
Séminaire Lotharingien de Combinatoire 86B (2022) Proceedings of the 34th Conference on Formal Power
Article #55, 12 pp. Series and Algebraic Combinatorics (Bangalore)

A Web Basis of Invariant Polynomials From
Noncrossing Partitions

Rebecca Patrias∗1, Oliver Pechenik†2 and Jessica Striker‡3

1Department of Mathematics, University of St. Thomas, St. Paul, MN 55105, USA
2Department of Combinatorics & Optimization, University of Waterloo, ON N2L 3G1, Canada
3Department of Mathematics, North Dakota State University, Fargo, ND 58102, USA

Abstract. The irreducible representations of symmetric groups can be realized as cer-
tain graded pieces of invariant rings, equivalently as global sections of line bundles
on partial flag varieties. There are various ways to choose useful bases of such Specht
modules Sλ. Particularly powerful are web bases, which make important connections
with cluster algebras and quantum link invariants. Unfortunately, web bases are only
known in very special cases — essentially, only the cases λ = (d, d) and λ = (d, d, d).
Building on work of B. Rhoades (2017), we construct an apparent web basis of invariant
polynomials for the 2-parameter family of Specht modules with λ of the form (d, d, 1`).
The planar diagrams that appear are noncrossing set partitions, and we thereby obtain
geometric interpretations of earlier enumerative results in combinatorial dynamics.
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1 Introduction

Specht modules Sλ, indexed by integer partitions, are the irreducible complex representa-
tions of symmetric groups Sn. Unsurprisingly, there are many different ways to construct
and describe Specht modules. These various constructions yield distinct linear bases of
Sλ that are variously well adapted to one task or another. Understanding the resulting
basis changes often leads to deep and hard problems.

An important construction of the Specht module is as a space of invariant polynomi-
als for a Lie group of block lower-triangular matrices, or equivalently as global sections
of a certain line bundle on a partial flag variety. In this avatar, standard monomial theory
endows each Sλ with a natural basis of polynomials, encoded by standard Young tableaux
of shape λ.
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In special cases, this realization of Sλ has another remarkable basis, consisting of a
different set of invariant polynomials, encoded by planar diagrams called webs. Webs
were introduced by G. Kuperberg [5], building on the diagrammatics of the Temperley–
Lieb algebra. The web bases have applications to representations of quantum groups,
cluster algebras, the geometry of Springer fibres, and quantum link invariants. As a combi-
natorial application, web bases were used in [9] to elucidate the orbit structure of certain
standard Young tableaux under promotion, a instance of the cyclic sieving phenomenon [10]
previously established through more difficult tools in [11].

While definitions have been proposed for slr webs with r ≥ 3 (e.g. [2]), the resulting
constructions are not entirely satisfactory from our perspective, as they lack important
combinatorial properties. In particular, web bases have only been successfully applied to
tableau combinatorics in the 2- and 3-row rectangular cases λ = (d, d) and λ = (d, d, d).

The goal of this paper is to develop a web basis for the two-parameter family of
Specht modules Sλ with λ of the form (d, d, 1`). (Here, 1` is shorthand for ` parts each
of size 1.) We call these partitions pennants after the visual appearance of their Young
diagrams. We were guided to the study of pennant Specht modules by considerations in
the combinatorics of tableau dynamics; however, this family of partitions has attracted
combinatorial interest since work of R. Stanley [13] in the mid-1990s. We find that pen-
nant Specht modules have a useful web basis, directly extending the Temperley–Lieb
basis for the case ` = 0.

Standard Young tableaux of this shape (d, d, 1`) are in bijection with increasing tableaux
of shape (d + `, d + `) with entries at most 2d + ` [8]. Increasing tableaux are analogues
of standard Young tableaux, useful in K-theoretic Schubert calculus. In [14], H. Thomas
and A. Yong introduced a K-jeu de taquin through which increasing tableaux calculate
the K-theory structure coefficients of Grassmannians and other minuscule varieties.

Analogous to the cyclic sieving theorems of [9, 11] for standard Young tableaux,
O. Pechenik [8] gave a cyclic sieving theorem to describe the orbit structure of 2-row
increasing tableaux under a K-jeu de taquin analogue of promotion. The sl2 webs rel-
evant to promotion of 2-row standard Young tableaux may be combinatorially identified
with noncrossing matchings, special cases of noncrossing set partitions. The cyclic sieving
theorem of [8] relied on the combinatorics of noncrossing set partitions (without single-
ton blocks), leading Pechenik to write “it is tempting to think of noncrossing partitions
without singletons as “K-webs” for sl2, although their representation-theoretic signifi-
cance is unknown.” However, the proof in [8] was by explicit calculation, rather than
representation-theoretic arguments.

In [12], B. Rhoades provided representation-theoretic meaning to noncrossing par-
titions without singletons by combinatorially reconstructing the Specht module S(d,d,1`)

with these combinatorial diagrams as an apparently new “skein” basis. Hence, Rhoades
established the first algebraic proofs and interpretations of some theorems from [8,
10]. Nonetheless, the results remained somewhat mysterious, since Rhoades’ defini-



Web Invariants For Noncrossing Partitions 3

tions were highly non-obvious and the verifications that they gave a module structure
involved many pages of laborious calculations. Moreover, [12, Section 7] noted an in-
compatibility of signs between different constructions in the paper; specifically, the signs
appearing in the Sn action on general set partitions are slightly different from those used
for almost noncrossing set partitions.

Our main result is to realize Rhoades’ skein basis in a geometrically-natural setting.
More precisely, we associate to each noncrossing set partition without singletons a global
section [π] of a line bundle on the 2-step partial flag variety F`(2, ` + 2; n), yielding a
basis of the pennant Specht module S(d,d,1`) that is equivalent to Rhoades’ skein basis up
to signs. The polynomial [π] will be defined in Section 3 in terms of jellyfish tableaux,
which we introduce. Let W(n, d) denote the set of noncrossing partitions of n with d
blocks and no singletons.

Theorem 1.1. The set {[π] : π ∈ W(n, d)} forms a basis for Sλ where λ = (d, d, 1n−2d−2).
Moreover, up to signs, the long cycle c = n12 · · · (n− 1) ∈ Sn acts by rotation of diagrams and
the long element w0 = n(n− 1) · · · 21 ∈ Sn acts by reflection. Specifically, we have

w0 · [π] = (−1)(
n
2)[refl(π)] and c · [π] = (−1)n−1[rot(π)].

Our construction directly extends that of the sl2 web basis for the Specht module S(d,d)

and partially realizes the dream from [8] of interpreting noncrossing partitions without
singletons as “K-webs” for sl2. However, they turn out to be webs, not for sl2, but rather
for a block lower-triangular Lie subalgebra of sl`+2, and any connection to K-theoretic
geometry is not yet apparent. An asset of our construction is that we actually obtain an
invariant polynomial [π] ∈ Sλ for each set partition π (not necessarily noncrossing) with
the actions of the permutations c and w0 still given as in Theorem 1.1. With this con-
struction, it moreover becomes straightforward to obtain “uncrossing rules,” describing
the expansion of [π] for crossing π in the noncrossing basis.

A different algebraic realization of the skein basis in a space of fermionic diagonal har-
monics appeared recently in work of Rhoades with J. Kim [4]. While our work was carried
out independently, our construction as a space of invariant polynomials appears to be
a concretization of their more abstract theory. In particular, their block operators appear
to correspond to our determinants and they satisfy a 5-term relation analogous to our
Theorem 3.4. It would likely be valuable to work out the details of this correspondence.

To our knowledge, Theorem 1.1 is the first development of a web basis for any family
of Lie algebras of unbounded dimensions. We have yet to fully explore the consequences
of this idea. Our first applications are to understanding enumerative questions in combi-
natorial dynamics. However, it seems reasonable to expect that there is a quantum group
whose representation theory is also governed by this diagrammatic basis. We do not ex-
pect this theory to yield a new quantum link invariant; however, it could perhaps be
applied to obtain quantum invariants for spatial embeddings of hypergraphs. Similarly,
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we hope that our constructions may yield insights into the topology of the Springer fibre
for shape (d, d, 1`). The dynamics of K-promotion on arbitrary rectangular increasing
tableaux are mysterious but known to be very complicated. However, the 3-row rect-
angular case is believed to be tractable [1, Conjecture 4.12]. Preliminary investigations
with Julianna Tymoczko suggest that this case is also amenable to study via a web basis
of planar hypergraphs.

This is an extended abstract; see [7] for the full version, which includes further proofs
and citations.

2 Specht modules, flag varieties, noncrossing partitions

The complex Grassmannian Grk(n) is the parameter space for k-dimensional linear sub-
spaces of Cn. Our focus in this paper is on generalizing constructions for Gr2(n), so we
begin by reviewing these. Then we will describe more general constructions for partial
flag varieties, after first fixing ideas and notation in the Grassmannian case.

Let Mn denote the matrix
(

x1 x2 . . . xn
y1 y2 . . . yn

)
of 2n distinct indeterminates and let

SL2(C) act by left multiplication. This gives an action of SL2(C) on the ring C[Mn] of
polynomials in these 2n variables, which we think of as the coordinate ring of a 2n-
dimensional affine space C2n. A classical task in invariant theory is to characterize those
polynomials in the invariant subspace C[Mn]SL2 of this action. Classically, the answer is
that C[Mn]SL2 is generated as an algebra by the 2× 2 minors of Mn.

By definition, C[Mn]SL2 is the coordinate ring of the GIT (geometry invariant theory)
quotient C2n // SL2 (the affine cone over Gr2(n)). A 2× 2 minor of Mn is specified by
a pair of column indices 1 ≤ i < j ≤ n. Commonly, we identify the (i < j)–minor of
Mn with the Plücker variable pij on the complex projective space P(n

2)−1. Realizing a
2-dimensional linear subspace of Cn as a rank 2 complex matrix of shape 2× n, we may
evaluate all of its 2× 2 minors and map it to the point in P(n

2)−1 with those Plücker co-
ordinates. This construction is well-defined, since different matrix representations of the
same 2-plane will yield the same set of 2× 2 minors, up to global scaling by a nonzero
constant. We thereby realize the Grassmannian Gr2(n) as a smooth projective subvariety
of P(n

2)−1, embedded via this Plücker embedding. The Grassmannian, in its Plücker em-
beddding, is cut out scheme-theoretically by quadratic relations in the Plücker variables,
called the Plücker relations. Hence, the homogeneous coordinate ring of Gr2(n) is a
polynomial ring in the Plücker variables modulo these Plücker relations.

We then have an isomorphism between C[Mn]SL2 and the homogeneous coordinate
ring of Gr2(n), except that the gradings differ by a factor of 2. The degree 2d homoge-
neous part of C[Mn]SL2 corresponds to degree d polynomials in the Plücker variables,
since 2× 2 minors are quadratic. In particular, C[Mn]SL2 is supported only in even de-
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grees. We will move back and forth between these gradings as convenient.
The polynomial ring R = C[pij : 1 ≤ i < j ≤ n] is the homogeneous coordinate

ring of P(n
2)−1. Such polynomials of homogeneous degree d form the global sections of

the line bundle O(d) on P(n
2)−1. Similarly, if we quotient R by the Plücker relations, the

resulting functions of homogeneous degree d are the global sections of the pullback line
bundle OGr2(n)(d). Of course, we may then identify these functions with the degree 2d
part of the invariant ring C[Mn]SL2 .

For each d, the degree 2d homogeneous part of C[Mn]SL2 is clearly finite-dimensional,
since it is spanned by d-fold products of Plücker variables and there are finitely many
such variables. There are two convenient graphical ways to encode such a d-fold product.

In the tableau encoding, we fill a 2× d grid T with positive integers weakly between
1 and n. For each Plücker variable pij, we fill a column of T with i and j. Note that
this grid is exactly the Young diagram of the partition (d, d). We can choose to insist
that, whenever i < j, we write i in the top row and j in the bottom row. The order of
the columns is also inconsequential, since a product of Plücker variables is independent
of the order of the factors. Hence, we may assume that we have sorted the columns of
T so that the entries of the first row weakly increase from left to right. Thus, a d-fold
product of Plücker variables is encoded by an array such as 1 1 1 2 3 3 4

2 4 7 5 4 4 7
where in this

example we are taking d = 7 and n ≥ 7. Note that the bottom row of the array satisfies
no particular increasingness condition. We say that such a filling of a Young diagram is
a semistandard tableau if the entries of each row weakly increase from left to right, just
as we insisted for the entries of the top row.

A fundamental result of standard monomial theory is that, for each d, a linear basis
for the degree 2d homogeneous part of C[Mn]SL2 is given by those products of Plücker
variables corresponding to semistandard tableaux of shape (d, d). This fact allows one,
for example, to combinatorially determine the dimensions of these spaces.

In the web encoding, we cyclically place n labeled points around the boundary of
a disk, and then draw d arcs through the interior of this disk joining boundary points.
Precisely, for each Plücker variable pij, we draw an arc from vertex i to vertex j. Note
that some arcs may necessarily cross other arcs and some pairs of arcs may share the
same endpoints. Letting d = 7 and n = 8, the d-fold product encoded by our example
array above may be alternatively encoded by the diagram below.

1

2

3

4

5

6

7

8

Let Tn denote the rank n torus of diagonal invertible n× n matrices. Then Tn acts on
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Mn by right multiplication, scaling the columns. We thereby also have an action of Tn
on the invariant ring C[Mn]SL2 . The Tn action breaks the degree 2d homogeneous part of
C[Mn]SL2 into a direct sum of weight spaces. Specifically, we obtain an extra Zn-grading
on invariant polynomials. Let ei denote the ith standard basis vector of Zn. Then we treat
each Plücker variable pij as having Zn-degree ei + ej. For each v ∈ Zn with coordinates
summing to 2d, we may then consider the part of C[Mn]SL2 with Zn-degree v, a subspace
of the space of degree 2d invariants. For v = (v1, . . . , vn), the homogeneous degree v part
of C[Mn]SL2 corresponds to those tableaux where each value i appears exactly vi times,
or alternatively, to those arc diagrams where boundary vertex i has degree vi.

We are particularly interested in the case n = 2d and the degree (1, 1, . . . , 1) homo-
geneous part of C[Mn]SL2 . In this case, we have a basis given by semistandard tableaux
where each number from 1 to n = 2d appears exactly once. Such tableaux are called
standard. However, the theory of sl2 webs gives us another, completely different basis
for this space. Clearly, the degree (1, 1, . . . , 1) homogeneous part is spanned by products
of Plücker variables corresponding to matchings, i.e., arc diagrams where each boundary
vertex is paired to exactly one other boundary vertex. It turns out that a linear basis is
given by those matchings that are noncrossing, i.e., such that the arcs can be drawn so as
to be pairwise nonintersecting. Noncrossing matchings are also known as sl2 webs, and
the corresponding basis is called the sl2 web basis or Temperley–Lieb basis.

The tableau and web bases are genuinely different from each other. For example, if
d = 2 and n = 4, there are 3 products of pairs of distinct Plücker variables to consider:

p12p34 p13p24 p14p23

1 3

2 4

1 2

3 4

1 2

4 3

1

2
3

4
1

2
3

4
1

2
3

4

The standard tableau basis is given by the first two of these products, whereas the
sl2 web basis is given by the first and the third. Famously, standard Young tableaux of
shape (d, d) and noncrossing matchings of 2d are both counted by the Catalan numbers.
There is a well-known bijection between these sets.

The space C[Mn]SL2 carries an action of the symmetric group Sn by right multiplica-
tion, permuting the columns of Mn. For µ a partition of 2d, we can consider the union
of the homogeneous degree α parts of C[Mn]SL2 over all α that are permutations of µ.
The Sn action restricts to this union, making it an Sn-module; however, the isomorphism
type of this representation is not easy to determine in general. Nonetheless, in the case



Web Invariants For Noncrossing Partitions 7

n = 2d, restricting to the homogeneous degree (1, 1, . . . , 1) part yields an irreducible
Sn-representation, called the Specht module S(d,d).

If instead we let Mn be a 3× n matrix of distinct indeterminants and consider the
ring C[Mn]SL3 , the story is similar. This invariant ring is generated by the 3× 3 minors,
which we identify with the Plücker coordinates pijk on Gr3(n). The homogeneous degree
3d part of C[Mn]SL3 is the space of global sections of the line bundle OGr3(n)(d) and has
a basis given by semistandard tableaux of shape (d, d, d).

Again, we have an action of Tn and may consider the weight spaces that this action
induces. For n = 3d, the homogeneous degree (1, 1, . . . , 1) part has a basis given by
standard tableaux of shape (d, d, d). The symmetric group Sn acts on this space by right
multiplication, making it an Sn-module. Indeed, it is an irreducible representation and is
a geometric realization of the Specht module S(d,d,d). However, there is again a genuinely
different basis of this space encoded by planar diagrams. These diagrams are called sl3
webs and look, for example, like:

We now extend the previous constructions to general partial flag varieties of type
A, including Grassmannians of k-planes with k > 3. The main difference from the
previous constructions (besides some added complexity) is that we will not have web
bases is these settings. Although we consider arbitrary Specht modules, our primary
interest will be in those of the form S(d,d,1`); the main result of this paper is to describe
an explicit basis of invariant polynomials for those cases, realizing Rhoades’ skein basis
geometrically.

Let λ be any partition and let µ be the partition whose Young diagram is the transpose
of λ. In particular, if λ = (d, d, 1`), then µ = (` + 2, 2d−1). Choose n ≥ µ1 and let M
denote the µ1 × n matrix 

x11 x12 . . . x1n
x21 x22 . . . x2n

...
... . . . ...

xµ11 xµ12 . . . xµ1n

 (2.1)

of µ1n distinct indeterminates. We may have µi = µi+1; if so, delete one of them until we
obtain a strict partition ν in which all parts are distinct. For example, if µ = (`+ 2, 2d−1),
then ν = (` + 2, 2). Consider the set of complex block-lower-triangular matrices of
determinant 1 with block sizes νn, νn−1 − νn, νn−2 − νn−1, . . . , ν1 − ν2. Note that since ν
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is a strict partition, all of these block sizes are positive. (We could have used µ in place
of ν, treating blocks of size 0 as nonexistent, but this indexing would be less convenient
later.) These matrices form a subgroup P of the Lie group SLµ1(C), which acts on C[M].
We consider again the invariant subring C[M]P.

On the one hand, C[M]P is the coordinate ring of the GIT quotient Cµ1n // P, which
is the affine cone over the partial flag variety F`(νn, νn−1, . . . , ν1; n). This partial flag
variety is a parameter space for partial flags 0 ≤ Vn ≤ Vn−1 ≤ · · · ≤ V1 ≤ Cn of
nested vector subspaces with Vi of dimension νi. In particular, these spaces include the
Grassmannians, as Grk(n) = F`(k; n). Our main interest is in the 2-step flag variety
F`(2, `+ 2; n).

On the other hand, classical invariant theory tells us algebraic generators for C[M]P.
For k any of the parts of ν, let pi1i2...ik denote the k × k minor of M that uses the top k
rows and the columns indexed i1, i2, . . . , ik. Then C[M]P is algebraically generated by the
set {pi1i2...ik : k ∈ ν, 1 ≤ i1 < i2 < · · · < ik ≤ n}. We call each pi1i2...ik a k-Plücker variable.

Representing a partial flag as a µ1 × n complex matrix such that Vi is the span of the
first νi rows, computing all of the Plücker variables embeds F`(νn, νn−1, . . . , ν1; n) in a

product of projective spaces P( n
νn)−1 × P

( n
νn−1

)−1 × · · · × P
( n

ν1
)−1 as a smooth subvariety.

We also call this map the Plücker embedding.

Now, consider the invariants in C[M]P of the form
λ1

∏
i=1

p(µi), where each p(µi) is a

µi-Plücker variable. For example, with λ = (d, d, 1`), we are looking at products of one
minor of size `+ 2 with d− 1 top-justified minors of size 2. We consider this set to be
the invariants of homogeneous multidegree µ.

We may record such a product of Plücker variables by filling the Young diagram of λ

such that the ith column contains the µi subscripts of the ith Plücker variable. The key
result of standard monomial theory is that this space of invariants has a basis given by
such fillings that are semistandard tableaux.

Again, there is an action of the torus Tn by right multiplication on M, breaking up
our invariants into weight spaces. We now restrict to the case n = |λ| and consider
the degree (1, 1, . . . , 1) homogeneous part. This subspace has a basis given by standard
tableaux of shape λ. This subspace also carries an action of Sn by right multiplication on
M. It is, in fact, an irreducible module, the Specht module Sλ.

A set partition of size n is a collection of nonempty pairwise disjoint subsets of
{1, 2, . . . , n} whose union is {1, 2, . . . , n}. Each of the subsets is called a block of the
set partition. We draw a set partition by placing n cyclically labeled points around the
boundary of a disk, and then, for each block, drawing the convex hull of the correspond-
ing boundary points on the disk. Observe that a set partition with all blocks of size 2
is exactly a matching. A noncrossing partition is a set partition with the property that
the convex hulls (in the graphical depiction above) are pairwise disjoint. In particular, a
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matching is a noncrossing partition if and only if it is a noncrossing matching, i.e., an sl2
web.

A singleton in a set partition is a block of size 1. For n ∈ Z+, let Π(n) be the set of
all set partitions of {1, 2, . . . , n} with no singletons and let Π(n, d) denote the set of all
π ∈ Π(n) with d blocks. If the blocks of π ∈ Π(n) are denoted π1, π2, . . . , πd, we say
π = {π1, π2, . . . , πd}. LetW(n) denote the set of all π ∈ Π(n) that are noncrossing. Let
W(n, d) be the set of π ∈ W(n) with d blocks.

An increasing tableau is a semistandard tableau in which rows (like columns) are
strictly increasing. All increasing tableaux in this paper are assumed to be packed,
meaning that the set of numbers appearing is an initial segment of the set of positive
integers. We write Inc(λ) for the set of all increasing tableaux of shape λ and Incq(λ) for
the subset whose maximum entry is q. We are interested in an invertible operator called
K-promotion on increasing tableaux.

A useful bijection appeared in [8] between Incq(m, m) and noncrossing partitions of
size q with q−m blocks and no singletons. This bijection restricts to a classical bijection
between standard tableaux of shape (m, m) and sl2 webs with 2m boundary vertices.
There is also an explicit bijection [3] between standard tableaux of shape (m, m, m) and
sl3 webs with 3m black boundary vertices. These bijections all have the property that
they carry K-promotion of tableaux to rotation of the corresponding planar diagram
(either a web or a noncrossing partition) [8, 9]. Similarly, they all carry K-evacuation to
reflection of planar diagrams [6, 8]. Finally, K-promotion of these tableaux corresponds
to rowmotion of order ideals in certain posets [1]; thus this equivariant bijection to planar
diagrams that rotate provides a good explanation for the order of rowmotion as well.

3 Main results

Choose and fix a convention for ordering the blocks of a set partition. We show in
the full version that our results are independent of this convention choice. We begin
by defining a set of tableaux we will use to construct polynomials associated to set
partitions. Because the shape consists of two full rows of boxes followed by one box in
each additional row, we call these jellyfish tableaux (cf. Example 3.3).

Definition 3.1. Given a set partition π = {π1, π2, . . . , πd} ∈ Π(n, d), let J (π) be the set
of generalized tableaux Tij (in English notation with matrix indexing) with d columns (so
1 ≤ j ≤ d) and n− 2d + 2 rows (1 ≤ i ≤ n− 2d + 2) obeying the following constraints:

1. Tij ∈ [n] or Tij is empty.

2. If i ∈ {1, 2}, Tij is nonempty.

3. If i > 2, there exists exactly one j such that Tij is nonempty.
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4. The nonempty entries in column j are exactly the elements of πj, in increasing
order.

Call J (π) the set of jellyfish tableaux of π.

Given T ∈ J (π), define the inversion number inv(T) as the number of inversions in
the row reading word (left to right, top to bottom). Define the sign of T as sgn(T) =
(−1)inv(T). Note that i < j form an inversion of T if and only if either j appears in a
higher row than i or else j appears left of i in the same row.

Recall the matrix M from (2.1). Let I and J be finite subsets of N and let MJ
I denote

the determinant of the submatrix of M with rows indexed by I and columns indexed by
J. For convenience, we sometimes write elements separated by commas in the subscript
and superscript rather than formal sets.

Given π ∈ Π(n, d) and T ∈ J (π), define the product of determinants J(T) =
d

∏
i=1

Mπi
Ri(T)

, where Ri(T) is the set of rows of T containing an entry in πi. Note this

reduces to the Plücker case when π is a matching.
We now define a polynomial web invariant for each set partition π.

Definition 3.2. Given a set partition π with no singletons, let [π] denote the polynomial

[π] = ∑
T∈J (π)

sgn(T) J(T).

If π has a singleton block, we set [π] = 0.

Example 3.3. Suppose π = {{2, 3, 6, 10}, {5, 7, 8, 9}, {1, 4}} (where we assume the blocks
are ordered as written). Then J (π) consists of the tableaux below.

2 5 1
3 7 4
6

10
8
9

2 5 1
3 7 4
6

8
10

9

2 5 1
3 7 4
6

8
9

10

2 5 1
3 7 4

8
6
10

9

2 5 1
3 7 4

8
6

9
10

2 5 1
3 7 4

8
9

6
10

The leftmost tableau has row reading word 2,5,1,3,7,4,6,10,8,9 and thus has 8 inversions.
Reading the list of tableaux from left to right, the tableaux have 8, 7, 6, 8, 7, and 8
inversions, respectively. Finally, we have that

[π] = M2,3,6,10
1,2,3,4 ·M

5,7,8,9
1,2,5,6 ·M

1,4
1,2 −M2,3,6,10

1,2,3,5 ·M
5,7,8,9
1,2,4,6 ·M

1,4
1,2 + M2,3,6,10

1,2,3,6 ·M
5,7,8,9
1,2,4,5 ·M

1,4
1,2

+M2,3,6,10
1,2,4,5 ·M

5,7,8,9
1,2,3,6 ·M

1,4
1,2 −M2,3,6,10

1,2,4,6 ·M
5,7,8,9
1,2,3,5 ·M

1,4
1,2 + M2,3,6,10

1,2,5,6 ·M
5,7,8,9
1,2,3,4 ·M

1,4
1,2.

All the following statements are used in the proof of Theorem 1.1; see [7] for proofs.
We only need the statements in the case of noncrossing partitions. However, we give
many in greater generality for future use. The image below illustrates Theorem 3.4, the
technical heart of our investigation.
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Theorem 3.4. Partition {1, . . . , n} into four nonempty sets: A, B, I, and J, where |I| = |J| = 1.[
{A∪ B, I∪ J}

]
+
[
{A∪ I, B∪ J}

]
+
[
{A∪ J, B∪ I}

]
=
[
{A∪ I∪ J, B}

]
+
[
{A, B∪ I∪ J}

]
.

b`

ii+ 1

a b

=

i ii+ 1 i+ 1

a ab b

ii+ 1

a
b1

bk

=

ii+ 1

a
b1

bk

ii+ 1

a
b1

bk

ii+ 1

a
b1

bk

i+ 1 i

b
a1

ak

i+ 1 i

b
a1

ak

i+ 1 i

b
a1

ak

i+ 1 i

b
a1

ak

=

ii+ 1

a1

ak b1

b`

ii+ 1

a1

ak b1

b`

ii+ 1

a1

ak b1

b`

ii+ 1

a1

ak b1

ii+ 1

a1

ak b1

b`

=

σ1

σ2

σ3

σ4

− −

− −

− −

+ − −

=σ5

i

j
a1

ak
b1

b`

i

j
a1

ak
b1

b`

i

j
a1

ak
b1

b`

i

j
a1

ak
b1

b`

i

j
a1

ak
b1

b`

+ − −

i

j

i i

j

i

j

i

jj

+ + = +

Lemma 3.5. The set {[π] : π ∈ W(n, d)} of invariants of noncrossing partitions of n with d
blocks and no singletons is linearly independent.

Note [π] is a sum over jellyfish tableaux, where each summand is not generally in
the pennant Specht module. Nonetheless, we have the following lemma, which may be
derived inductively from Theorem 3.4.

Lemma 3.6. The set {[π] : π ∈ Π(n, d)} of invariants of partitions of n with d blocks and no
singletons is a subset of the pennant Specht module S(d,d,1n−2d).

Theorem 3.7. The set {[π] : π ∈ W(n, d)} of invariants of noncrossing partitions of n with d
blocks and no singletons is basis of the pennant Specht module S(d,d,1n−2d).

Proof. By Lemma 3.6, each [π] is in the pennant Specht module S(d,d,1n−2d). By Lemma 3.5,
they are linearly independent. By [8, Propositions 2.1 and 2.3], there is a bijection be-
tweenW(n, d) and the set of standard Young tableaux of pennant shape (d, d, 1n−2d), the
number of which is the dimension of S(d,d,1n−2d). Hence, the [π] form a basis.

The following result is then relatively straightforward to verify.

Proposition 3.8. Up to signs, the long cycle cn = n12 . . . (n− 1) acts by rotation and the long
element w0 acts by reflection. For any set partition π ∈ Πn (not necessarily noncrossing), we
have cn · [π] = (−1)n−1[rot(π)], where rot denotes counterclockwise rotation by (360/n)◦,
and w0 · [π] = (−1)(

n
2)[refl(π)], where refl denotes reflection across the diameter with end-

point halfway between vertices n and 1.

Using our polynomial representatives, one may easily obtain formulas for resolving
crossing diagrams as linear combinations of noncrossing ones; in particular, we recover
the uncrossing rules of [12]. With this representation theory in hand, it is also not hard
to recover the cyclic sieving theorems of [8, 10] by similar arguments to [12, Section 8].
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