about U and about K◦ are equivalent, by putting K = Φ+ \U.

Proof that Conjecture 4.1 implies Conjecture 2.3. Let X be any collection of biclosed subsets
of Φ+ and put V :=

⋃
J∈X J. We will show that V is biclosed and is the join of X . Indeed,

V is closed since it is defined as a closure. The set
⋃

J∈X J is coclosed, since it is a union
of coclosed sets, so Conjecture 4.1 implies that V is coclosed; we have now checked that
Y is biclosed.

For any J0 ∈ X , we have J0 ⊆
⋃

J∈X J ⊆ V, so V is an upper bound for X . If Y is any
other biclosed upper bound for X then, by the definition of an upper bound, we have⋃

J∈X J ⊆ Y; since Y is closed, we then have V ⊆ Y as well. We have thus shown that Y
is the unique least upper bound of X . The case of lower bounds is analogous.

To prove Conjecture 4.1, we will need the notion of a unipodal set of roots. A set
U ⊆ Φ+ is unipodal if, for any full rank two subsystem Φ′ of Φ, whenever Φ′ ∩U is
nonempty it follows that some simple root α of Φ′ is in U. All coclosed sets are unipodal,
and unipodal sets are preserved by arbitrary unions. Furthermore, any closed set which
is unipodal is in fact biclosed.

We now introduce a new property, which is designed to prove Conjecture 4.1. Let A
be a subset of Φ+. We will say that a positive root γ is nocked with respect to A there
are positive roots α and β, with γ a positive linear combination of α and β, such that
α, β ∈ A and γ 6∈ A. We write Nock(A) for the set of γ which are nocked with respect
to A. To motivate the definition of Nock(A), note that the closure of A is the ascending
union of the chain A ⊆ A ∪Nock(A) ⊆ A ∪Nock(A) ∪Nock(A ∪Nock(A)) ⊆ · · · , so
the nocked1 roots are the ones which get added to the closure “first”.

We partially order Φ+ by cutting order. If α and β are positive roots, then β is over
α in cutting order if, in the full rank two system containing them, α is simple and β is
not. To show that (the transitive closure of) these relations in fact define a partial order,

1The word “nocked” comes from archery and describes an arrow ready to be fired, as the nocked roots
are ready to be added.
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rather than a preorder, it is enough to exhibit a partial order which extends the cutting
order. Indeed, Proposition 4.3.18(3) of [9] shows that if α is below β in cutting order,
then α has a smaller depth than β.

Definition 4.2. We say that Φ+ has the CU-property if, whenever U is a unipodal set
and γ is minimal in Nock(U), then U ∪ {γ} is unipodal.

It is immediate to see that the CU-property holds if Φ+ has rank ≤ 2.

Proposition 4.3. If Φ+ has the CU-property then Conjecture 4.1, and hence Conjecture 2.3,
hold with respect to Φ+.

Proof. Let U be a unipodal set, let K be the closure U and let V be the interior K◦. We
want to show that K = V.

Since V is the union of all coclosed sets contained in K, we have U ⊆ V and thus K
is the closure of V. If K 6= V then there must be some element of K which is nocked
with respect to V. Choose a γ in K which is nocked with respect to V and is minimal
with respect to this property. Then, by the CU-property, V ∪ {γ} is unipodal. But then
γ would be in the interior of K, contradicting our choice of γ not in V.

The advantage of the CU-property is the next result:

Proposition 4.4. Suppose that every rank three subsystem of Φ+ has the CU-property. Then
Φ+ has the CU-property.

Proof. Suppose that Φ+ does not obey the CU-property. Then there is some unipodal set
U and some root γ which is minimal in Nock(U), such that U ∪ {γ} is not unipodal.

The condition that γ ∈ Nock(U) means that there are positive roots α and β, with
γ in the positive span of α and β, such that α, β ∈ U and γ 6∈ U. The condition that
U ∪ {γ} is not unipodal means that there must be some positive roots α′, β′ which are
simple in the rank two subsystem they span, and some root γ′ in the positive span of α

and β. These satisfy α′, β′ 6∈ U ∪ {γ} and γ′ ∈ U ∪ {γ}. But, if γ′ ∈ U then this would
contradict that U is unipodal, so we must have γ = γ′.

Let R and R′ be the full rank two subsystems containing {α, γ, β} and {α′, γ, β′}
respectively. Let X be the minimal full subsystem containing R and R′ and let ΦX

+ be its
positive roots; X is the full subsystem generated by α, γ, α′, and hence has rank three by
the following lemma.

Lemma 4.5. The minimal full subsystem containing a given set of r roots has rank at most r.

Then U ∩ΦX
+ is unipodal in ΦX

+, and the root system R shows that γ is still nocked
with respect to U ∩ ΦX

+. The partial order on ΦX
+ is the restriction of the one on Φ+

so γ is still minimal in Nock(U ∩ ΦX
+). But then R′ shows that (U ∩ ΦX

+) ∪ {γ} is not
unipodal in ΦX

+, contradicting the CU-property in the rank three subsystem Φ+
X .
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It is a short verification that the CU-property holds for the finite root systems of
rank three with integral Cartan matrix: A3, B3, and A1 × X2 for X2 a finite rank 2
root system. Thus, we immediately deduce that the CU-property, Conjecture 4.1 and
Conjecture 2.3 hold for all finite crystallographic root systems. The fact that biclosed sets
form a complete lattice is classical in this setting, but the formula for the join is already
interesting. We note that the CU-property fails in type C̃2, so we cannot expect every
root system to have this property. However, one of the main results of this extended
abstract is:

Theorem 4.6. Conjectures 2.3 and 4.1 hold for any affine root system. Furthermore, the simply-
laced affine root systems (types Ãn, D̃n, and Ẽn) have the CU-property.

The proof of the theorem reduces to the case of simply-laced types by the technique
of folding root systems (which for brevity we shall not discuss here). To show the CU-
property in that case (and thus Conjectures 2.3 and 4.1), we use Proposition 4.4 to reduce
to checking the rank three subsystems, which in a simply-laced system are all of type
Ã2, A3, or A1× X2 for X2 of rank two. The finite and decomposable systems are a quick
check; we will take on the affine system Ã2 in the following.

Theorem 4.7. Let Φ+ be the positive root system of type Ã2, and let U ⊆ Φ+ be a unipodal
subset. Let γ be a minimal element of Nock(U), with respect to cutting order. Then U ∪ {γ} is
also unipodal.

We will denote the simple roots of Φ+ as α0, α1 and α2, so the imaginary root is
δ = α0 + α1 + α2. We write β j for δ − αj and, for t ≥ 0, we set αt

j = αj + tδ and
βt

j = β j + tδ. So each element of Φ+ is denoted as one of αt
0, αt

1, αt
2, βt

0, βt
1, βt

2 for

t ≥ 0. Note that we have αt
0 + αu

1 = βt+u
2 and βt

0 + βu
1 = αt+u+1

2 , and similarly for all
permutations of the subscripts.

The condition that γ is minimal in Nock(U) means that, anytime that we have η′ and
η′′ ∈ U and some root η is in the positive span of η′ and η′′, with η less than γ, we can
deduce that η is in U. In this case, we will say that η′ and η′′ force η.

We first outline the cases we will consider: The condition that γ is nocked means that
γ 6∈ U but γ is in the positive span of some other roots γ′ and γ′′ which are in U; let P
be the rank two subsystem containing γ′ and γ′′. The only way that U ∪ {γ} could fail
to be unipodal is if γ is contained in some rank two subsystem Q whose simple roots
are not in U. We break into cases according to the types of P and Q:

Lemma 4.8. If P and Q are both type Ã1, then U ∪ {γ} is unipodal with respect to Q.

Proof. In this case, since γ ∈ P ∩Q, we must have P = Q. But then γ′ ∈ Q ∩U, and U is
unipodal, so U contains one of the simple roots of Q, as desired.

Lemma 4.9. If P is type A2, and Q is type Ã1, then U ∪ {γ} is unipodal with respect to Q.
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Proof. Without loss of generality, Q is the subsystem spanned by α0 and β0, so either
γ = αt

0 or γ = βt
0 for some t. The statement is trivial for t = 0, so we assume t > 0.

We also note that, as soon as we show that any αu
0 or βu

0 is in U, we are done by the
unipodality of U.

Case 1: γ = αt
0, γ′ = βu

1 and γ′′ = βt−u−1
2 :

Now, γ′ = βu
1 = αu

0 + α2 so, by unipodality, either αu
0 or α2 is in U. If αu

0 ∈ U, we are
done, so we may assume α2 ∈ U. Similarly, γ′′ = βt−u−1

2 = αt−u−1
0 + α1 show that we

may assume α1 ∈ U. But then α1 and α2 force β0 into U, and we are done.

Case 2: We have γ = βt
0, γ′ = αu

1 and γ′′ = αt−u
2 :

Since t > 0, either u > 0 or t− u > 0; without loss of generality, we assume u > 0. Now,
γ′ = αu

1 = βu−1
0 + β2 so, by unipodality, either βu−1

0 or β2 is in U. If βu−1
0 ∈ U, we are

done. If β2 ∈ U, then unipodality implies that either α0 or α1 ∈ U. If α0 ∈ U, we are
again done. We have now shown that both α1 and αt−u

2 are in U. But then α1 and αt−u
2

force βt−u
0 are we are done again.

The other cases are similar, but longer; they are available in the paper accompanying
this extended abstract.
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