Séminaire Lotharingien de Combinatoire **86B** (2022) Article #54, 12 pp.

Biclosed Sets in Affine Root Systems

Grant T. Barkley^{*1} and David E. Speyer^{†2}

¹Dept. of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 ²Dept. of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109

Abstract. The extended weak order is a partial order associated to a Coxeter system (W, S). It is the containment order on "biclosed" sets of positive roots in the (real) root system associated to W. When W is finite, this order coincides with the weak order on W, and is a lattice; when W is infinite, the weak order on W is a proper order ideal in the extended weak order. It is a longstanding conjecture of Matthew Dyer that the extended weak order is a lattice for any W. We prove this conjecture for the affine Coxeter groups. Furthermore, we give a parametrization of the extended weak order the face lattice of the Coxeter arrangement for the associated finite group.

Keywords: Coxeter groups, root systems, affine Coxeter groups, lattice theory

1 Key examples: The finite and affine symmetric groups

This is a paper about Coxeter groups, root systems, and the weak order. Discussing these topics in general requires a lot of notation, so we begin with two examples: The symmetric group S_n and the affine symmetric group \tilde{S}_n . Some of the notation in this section will be replaced with more general notation in the following sections.

The symmetric group S_n is the group of permutations of $[n] := \{1, 2, ..., n\}$. Put $T = \{(i, j) : 1 \le i < j \le n\}$. For $\sigma \in S_n$, the set of *inversions* of σ is

$$I(\sigma) := \{ (i,j) \in T : \sigma^{-1}(i) > \sigma^{-1}(j) \}.$$

The (right) weak order on S_n is the partial order on S_n defined by $\sigma \leq \tau$ if and only if $I(\sigma) \subseteq I(\tau)$. Surprisingly, weak order is a lattice, meaning that every subset of S_n has a unique least upper bound and a unique greatest lower bound.

The group S_n is the group of bijections $\tilde{\sigma} \colon \mathbb{Z} \to \mathbb{Z}$, obeying the conditions:

$$\widetilde{\sigma}(i+n) = \widetilde{\sigma}(i) + n, \qquad \sum_{k=1}^{n} (f(k) - k) = 0.$$

^{*}barkleygrant@gmail.com. Supported by NSF grant DMS-1854512 and as an REU student by NSF grant DMS-1600223.

[†]Supported by NSF grants, DMS-1600223, DMS-1854225 and DMS-1855135.

Put $\widetilde{T} = \{(i, j) \in \mathbb{Z}^2 / (\mathbb{Z} \cdot (n, n)) : i < j, i \neq j \mod n\}$. To be clear, $\mathbb{Z}^2 / (\mathbb{Z} \cdot (n, n))$ is the quotient of \mathbb{Z}^2 by the subgroup $\mathbb{Z} \cdot (n, n)$. For $\widetilde{\sigma} \in \widetilde{S}_n$, the set of *inversions* of $\widetilde{\sigma}$ is

$$I(\widetilde{\sigma}) := \{ (i,j) \in \widetilde{T} : \widetilde{\sigma}^{-1}(i) > \widetilde{\sigma}^{-1}(j) \}.$$

We once again define weak order on \widetilde{S}_n by $\widetilde{\sigma} \leq \widetilde{\tau}$ if and only if $I(\widetilde{\sigma}) \subseteq I(\widetilde{\tau})$.

This time, weak order is only a semilattice. This means that, if a subset \mathcal{X} of \tilde{S}_n has an upper bound, then it has a least upper bound, but no upper bound need exist at all. (Every non-empty subset of \tilde{S}_n continues to have a greatest lower bound.)

Weak order has many applications, for example in the representation theory of quivers [5] and in the structure of cluster algebras [8]. These applications are well-understood for S_n . When applied to \tilde{S}_n , however, the weak order fails to capture all of the structure we would like. For instance, in using Cambrian (semi-)lattices to model cluster algebra exchange graphs, the framework in [8] gives only "half" of the exchange graph for \tilde{S}_n . Since quotients of the S_n weak order as a lattice are important for these constructions, we are motivated to find an extension of the weak order on \tilde{S}_n to some larger poset which is a (complete) lattice.

It is natural to imagine doing this by defining a collection of subsets of \tilde{T} that would play the role of "generalized inversion sets". Such a definition was proposed and studied by Matthew Dyer (see, *e.g.*, [2]); we will describe it here for the case of S_n and \tilde{S}_n , and for any Coxeter group in the next section. The main result of this paper will be that Dyer's construction (the *extended weak order*) is a lattice for all affine Coxeter groups.

We define a subset *J* of *T* to be *closed* if, whenever $1 \le i < j < k \le n$ and (i, j) and $(j, k) \in J$, then $(i, k) \in J$.

We define a subset *J* of \tilde{T} to be *closed* if it obeys the three conditions

- 1. If i < j < k with (i, j) and $(j, k) \in J$, and $i \not\equiv k \mod n$, then $(i, k) \in J$.
- 2. If i < j < k with (i, j) and $(j, k) \in J$, and $i \equiv k \mod n$, then $(i, j + \ell n)$ and $(j, k + \ell n) \in J$ for all $\ell \ge 0$.
- 3. If i < j < k with (i, j) and $(i, k) \in J$, and $j \equiv k \mod n$, then $(i, j + \ell n) \in J$ for all $\ell \ge 0$ such that $j + \ell n \le k$.

We define *J* to be *coclosed* if the complement of *J* is closed, and we define *J* to be *biclosed* if *J* is both closed and coclosed. We note that the intersection of any collection of closed sets is closed, and, for an arbitrary subset *K* of *T* or \tilde{T} , we define the *closure* \overline{K} , to be the intersection of all closed sets containing *K*. Similarly, the union of any collection of coclosed sets is coclosed; we define the *interior* K° to be the union of all coclosed sets contained in *K*. The following is a special case of a result for all Coxeter groups:

Proposition 1.1. The finite biclosed subsets of T (respectively \tilde{T}) are exactly the sets of inversions of the permutations in S_n (respectively \tilde{S}_n).

The set *T* is finite, so all subsets of *T* are finite. But \tilde{T} is infinite, so it is natural to consider all biclosed subsets of \tilde{T} , without the assumption of finiteness. The following is

a special case of Dyer's conjectures and Dyer tells us that he already checked this case; we will provide the first published proof here:

Theorem 1.2. The collection of all biclosed subsets of \widetilde{T} , ordered by containment, is a complete lattice. For any collection of biclosed sets \mathcal{X} , we have $\bigvee \mathcal{X} = \bigcup_{J \in \mathcal{X}} J$ and $\bigwedge \mathcal{X} = (\bigcap_{J \in \mathcal{X}} J)^{\circ}$.

Furthermore, we give a combinatorial model for the biclosed subsets of *T*. Define a *translationally invariant total order* on \mathbb{Z} to be a total order \prec obeying the condition that $i \prec j$ if and only if $i + n \prec j + n$. Each translationally invariant total order \prec defines a biclosed subset $I(\prec)$ of \widetilde{T} by $I(\prec) = \{(i, j) \in \widetilde{T} : i \succ j\}$.

It turns out that any biclosed subset of *T* is of this form, but not in a unique way. To see the issue, take n = 2, and consider the following total orders on \mathbb{Z} :

$$\cdots \prec_1 -5 \prec_1 -3 \prec_1 -1 \prec_1 1 \prec_1 3 \prec_1 5 \prec_1 \cdots \prec_1 -4 \prec_1 -2 \prec_1 0 \prec_1 2 \prec_1 4 \prec_1 \cdots, \\ \cdots \prec_2 -5 \prec_2 -3 \prec_2 -1 \prec_2 1 \prec_2 3 \prec_2 5 \prec_2 \cdots \prec_2 4 \prec_2 2 \prec_2 0 \prec_2 -2 \prec_2 -4 \prec_2 \cdots.$$

In other words, both \prec_1 and \prec_2 put all the odd numbers before all the even numbers, but \prec_1 preserves the standard ordering within each parity class whereas \prec_2 reverses the even numbers. Then $I(\prec_1) = I(\prec_2) = \{(i, j) : i < j, i \equiv 0 \mod 2, j \equiv 1 \mod 2\}.$

Theorem 1.3. Biclosed subsets of T are in bijection with translationally invariant total orders, modulo reversing the order on intervals of the form

$$\cdots \prec k - 3n \prec k - 2n \prec k - n \prec k \prec k + n \prec k + 2n \prec k + 3n \prec \cdots$$

The main results of this paper are not simply Theorems 1.2 and 1.3, but generalizations of these results to all affine Coxeter types, and a reduction of Dyer's conjectures in general to a more precise conjecture for rank three Coxeter groups. In the next section, we will introduce the vocabulary necessary to state our results.

2 Background

2.1 Coxeter groups and root systems

Let $(m_{ij})_{i,j=1}^n$ be a symmetric matrix of nonnegative integers such that $m_{ii} = 1$ for all *i*, and such that $m_{ij} \ge 2$ for $i \ne j$. We further allow ∞ to appear in the matrix. Such a matrix is a *Coxeter matrix*. A *Coxeter group* is a group with a presentation of the form

$$W = \langle s_1, \ldots, s_n : (s_i s_j)^{m_{ij}} = 1, \ 1 \le i, j \le n \rangle$$

for some Coxeter matrix (m_{ij}) . In this case we say (W, S) is a *rank n Coxeter system*, where $S = \{s_1, \ldots, s_n\}$ is the set of *simple reflections*. The *length* $\ell(w)$ of an element *w* is the minimal number *k* of simple reflections in any word $s_1 \cdots s_k = w$. We further write

$$T = \{wsw^{-1} : w \in W, s \in S\}$$

for the set of *reflections* in *W*.

Associated to each Coxeter group is a faithful *n*-dimensional representation *V* called the *geometric* or *reflection representation*. Fix a *Cartan matrix* $(A_{ij})_{i,j=1}^n$ such that $A_{ii} =$ 2, such that $A_{ij} = 0$ if $m_{ij} = 2$, such that A_{ij} , $A_{ji} < 0$ with $A_{ij}A_{ji} = 4\cos^2 \frac{\pi}{m_{ij}}$ if $3 \le m_{ij} < \infty$, and such that A_{ij} , $A_{ji} < 0$ with $A_{ij}A_{ji} \ge 4$ if $m_{ij} = \infty$.

The geometric representation has a basis $\alpha_1, \ldots, \alpha_n$. We will also want to work with the dual representation V^{\vee} , which has dual basis $\omega_1, \omega_2, \ldots, \omega_n$. We put $\alpha_j^{\vee} = \sum_i a_{ij}\omega_i$, so $\langle \alpha_i, \alpha_j^{\vee} \rangle = a_{ij}$. (Note that α_i^{\vee} need not be a basis of V^{\vee} .) Then *W* acts on *V* by $s_i(v) = v - \langle \alpha_i^{\vee}, v \rangle \alpha_i$ and acts on V^{\vee} by the dual formula $s_i(f) = f - \langle f, \alpha_i \rangle \alpha_i^{\vee}$. It is a standard result that *V* and V^{\vee} are faithful representations of *W*.

The (real) *roots* are the vectors of the form $w\alpha_i$ for $w \in W$, $1 \le i \le n$. Each root is either *positive*, meaning in the positive linear span of the α_i , or *negative*, meaning the negation of a positive root. We write Φ and Φ_+ for the sets of roots and positive roots respectively; these are called the *root system* and the *positive root system*. Similarly, we define the co-root system $\Phi^{\vee} = \{w\alpha_i^{\vee} : w \in W, i \in I\}$.

The reflections in *T* are precisely those elements of *W* which act on *V* and V^{\vee} by involutions fixing a codimension 1 subspace. Specifically, for each $t \in T$, there is a unique positive root β_t and co-root β_t^{\vee} such that $t(v) = v - \langle \beta_t^{\vee}, v \rangle \beta_t$.

We are interested in the weak order on W. To this end, define the set of (left) *inversions* of a group element $w \in W$ to be

$$N(w) = \{ t \in T : \ell(tw) < \ell(w) \}.$$

The inversion set also admits a geometric description: Take a point f in V^{\vee} such that $\langle f, \alpha_i \rangle > 0$ for each i, then t is an inversion of w if and only if $\langle wf, \beta_t \rangle < 0$. We say $w \leq v$ in *weak order* if $N(w) \subseteq N(v)$.

A subset Φ' of Φ is called a *subsystem* of Φ if Φ' is preserved by reflections over any $\beta \in \Phi'$. We define $\Phi'_+ = \Phi' \cap \Phi_+$ and $\Phi'_- = \Phi' \cap \Phi_-$. The following is a collection of results from [3] and [4].

Proposition 2.1. Let Φ' be a subsystem of Φ . There is a unique minimal set $\Pi' \subseteq \Phi'_+$ such that

$$\mathbb{R}_{>0}\Pi' \cap \Phi' = \Phi'_+ = -\Phi'_-.$$

Let W' be the reflection subgroup of W generated by reflections over the roots in Φ' , and let S' be the reflections over elements of Π' . Then (W', S') is a Coxeter system, and the bijection between T and Φ_+ restricts to a bijection between Φ'_+ and reflections in W'. Furthermore,

$$S' = \{t \in T : N(t) \cap W' = \{t\}\}.$$

If additionally the span of Φ' is 2-dimensional, then $|\Pi'| = 2$.

The elements of Π' are called the *simple roots* of Φ' . The cardinality of Π' is called the *rank* of Φ' . The group W' is called the *reflection subgroup* generated by Φ' . We say a subsystem Φ' is *full* if whenever α and $\beta \in \Phi'$, it follows that any γ in the span $\mathbb{R}\alpha + \mathbb{R}\beta$ is also in Φ' . The *type* of Φ' is a description of the Coxeter matrix of (W', S'). If X_n is a Coxeter type, then a *full* subsystem of Φ with type X_n is called an X_n -*subsystem*. (*E.g.*, an A_2 -subsystem consists of roots α , β , $\alpha + \beta$ and their negations, such that no other elements of Φ are in their span.)

A root system is *indecomposable* when it cannot be written as the disjoint union of two nonempty full subsystems. A Coxeter group with an indecomposable root system is called *irreducible*. Every root system can be written uniquely as a disjoint union of indecomposable subsystems, and each Coxeter group can be written uniquely as a product of irreducible factors.

2.2 Finite and affine Coxeter groups

Let (A_{ij}) be a Cartan matrix with integer entries such that the associated root system Φ_0 is finite and indecomposable. Such matrices are classified by *Dynkin diagrams*. There is a unique root $\theta \in (\Phi_0)_+$ such that $\theta - \alpha$ is in the positive span of $(\Phi_0)_+$ for any $\alpha \in (\Phi_0)_+$. The root θ is called the *highest root* of Φ_0 .

We now construct a new root system Φ . If Φ_0 is of type X_n , then we say Φ is of type \tilde{X}_n , and call it the *affine root system* associated to Φ_0 . If V_0 is the ambient *n*-dimensional vector space of Φ_0 , then let $V := V_0 \oplus \mathbb{R}\delta$ to be an (n + 1)-dimensional vector space, with new basis vector δ . We define $\langle \alpha_i^{\vee}, \delta \rangle = 0$ for all simple coroots α_i . Then Φ is the set

$$\Phi = \{ \alpha + k\delta : \alpha \in \Phi_0, \ k \in \mathbb{Z} \}.$$

We endow Φ with the set of simple roots $\alpha_1, \ldots, \alpha_n, \alpha_0$, where $\alpha_1, \ldots, \alpha_n$ are the simple roots of Φ_0 and $\alpha_0 = \delta - \theta$. The corresponding new coroot is $\alpha_0^{\vee} := -\theta^{\vee}$. Then Φ is a root system [6]. The associated Coxeter group is called the *affine Coxeter group* of type \widetilde{X} . Up to isomorphism, the irreducible affine Coxeter groups are classified into the families $\widetilde{A}_n, \widetilde{B}_n, \widetilde{C}_n, \widetilde{D}_n$, or one of the exceptional types $\widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8, \widetilde{F}_4, \widetilde{G}_2$. The affine symmetric group \widetilde{S}_n from the introduction is the affine Coxeter group of type \widetilde{A}_{n-1} .

For each pair $\pm\beta$ of roots in Φ_0 , there is a type A_1 root subsystem of Φ , whose elements are $\{\pm\beta + k\delta : k \in \mathbb{Z}\}$. Each root of Φ lies in exactly one such \widetilde{A}_1 subsystem.

To give a concrete model for biclosed sets in affine type in Section 3, we recall the definition of the *Coxeter fan* of a finite Coxeter group W_0 . This is a complete fan living in the coroot representation V_0^{\vee} of W_0 . The set F_0 of $f \in V_0^{\vee}$ such that $\langle f, \alpha \rangle \ge 0$ for all $\alpha \in (\Phi_0)_+$ is called the *dominant chamber*. A *chamber* is any cone of the form wF_0 for $w \in W_0$. The Coxeter fan consists of all cones formed by intersections of chambers. These cones are called the *faces* of the fan. Let Faces(W_0) denote the set of faces of the Coxeter fan of W_0 . The action of W_0 on V_0^{\vee} permutes the elements of Faces(W_0).

There is also an action of the affine Coxeter group W associated to W_0 on Faces (W_0) , described as follows. If V^{\vee} is the coroot representation for W, then notice that W preserves the subspace consisting of functionals which annihilate the vector $\delta \in V$. This subspace has a basis given by $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$ and thus can be canonically identified with V_0^{\vee} ; we do so from here on. This identification respects the action of $W_0 \subseteq W$. Given a face $F \in \text{Faces}(W_0)$, let W_F denote the stabilizer of F under the W action, and let Φ_F be the set of roots in Φ which are annihilated by all functionals in F. Then W_F is the reflection subgroup corresponding to the root subsystem Φ_F , called a *parahoric subgroup* of W.

2.3 Closed and biclosed sets

A subset *J* of Φ_+ is called *closed* if, for any three roots α , β and γ with $\gamma \in \mathbb{R}_{>0}\alpha + \mathbb{R}_{>0}\beta$, if α and $\beta \in J$ then $\gamma \in J$. A subset *J* of Φ_+ is called *coclosed* if $\Phi_+ \setminus J$ is closed. The set *J* is *biclosed* if it is both closed and coclosed. As in the introduction, for a subset *A* of Φ_+ , we define the *closure* \overline{A} to be the intersection of all closed sets containing *A* and we define the *interior* A° to be the union of all coclosed sets contained in *A*.

We pause to connect this notion to the closed subsets from the introduction. Let e_1, e_2, \ldots, e_n be the standard basis of \mathbb{R}^n , then $\{e_i - e_j : 1 \le i < j \le n\}$ form a root system of type A_{n-1} , which spans an (n-1)-dimensional subspace of \mathbb{R}^n . The rank two subsystems of Φ_+ come in two forms: The type A_2 subsystems are $\{e_i - e_j, e_i - e_k, e_j - e_k\}$ for i < j < k, and the type $A_1 \times A_1$ subsystems are $\{e_i - e_j, e_k - e_\ell\}$ for i < j and $k < \ell$ distinct. The closure conditions for the A_2 -subsystems are the conditions from the introduction; the closure conditions for the $A_1 \times A_1$ -subsystems are trivial, since they only have two positive roots.

Similarly, define \widehat{V} to be the n + 1-dimensional vector space spanned by a collection of vectors \widetilde{e}_i , for $i \in \mathbb{Z}$, modulo the relation $\widetilde{e}_{i+n} - \widetilde{e}_i = \widetilde{e}_{j+n} - \widetilde{e}_j$ for all i, j. Then the vectors $\{\widetilde{e}_i - \widetilde{e}_j : i < j, i \not\equiv j \mod n\}$ form a copy of the positive \widetilde{A}_{n-1} -system, inside an n-dimensional subspace of \widehat{V} . There are three types of full rank two subsystems: For i < j < k all distinct modulo n, we have an A_2 -subsystem $\{\widetilde{e}_i - \widetilde{e}_j, \widetilde{e}_i - \widetilde{e}_k, \widetilde{e}_j - \widetilde{e}_k\}$; for i < j < i + n we have an \widetilde{A}_1 -subsystem $\{\widetilde{e}_{i+pn} - \widetilde{e}_{j+qn} : i + pn < j + qn\} \cup \{\widetilde{e}_{j+pn} - \widetilde{e}_{i+qn} :$ $j + pn < i + qn\}$ and, for $i < j, k < \ell$ distinct modulo n, we have an $A_1 \times A_1$ -subsystem $\{\widetilde{e}_i - \widetilde{e}_j, \widetilde{e}_k - \widetilde{e}_\ell\}$. The closure conditions for the A_2 and \widetilde{A}_1 -subsystems are the conditions from the introduction; the closure conditions for the $A_1 \times A_1$ -subsystems are trivial.

Recall that the set of inversions of a Coxeter group element can be described geometrically: $N(w) = \{t \in T : \langle wf, \beta_t \rangle < 0\}$, where $f \in V^{\vee}$ obeys $\langle f, \alpha_i \rangle > 0$. From this geometric description, it is clear that $\{\beta_t : t \in N(w)\}$ is biclosed for any $w \in W$. This characterizes the finite biclosed sets:

Proposition 2.2 ([2]). A set *B* of positive roots is finite and biclosed if and only if there exists $w \in W$ such that $B = \{\beta_t : t \in N(w)\}$. In this case, w is uniquely defined.

Figure 1: The extended weak order for \tilde{A}_1 . The finite biclosed sets are shaded in blue. The subposet consisting of the finite biclosed sets is the usual weak order for \tilde{A}_1 ; note the usual weak order is not a lattice, but the extended weak order is a complete lattice.

Define the *extended weak order* to be the poset of biclosed sets ordered by inclusion. This paper is motivated by Dyer's conjecture, first discussed in [1, Remark 2.14]:

Conjecture 2.3. The extended weak order is a complete lattice. For X a collection of biclosed sets, we have $\bigvee X = \bigcup_{I \in X} J$ and $\bigwedge X = (\bigcup_{I \in X} J)^{\circ}$.

This conjecture is known in finite type [2, Theorem 1.5] and rank two, and was recently shown by Weijia Wang to hold for rank three affine Coxeter groups [10]. In Section 4, we give the first proof of Dyer's conjecture for all affine Coxeter groups. In Section 3, we give a useful parametrization of biclosed sets for these groups (which is independent of Section 4).

3 A combinatorial model for biclosed sets in affine type

We now use the material from Section 2.2 to give a description of the biclosed sets for affine Coxeter groups generalizing Theorem 1.3. We omit proofs in this section.

We define two biclosed sets, *B* and *C*, to be *commensurable* if the symmetric difference $B \oplus C := (B \setminus C) \sqcup (C \setminus B)$ is finite. We will begin by describing biclosed sets up to commensurability. For a biclosed subset *B* of Φ_+ , we define

$$B_{\infty} = \{ \beta \in \Phi_0 : \beta + k\delta \in B \text{ for } k \gg 0 \}.$$

It is easy to see that $B_{\infty} = C_{\infty}$ if and only if *B* and *C* are commensurable. To understand the sets which can appear as B_{∞} , we will use the Coxeter fan described in Section 2.2.

Let *F* be a face of the W_0 -Coxeter fan and let *f* lie in the relative interior of *F*. Then $\{\beta \in \Phi_+ : \langle f, \beta \rangle < 0\}$ and $\{\beta \in \Phi_+ : \langle f, \beta \rangle \le 0\}$ are both biclosed sets. More generally, let $\Phi_F = \{\beta \in \Phi : \langle f, \beta \rangle = 0\}$, then Φ_F is the root system associated to the parahoric subgroup W_F . If Φ' is any union of indecomposable components of Φ_F , then $B(F, \Phi') := \{\beta \in \Phi_+ : \langle f, \beta \rangle < 0\} \cup (\Phi' \cap \Phi_+)$ is biclosed.

Proposition 3.1. *Each biclosed set is commensurable to a unique biclosed set of the form* $B(F, \Phi')$ *for* $F \in \text{Faces}(W_0)$ *and* Φ' *a (possibly empty) union of indecomposable components of* Φ_F .

We note that $B(\mathbf{0}, \emptyset) = \emptyset$ and that the commensurability class of $B(\mathbf{0}, \emptyset)$ consists of the finite biclosed sets which, by Proposition 2.2, are in bijection with the elements of *W*. Following [2, Section 4.1], we define an action of *W* on the set of biclosed classes by

$$w \cdot B = (wB \cap \Phi_+) \cup (\{\beta_t : t \in N(w)\} \setminus (-wB)).$$

Then we can generalize our description of $B(\mathbf{0}, \emptyset)$ to

Proposition 3.2. The set of biclosed sets commensurable to $B(F, \Phi')$ is the W_F -orbit of $B(F, \Phi')$, and W_F acts freely on this orbit.

Combining our results, biclosed sets are in bijection with triples (F, Φ', w) where F is a face of Faces (W_0) , where Φ' is a union of indecomposable components of Φ_F , and where $w \in W_F$.

Remark 3.3. The limit weak order of Lam and Pylyavskyy [7] corresponds to triples (F, \emptyset, w) .

Let us work out what this looks like for $W = \tilde{S}_n$, the affine Coxeter group of type \tilde{A}_{n-1} . We will reuse the notation \hat{V} from Section 2.3 and we let V be the subspace of \hat{V} spanned by $\tilde{e}_i - \tilde{e}_j$. Similarly, we let V_0 be the subspace of \mathbb{R}^n spanned by $e_i - e_j$. The projection $V \to V_0$ is induced by the map $\hat{V} \to \mathbb{R}^n$ sending \tilde{e}_i to $e_{i \mod n}$. So the dual vector space, $(V_0)^{\vee}$, is $\mathbb{R}^n/\mathbb{R}(1,1,\ldots,1)$, and we will write elements of $(V_0)^{\vee}$ as (f_1, f_2, \ldots, f_n) .

The faces of the S_n Coxeter fan are in bijection with ordered set partitions (equivalently, total preorders) of [n]. For example, with n = 4, the ordered set partition $(\{1,3\},\{2,4\})$ corresponds to the face $\{f_1 = f_3 \leq f_2 = f_4\}$. Given an ordered set partition (B_1, B_2, \ldots, B_r) of [n] with corresponding face F, a permutation $w \in S_n$ stabilizes F if and only if w sends each block B_i to itself. For example, the stabilizer of $\{f_1 = f_3 \leq f_2 = f_4\}$ is $\langle (13), (24) \rangle$.

The parahoric subgroup W_F is the preimage of this stabilizer in \widetilde{S}_n . To describe this, put $\widetilde{B}_a = \{i \in \mathbb{Z} : i \mod n \in B_a\}$. Then Φ_F is $\bigcup_{a=1}^r \{\widetilde{e}_i - \widetilde{e}_j : i, j \in \widetilde{B}_q, i \neq j \mod n\}$. The irreducible components of Φ_F correspond to the non-singleton blocks of the set partition. So, to give a pair (F, Φ') is to give an ordered set partition (B_1, B_2, \ldots, B_r) of [n] and a subset *R* of the non-singleton blocks of this partition.

The biclosed set $B(F, \Phi')$ corresponds to the inversions of a translation invariant total order defined as follows: If a < b, $i \in \tilde{B}_a$ and $j \in \tilde{B}_b$, then we put $i \prec j$. If B_a is a non-singleton block, and i and $j \in \tilde{B}_a$ with i < j, then we put $i \prec j$ if $B_a \notin R$ and $i \succ j$ if $B_a \in R$. If B_a is a singleton block, the order on \tilde{B}_a is undetermined, this will give the indeterminacy in Theorem 1.3.

More generally, an element w of W_F is a permutation in \tilde{S}_n which takes each \tilde{B}_a to itself. Applying such permutations to the translation invariant total orders described above gives the whole of Theorem 1.3.

4 Dyer's conjecture and the *CU***-property**

In this section we prove Conjecture 2.3 for affine Coxeter groups. Conjecture 2.3 would follow from the following conjecture (also due to Dyer, see [2, Conjecture 2.6]).

Conjecture 4.1. Let U be a coclosed subset of Φ_+ , then \overline{U} is also coclosed. Dually, let K be a closed subset of Φ_+ , then K° is also closed.

The statements about \overline{U} and about K° are equivalent, by putting $K = \Phi_+ \setminus U$.

Proof that Conjecture 4.1 implies Conjecture 2.3. Let \mathcal{X} be any collection of biclosed subsets of Φ_+ and put $V := \bigcup_{J \in \mathcal{X}} J$. We will show that V is biclosed and is the join of \mathcal{X} . Indeed, V is closed since it is defined as a closure. The set $\bigcup_{J \in \mathcal{X}} J$ is coclosed, since it is a union of coclosed sets, so Conjecture 4.1 implies that V is coclosed; we have now checked that Y is biclosed.

For any $J_0 \in \mathcal{X}$, we have $J_0 \subseteq \bigcup_{J \in \mathcal{X}} J \subseteq V$, so V is an upper bound for \mathcal{X} . If Y is any other biclosed upper bound for \mathcal{X} then, by the definition of an upper bound, we have $\bigcup_{J \in \mathcal{X}} J \subseteq Y$; since Y is closed, we then have $V \subseteq Y$ as well. We have thus shown that Y is the unique least upper bound of \mathcal{X} . The case of lower bounds is analogous.

To prove Conjecture 4.1, we will need the notion of a *unipodal* set of roots. A set $U \subseteq \Phi_+$ is unipodal if, for any full rank two subsystem Φ' of Φ , whenever $\Phi' \cap U$ is nonempty it follows that some simple root α of Φ' is in *U*. All coclosed sets are unipodal, and unipodal sets are preserved by arbitrary unions. Furthermore, any closed set which is unipodal is in fact biclosed.

We now introduce a new property, which is designed to prove Conjecture 4.1. Let *A* be a subset of Φ_+ . We will say that a positive root γ is *nocked* with respect to *A* there are positive roots α and β , with γ a positive linear combination of α and β , such that $\alpha, \beta \in A$ and $\gamma \notin A$. We write Nock(*A*) for the set of γ which are nocked with respect to *A*. To motivate the definition of Nock(*A*), note that the closure of *A* is the ascending union of the chain $A \subseteq A \cup Nock(A) \subseteq A \cup Nock(A) \cup Nock(A \cup Nock(A)) \subseteq \cdots$, so the nocked¹ roots are the ones which get added to the closure "first".

We partially order Φ_+ by *cutting order*. If α and β are positive roots, then β is over α in cutting order if, in the full rank two system containing them, α is simple and β is not. To show that (the transitive closure of) these relations in fact define a partial order,

¹The word "nocked" comes from archery and describes an arrow ready to be fired, as the nocked roots are ready to be added.

rather than a preorder, it is enough to exhibit a partial order which extends the cutting order. Indeed, Proposition 4.3.18(3) of [9] shows that if α is below β in cutting order, then α has a smaller depth than β .

Definition 4.2. We say that Φ_+ has the *CU*-*property* if, whenever *U* is a unipodal set and γ is minimal in Nock(*U*), then $U \cup \{\gamma\}$ is unipodal.

It is immediate to see that the *CU*-property holds if Φ_+ has rank ≤ 2 .

Proposition 4.3. If Φ_+ has the CU-property then Conjecture 4.1, and hence Conjecture 2.3, hold with respect to Φ_+ .

Proof. Let *U* be a unipodal set, let *K* be the closure \overline{U} and let *V* be the interior K° . We want to show that K = V.

Since *V* is the union of all coclosed sets contained in *K*, we have $U \subseteq V$ and thus *K* is the closure of *V*. If $K \neq V$ then there must be some element of *K* which is nocked with respect to *V*. Choose a γ in *K* which is nocked with respect to *V* and is minimal with respect to this property. Then, by the *CU*-property, $V \cup {\gamma}$ is unipodal. But then γ would be in the interior of *K*, contradicting our choice of γ not in *V*.

The advantage of the *CU*-property is the next result:

Proposition 4.4. Suppose that every rank three subsystem of Φ_+ has the CU-property. Then Φ_+ has the CU-property.

Proof. Suppose that Φ_+ does not obey the *CU*-property. Then there is some unipodal set *U* and some root γ which is minimal in Nock(*U*), such that $U \cup \{\gamma\}$ is not unipodal.

The condition that $\gamma \in \text{Nock}(U)$ means that there are positive roots α and β , with γ in the positive span of α and β , such that α , $\beta \in U$ and $\gamma \notin U$. The condition that $U \cup \{\gamma\}$ is not unipodal means that there must be some positive roots α' , β' which are simple in the rank two subsystem they span, and some root γ' in the positive span of α and β . These satisfy $\alpha', \beta' \notin U \cup \{\gamma\}$ and $\gamma' \in U \cup \{\gamma\}$. But, if $\gamma' \in U$ then this would contradict that U is unipodal, so we must have $\gamma = \gamma'$.

Let *R* and *R'* be the full rank two subsystems containing $\{\alpha, \gamma, \beta\}$ and $\{\alpha', \gamma, \beta'\}$ respectively. Let *X* be the minimal full subsystem containing *R* and *R'* and let Φ_+^X be its positive roots; *X* is the full subsystem generated by α, γ, α' , and hence has rank three by the following lemma.

Lemma 4.5. The minimal full subsystem containing a given set of r roots has rank at most r.

Then $U \cap \Phi^X_+$ is unipodal in Φ^X_+ , and the root system R shows that γ is still nocked with respect to $U \cap \Phi^X_+$. The partial order on Φ^X_+ is the restriction of the one on Φ^+ so γ is still minimal in Nock $(U \cap \Phi^X_+)$. But then R' shows that $(U \cap \Phi^X_+) \cup \{\gamma\}$ is not unipodal in Φ^X_+ , contradicting the *CU*-property in the rank three subsystem Φ^+_X . \Box It is a short verification that the *CU*-property holds for the finite root systems of rank three with integral Cartan matrix: A_3 , B_3 , and $A_1 \times X_2$ for X_2 a finite rank 2 root system. Thus, we immediately deduce that the *CU*-property, Conjecture 4.1 and Conjecture 2.3 hold for all finite crystallographic root systems. The fact that biclosed sets form a complete lattice is classical in this setting, but the formula for the join is already interesting. We note that the *CU*-property fails in type \tilde{C}_2 , so we cannot expect every root system to have this property. However, one of the main results of this extended abstract is:

Theorem 4.6. Conjectures 2.3 and 4.1 hold for any affine root system. Furthermore, the **simply-laced** affine root systems (types \tilde{A}_n, \tilde{D}_n , and \tilde{E}_n) have the CU-property.

The proof of the theorem reduces to the case of simply-laced types by the technique of *folding* root systems (which for brevity we shall not discuss here). To show the *CU*-property in that case (and thus Conjectures 2.3 and 4.1), we use Proposition 4.4 to reduce to checking the rank three subsystems, which in a simply-laced system are all of type \tilde{A}_2 , A_3 , or $A_1 \times X_2$ for X_2 of rank two. The finite and decomposable systems are a quick check; we will take on the affine system \tilde{A}_2 in the following.

Theorem 4.7. Let Φ_+ be the positive root system of type \widetilde{A}_2 , and let $U \subseteq \Phi_+$ be a unipodal subset. Let γ be a minimal element of Nock(U), with respect to cutting order. Then $U \cup \{\gamma\}$ is also unipodal.

We will denote the simple roots of Φ_+ as α_0 , α_1 and α_2 , so the imaginary root is $\delta = \alpha_0 + \alpha_1 + \alpha_2$. We write β_j for $\delta - \alpha_j$ and, for $t \ge 0$, we set $\alpha_j^t = \alpha_j + t\delta$ and $\beta_j^t = \beta_j + t\delta$. So each element of Φ_+ is denoted as one of α_0^t , α_1^t , α_2^t , β_0^t , β_1^t , β_2^t for $t \ge 0$. Note that we have $\alpha_0^t + \alpha_1^u = \beta_2^{t+u}$ and $\beta_0^t + \beta_1^u = \alpha_2^{t+u+1}$, and similarly for all permutations of the subscripts.

The condition that γ is minimal in Nock(*U*) means that, anytime that we have η' and $\eta'' \in U$ and some root η is in the positive span of η' and η'' , with η less than γ , we can deduce that η is in *U*. In this case, we will say that η' and η'' *force* η .

We first outline the cases we will consider: The condition that γ is nocked means that $\gamma \notin U$ but γ is in the positive span of some other roots γ' and γ'' which are in U; let P be the rank two subsystem containing γ' and γ'' . The only way that $U \cup \{\gamma\}$ could fail to be unipodal is if γ is contained in some rank two subsystem Q whose simple roots are not in U. We break into cases according to the types of P and Q:

Lemma 4.8. If *P* and *Q* are both type \widetilde{A}_1 , then $U \cup \{\gamma\}$ is unipodal with respect to *Q*.

Proof. In this case, since $\gamma \in P \cap Q$, we must have P = Q. But then $\gamma' \in Q \cap U$, and U is unipodal, so U contains one of the simple roots of Q, as desired.

Lemma 4.9. If *P* is type A_2 , and *Q* is type \widetilde{A}_1 , then $U \cup \{\gamma\}$ is unipodal with respect to *Q*.

Proof. Without loss of generality, Q is the subsystem spanned by α_0 and β_0 , so either $\gamma = \alpha_0^t$ or $\gamma = \beta_0^t$ for some t. The statement is trivial for t = 0, so we assume t > 0. We also note that, as soon as we show that any α_0^u or β_0^u is in U, we are done by the unipodality of U.

Case 1: $\gamma = \alpha_0^t, \gamma' = \beta_1^u$ and $\gamma'' = \beta_2^{t-u-1}$:

Now, $\gamma' = \beta_1^u = \alpha_0^u + \alpha_2$ so, by unipodality, either α_0^u or α_2 is in *U*. If $\alpha_0^u \in U$, we are done, so we may assume $\alpha_2 \in U$. Similarly, $\gamma'' = \beta_2^{t-u-1} = \alpha_0^{t-u-1} + \alpha_1$ show that we may assume $\alpha_1 \in U$. But then α_1 and α_2 force β_0 into *U*, and we are done.

Case 2: We have $\gamma = \beta_0^t$, $\gamma' = \alpha_1^u$ and $\gamma'' = \alpha_2^{t-u}$:

Since t > 0, either u > 0 or t - u > 0; without loss of generality, we assume u > 0. Now, $\gamma' = \alpha_1^u = \beta_0^{u-1} + \beta_2$ so, by unipodality, either β_0^{u-1} or β_2 is in *U*. If $\beta_0^{u-1} \in U$, we are done. If $\beta_2 \in U$, then unipodality implies that either α_0 or $\alpha_1 \in U$. If $\alpha_0 \in U$, we are again done. We have now shown that both α_1 and α_2^{t-u} are in *U*. But then α_1 and α_2^{t-u} force β_0^{t-u} are we are done again.

The other cases are similar, but longer; they are available in the paper accompanying this extended abstract.

References

- [1] M. Dyer. "Quotients of twisted Bruhat orders". J. Algebra 163.3 (1994), pp. 861–879. DOI.
- [2] M. Dyer. "On the Weak Order of Coxeter Groups". Canadian Journal of Mathematics 71.2 (2019), pp. 299–336. DOI.
- [3] M. Dyer. "Reflection subgroups of Coxeter systems". J. Algebra 135.1 (1990), pp. 57–73. DOI.
- [4] M. Dyer. "On the âĂIJBruhat graphâĂI of a Coxeter system". Compos. Math. 2.2 (1991), pp. 185–191. Link.
- [5] O. Iyama, N. Reading, I. Reiten, and H. Thomas. "Lattice structure of Weyl groups via representation theory of preprojective algebras". *Compos. Math.* 154.6 (2018), 1269âĂŞ1305.
- [6] V. G. Kac. Infinite-Dimensional Lie Algebras. Boston, MA: Birkhäuser Boston, 1983. DOI.
- [7] T. Lam and P. Pylyavskyy. "Total positivity for loop groups II: Chevalley generators". *Transform. Groups* 18.1 (2013), pp. 179–231. DOI.
- [8] N. Reading and D. E. Speyer. "Combinatorial Frameworks for Cluster Algebras". Int. Math. Res. Not. IMRN 2016.1 (May 2015), pp. 109–173. DOI.
- [9] F. Viard. "Des graphes orientés aux treillis complets : une nouvelle approche de l'ordre faible sur les goupes de Coxeter". Theses. Université Claude Bernard Lyon I, Nov. 2015.
- [10] W. Wang. "Infinite reduced words, lattice property and braid graph of affine Weyl groups". J. Algebra 536 (2019), pp. 170–214. DOI.