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Abstract. We study the chromatic quasisymmetric class function of a linearized com-
binatorial Hopf monoid. Given a linearized combinatorial Hopf monoid H, and an
H-structure h on a set N, there are proper colorings of h, generalizing graph colorings
and poset partitions. We show that the automorphism group of h acts on the set of
proper colorings, which gives rise to the chromatic quasisymmetric class function. For
the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric
function and the orbital chromatic polynomial studied by Cameron and Kayibi.

We show that, under certain conditions, the chromatic quasisymmetric class function
of h is the flag quasisymmetric class function of the coloring complex of h. We use this
result to deduce various positivity results, and inequalities for the associated orbital
polynomial invariants.
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plicial complexes

1 Introduction

Given a graph G, let G be a subgroup of the automorphism group of G. Two colorings
f and g are equivalent if g = f ◦ g−1 for some g ∈ G. Let χ(G,G, k) denote the number
of equivalence classes of k-colorings of G. Then χ(G,G, k) is a polynomial, called the
orbital chromatic polynomial studied by Cameron and Kayibi [6]. An orbital version
of the order polynomial of a poset was studied by Jochemko [9], and a quasisymmetric
function generalization for double posets was studied by Grinberg [8]. We generalized
further to a quasisymmetric class function associated to a double poset [12].

The goal of this work is to provide a general method for creating new quasisymmetric
class functions associated to combinatorial objects. These general invariants also special-
ize to orbital polynomials. Previously, Aguiar, Bergeron, and Sottile [2] have shown that
the Hopf algebra of quasisymmetric functions QSYM is the terminal object in the cate-
gory of combinatorial Hopf algebras. We showed [11] that, for Hopf monoids in species,
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we can describe the fundamental homomorphism of Aguiar, Bergeron and Sottile as a
generating function over φ-proper colorings. We review this construction in Subsection
3.1. Given a linearized Hopf monoid H and a H-structure h, we let Fφ(h) denote the
set of φ-proper colorings of h. Since combinatorial species involve labeled combinatorial
objects, they come equipped with symmetric group actions. In particular, there is a no-
tion of automorphism group Aut(h) for a H-structure h. Given a subgroup G ⊆ Aut(h),
we show that G acts on Fφ(h).

Let x1, x2, . . . be commuting indeterminates. For g ∈ G, we define

ΨH,φ(h,G, x; g) = ∑
f∈Fφ(h):g f= f

∏
v∈N

x f (v).

The resulting power series is a quasisymmetric function, and as we vary g, we obtain
a QSYM-valued class function on G. We call this the φ-chromatic quasisymmetric class
function of (h,G). There is also an orbital chromatic polynomial ΨO

H,φ(h,G, x), which
counts the number of orbits of φ-proper colorings with largest color at most x. These
two invariants generalize the orbital chromatic polynomial, the orbital order polynomial,
the chromatic symmetric function, the orbital quasisymmetric functions of Grinberg, the
Billera–Jia–Reiner quasisymmetric function of a matroid [5], and the quasisymmetric
class functions introduced in [12]. There are many other examples that can be discussed
related to the Hopf monoid of generalized permutohedra [1].

We review the definition of balanced convex character in Subsection 4.1. Most char-
acters studied in the literature are balanced convex characters. We are able to prove the
following results.

Theorem 1. Let H be a linearized Hopf monoid in species with linearized character φ. Let N be
a finite set, h ∈ HN, and G ⊆ Aut(h). Suppose that φ is a balanced convex character. Then we
have the following:

1. Write

ΨH,φ(h,G, x) = ∑
S⊆[|N|−1]

k

∑
i=1

ΨG,S,iχi MS,|N|,

where MS,|N| are the monomial quasisymmetric functions and χ1, . . . , χk are the irreducible
characters of G. For S ⊆ T ⊆ [|N| − 1], and i ∈ [k], we have ΨG,S,i ≤ ΨG,T,i.

2. If we write ΨO
H,φ(h,G, x) = ∑|N|

i=0 fi(
x
i), then we have the following inequalities:

(a) For 0 ≤ i ≤ |N|+1
2 , we have fi ≤ fi+1.

(b) For 1 ≤ i ≤ |N|+1
2 , we have fi ≤ f|N|+1−i.
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A quasisymmetric class function which satisfies the first result is M-increasing, while
a polynomial which satisfies the second result is strongly flawless. The proofs of our
results involve a mix of algebraic and geometric techniques. In Section 2, we discuss
quasisymmetric class functions. We show that whenever a quasisymmetric class function
is M-increasing, then the corresponding orbital polynomial is strongly flawless.

In [11], we studied a generalization of Steingrímsson’s coloring complex of a graph.
Given a balanced convex character φ, there exists a balanced relative simplicial com-
plex Σφ(h) such that ΨH,φ(h, x) = ∑S⊆[d] FS(Φ)MS,d where FS(Φ) is the flag f -vector
of Φ, and MS,d are the monomial quasisymmetric functions. In Section 4, we discuss
balanced relative simplicial complexes Φ and define the flag quasisymmetric class func-
tion F(Φ,G, x) for Φ with respect to a group action. We show in Theorem 12 that the
corresponding flag quasisymmetric class function is always M-increasing. We also show
that Σφ(h) comes with an action by G, and that ΨH,φ(h,G, x; g) = F(Σφ(h),G, x).

These results show some of the power of working with Hopf monoids in species:
we define very general quasisymmetric functions whose coefficients are characters. We
replace the combinatorial objects with geometric objects in a G-invariant manner, and
then use simple combinatorial arguments to deduce results about those characters. As
a result, we obtain new orbital polynomials for many combinatorial polynomials in the
literature, and quasisymmetric class function generalizations, as well as inequalities for
these invariants.

2 Preliminaries

Given a basis B for a vector space V over C, and β⃗ ∈ B, v⃗ ∈ V, we let [β⃗]⃗v denote the
coefficient of β⃗ when we expand v⃗ in the basis B.

Often, we will define quasisymmetric functions that are generating functions over
collections of functions. Given a function w : S → N, we define

xw = ∏
v∈S

xw(v). (2.1)

For example, the chromatic symmetric function of a graph G is defined as ∑
f : V→N

x f

where the sum is over all proper colorings of G.
Let x = x1, x2, . . . be a sequence of commuting indeterminates. Given S ⊆ [d − 1],

with S = {s1, . . . , sk}, where s1 < s2 < · · · < sk, we define

MS,d = ∑
i0<···<ik

k

∏
j=0

x
sj+1−sj
ij

,

where s0 = 0 and sk+1 = d. These are the monomial quasisymmetric functions, which form
a basis for the ring of quasisymmetric functions.
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Figure 1: A graph.

We assume familiarity with the theory of complex representations of finite groups —
see [7] for basic definitions. Recall that, given any group action of G on a finite set X,
there is a group action on CX as well, which gives rise to a permutation representation.

The characters of the irreducible representations of G form an orthonormal basis of
C(G, C), the vector space of class functions from G to C. We refer to elements χ ∈
C(G, C) that are nonnegative integer combinations of irreducible characters as effective
characters, and say χ is a permutation character if it is the character of a permutation
representation. We partially order effective characters by saying χ ≤G ψ if ψ − χ is an
effective character.

A quasisymmetric class function of degree e is a function F : G → QSYMe, where QSYMe
is the space of quasisymmetric functions of degree e, that satisfies F(hgh−1) = F(g) for
all g, h ∈ G. We often write F(G, x) to denote a quasisymmetric class function. Given
such a function, and given S ⊆ [e − 1], we let FG,S(g) = [MS,e]F(G, x; g). Then FG,S is
a class function, and F(G, x) = ∑S⊆[e−1] FG,SMS,e. Thus, quasisymmetric class functions
may also be viewed as quasisymmetric functions whose coefficients are class functions.

As an example, given a graph g on vertex set N, the automorphism group Aut(g)
acts on the set of colorings of g. Thus, given G ⊆ Aut(g), and g ∈ G, we let

χ(g,G, x; g) = ∑
f :g f= f

x f ,

where the sum is over proper colorings f of g fixed by g. Then χ(g,G, x; g) is a qua-
sisymmetric function, and as we vary g we obtain a quasisymmetric class function. This
is the chromatic quasisymmetric class function of (g,G).

Let g be the graph in Figure 1. Let Z/4Z act on g by cyclic rotation. We let ρ denote
the character of the regular representation, and sgn denote the character of the sign
representation. Then

χ(g, Z/4Z, x) = (1 + sgn)M{2},4 + ρ(M{1,2},4 + M{1,3},4 + M{2,3},4 + 6M[3],4).

We say that a quasisymmetric class function F(G, x) is M-increasing if FG,S ≤G FG,T
whenever S ⊆ T.
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Let F(G, x) be a quasisymmetric class function of degree e for G. Then we define the
orbital polynomial to be

FO(G, x) =
1
|G| ∑

g∈G
∑

S⊆[e−1]
FG,S(g)

(
x

|S|+ 1

)
.

We proved the following result in [12]:

Proposition 2. Let F(G, x) be a quasisymmetric class function of degree e. Write FO(G, x) =
∑e

i=0 fi(
x
i). If F(G, x) is M-increasing, then we have the following inequalities:

1. For 0 ≤ i ≤ e+1
2 , we have fi ≤ fi+1.

2. For 1 ≤ i ≤ e+1
2 , we have fi ≤ fe+1−i.

The proof involved using symmetric chain decompositions of the Boolean lattice in
order to construct appropriate G-invariant injections.

3 Linearized combinatorial Hopf monoids

In this section, we review the definition of linearized combinatorial Hopf monoids. A
set species is an endofunctor F : Set → Set on the category of finite sets with bijections. A
linear species is a functor F : Set → Vec to the category of finite dimensional vector spaces
over a field K and linear transformations. Given a set species F, there is an associated
linear species KF called the linearization: we define (KF)N to be the vector space with
basis FN. We refer to f as an F-structure if there exists a finite set N such that f ∈ FN.

A Hopf monoid H is a Hopf monoid object in the category of linear species [3]. We refer
to [4, 1] for more details. For every pair of disjoint finite sets M, N, there are multiplica-
tion maps µM,NHM ⊗HN → HM⊔N and comultiplication maps ∆M,N : HM⊔N → HM ⊗
HN. We focus only on connected species, where dimH∅ = 1. We let x · y = µM,N(x ⊗ y).
Let H be a set species. We say that H forms a linearized Hopf monoid if KH is a Hopf
monoid, and:

1. For every pair of disjoint finite sets M, N, and every x ∈ HM, y ∈ HN, we have
x · y ∈ HM⊔N.

2. For every pair of disjoint finite sets M, N, and every h ∈ HM⊔N, if ∆M,N(h) ̸= 0
then there exists h|M ∈ HM and h/M ∈ HN such that ∆M,N(h) = h|M ⊗ h/M.

Our notion of linearized Hopf monoid is slightly more general than other notions in the
literature, because we allow 0 as a coproduct.

Example 3. Given a finite set N, let EN = {1}. This gives rise to the exponential species.
The product is given by 1 · 1 = 1, and the coproduct is ∆S,N\S(1) = 1 ⊗ 1.
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Example 4. Given a finite set N, let GN denote the collection of graphs with vertex set
N. Then this gives rise to the species of graphs G, which we turn into a linearized Hopf
monoid. The product is given by the disjoint union of graphs. Given a graph g, and
S ⊆ N, g|S is the induced subgraph on S, and g/S is the induced subgraph on N − S.

Example 5. Given a finite set N, let DPN denote the collection of all double posets on N,
where a double poset is a pair (p1, p2) of partial orders. This gives rise to the set species
of double posets DP, which we turn into a linearized Hopf monoid. Let p⊔ q denote the
disjoint union of posets, and p ⊕ q denote the ordinal sum, which is obtained from the
disjoint union by requiring that every element of p be less than every element of q. The
product is (p1, p2) · (q1, q2) = (p1 ⊔ q1, p2 ⊕ q2). Given a partial order p, and S ⊆ N, let
p|S be the induced subposet on S. We define

∆S,N\S(p1, p2) =

{
(p1|S, p2|S)⊗ (p1|N\S, p|2|N\S) if S is an order ideal of p1,
0 otherwise.

Example 6. Given a finite set N, let MN denote the collection of matroids with ground set
N. This gives rise to the species of matroids M, which forms a linearized Hopf monoid.
The product is given by the direct sum operation. Given a matroid m, and S ⊂ N, we
define m|S to be the restriction, and m/S to be the contraction of matroids.

A natural transformation φ : H → KE, where H is a Hopf monoid in linear species,
is a character if for all disjoint finite sets M and N, and all x ∈ HM and all y ∈ HN, we
have φM(x) · φN(y) = φM⊔N(x · y). By an abuse of notation, we will write φ(h) in place
of φN(h), when no confusion will arise. Given a linearized Hopf monoid H, we say φ is
linearized if φ(h) ∈ {0, 1} for all H-structures h. A linearized combinatorial Hopf monoid is
a linearized Hopf monoid H with a linearized character φ. As an example, let DP denote
the Hopf monoid of double posets. Given a double poset (p1, p2) on a set N we define

ψ(p1, p2) =

{
0 if there exists x, y ∈ N such that x ≤ y in p1 and y < x in p2,
1 otherwise.

Then ψ is a linearized character.

Example 7. Let H be a linearized Hopf monoid. We say a H-structure h ∈ HN is totally
reducible if |N| = 1, or there exists a nontrivial decomposition N = S ⊔ T, and totally
reducible elements x ∈ HS and y ∈ HT such that h = x · y. We define

χ(h) =

{
1 if h is totally reducible,
0 otherwise.

We call χ the chromatic character, and (H, χ) is always a linearized combinatorial Hopf
monoid. For instance, if we let H = G, then a graph g is totally reducible if and only if
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it is edgeless. Finally, if H = M, then a matroid m is totally reducible if and only if is a
direct sum of loops and coloops, which means m has a unique basis. These special cases
of χ were studied in context of Hopf algebras in [2], and in the context of Hopf monoids
in [1].

3.1 Chromatic quasisymmetric class functions

We introduce the φ-chromatic quasisymmetric class function. For trivial group actions,
our invariant is a special case of the quaisymmetric function invariant that was defined
for combinatorial Hopf algebras by Aguiar, Bergeron, and Sottile [2]. Let H be a lin-
earized combinatorial Hopf monoid with character φ. Let N be a finite set, and for
g ∈ SN and h ∈ HN, let g · h = Hg(h). This defines a group action of SN on HN. Given
h ∈ HN, we say g is an automorphism of h if g · h = h. Let Aut(h) denote the set of
automorphisms of h, which is a subgroup of SN.

Let f : N → N be a function, and let {i : f−1(i) ̸= ∅} = {i1, . . . , ik}, with i1 < · · · <
ik. We let Ni be the set of vertices v such that f (v) ≤ i. We call f a φ-proper coloring of
h if φ(h|Ni+1/Ni) = 1 for all i. Let Fφ(h) be the set of φ-proper colorings. Then Aut(h)
acts on Fφ(h) via g f = f ◦ g−1, where g ∈ Aut(h) and f ∈ Fφ(h). Moreover we have
x f = xg f .

Now we introduce our new quasisymmetric class function invariants. Fix a finite set
N. Let h ∈ HN and let G be a subgroup of Aut(h). For g ∈ G, define

ΨH,φ(h,G, x; g) = ∑
f∈Fφ(h):g f= f

x f .

This is the chromatic quasisymmetric class function associated to H with respect to h. The
fact that it is a quasisymmetric class function is proven in the full version (although for
many of the examples considered in this abstract, the result follows from Theorem 14.)

As discussed in section 2, to every quasisymmetric class function F(G, x) there is an
orbital polynomial FO(G, x). We refer to ΨO

H,φ(h,G, x) as the orbital chromatic polynomial,
and give a combinatorial interpretation of it. Fix x ∈ N. Then G also acts on the set of
φ-proper colorings f with f (N) ⊆ [x], and ΨO

H,φ(h,G, x) is the number of orbits of this
action.

Example 8. Consider the linearized combinatorial Hopf monoid (G, χ), and let g be a
graph. Then a coloring is χ-proper for a graph g if it is a proper coloring in the usual
sense. We obtain the chromatic quasisymmetric class function of a graph.

Example 9. Consider the linearized combinatorial Hopf monoid (DP, ψ), and let (p1, p2)
be a double poset on a finite set N. Then a function f : N → N. is ψ-proper if it satisfies
the following conditions:

1. For x, y ∈ N such that x ≤ y in p1, we have f (x) ≤ f (y).
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Figure 2: A double poset, with p1 on the left, and p2 on the right.

2. For x, y ∈ N such that x ≤ y in p1 and y < x in p2, we have f (x) < f (y).

Grinberg refers to such functions as (p1, p2)-partitions. When p2 is a linear order this
generalizes the notion of labeled P-partitions. Let Fψ(p1, p2) denote the set of double
poset partitions, then Aut(p1, p2) acts on Fψ(p1, p2). Let G ⊆ Aut(p1, p2). Given g ∈ G,
we see that ΨDP,ψ(p1, p2,G, x; g) counts the double poset partitions f of (p1, p2) that are
fixed by g, weighted by x f .

Let (p1, p2) be the double poset in Figure 2. Let Z/2Z act on p by swapping a with
c and b with d. We let ρ denote the regular representation. Then

ΨDP,ψ(p1, p2, Z/2Z, x) = M{2},4 + ρ(M{1,2},4 + M{1,3},4 + M{2,3},4 + 2M[3],4).

Example 10. Consider the linearized combinatorial Hopf monoid (M, χ), and let m be
a matroid on a finite set N. Then a function f : N → N is χ-proper for a matroid
if it is maximized by a unique basis. If we let Fχ(m) denote the set of all χ-proper
functions of m, then Aut(m) acts on Fχ(m). Let G ⊆ Aut(m). Given g ∈ G, we see
that ΨM,χ(m,G, x; g) counts the m-generic functions f of g that are fixed by g, weighted
by ∏v∈N x f (v). We observe that ΨG,χ(g, {e}, x) is the Billera-Jia-Reiner quasisymmetric
function associated to a matroid.

Let m be the uniform matroid on four elements of rank two. That is, m have vertices
{0, 1, 2, 3}, and every subset of size two is a basis. Let Z/4Z act on m by cyclic rotation
of the vertices. We let ρ denote the regular representation, and sgn denote the sign
representation. Then

ΨM,χ(m, Z/4Z, x) = (ρ + 1 + sgn)M{2},4 + 3ρ(M{1,2},4 + M{2,3},4) + 6ρM[3],4.

4 Balanced Relative Simplicial Complexes

We discuss coloring complexes associated to linearized combinatorial Hopf monoids that
have a balanced convex character. These geometric objects are used to prove Theorem 1.
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Figure 3: A coloring complex Σ. Dashed lines correspond to faces that are not in Σ.

Definition 11. A balanced relative simplicial complex of dimension d − 1 on a vertex set V
is a collection Φ of subsets of V, along with a function κ : V → [d] with the following
properties:

1. For every ρ ⊆ σ ⊆ τ, if ρ, τ ∈ Φ, then σ ∈ Φ.

2. For every ρ ∈ Φ, there exists σ ∈ Φ such that ρ ⊆ σ and |σ| = d,

3. For every ρ ∈ Φ, we have κ(ρ) := {κ(v) : v ∈ ρ} has size |ρ|.

The name comes from the fact that there exists simplicial complexes (Γ, Σ) with Γ ⊆
Σ, and Φ = Σ \ Γ. A bijection g : V → V is an automorphism of Φ if it satisfies the
following two properties:

1. For every v ∈ V, we have κ(gv) = κ(v).

2. For every {v1, . . . , vk} ∈ Φ, we have {g(v1), . . . , g(vk)} ∈ Φ.

Let Aut(Φ) be the group of automorphisms of Φ, and fix a subgroup G ⊆ Aut(Φ).
For g ∈ G, define

F(Φ,G, x) = ∑
σ∈Φ:gσ=σ

Mκ(σ),d+1.

As we vary g ∈ G, we obtain a quasisymmetric class function, which we call the flag
quasisymmetric class function associated to (Φ,G).

As an example, consider the balanced relative simplicial complex Φ on 2{a,b,c,d} \
{∅, {a, b, c, d}} appearing in Figure 3. We denote the vertex {a, b, c} as abc for simplicity.
We also let κ(S) = |S|. Then Φ is a balanced relative simplicial complex. We see that
Aut(Φ) is isomorphic to Z/2Z × Z/2Z. There are four irreducible representations of
Z/2Z × Z/2Z. Let Z/2Z act on Φ as the 180◦ rotation of Figure 3. Then

F(Φ, Z/2Z, x) = M{2},4 + ρ(M{1,2},4 + M{1,3},4 + M{2,3},4 + 2M[3],4).

Theorem 12. Let Φ be a balanced relative simplicial complex of dimension d − 1, and let G ⊆
Aut(Φ). Then F(Φ,G, x) is M-increasing.
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Given S ⊆ [d], we let VS denote the linear span of {σ ∈ Φ : κ(σ) = S}. We see that
G acts on VS, and the resulting character is FG,S. Given σ ∈ Φ, and S ⊂ κ(σ), we let
σ|S = {v ∈ σ : κ(v) ∈ S}. Given S ⊆ T ⊆ [d], we let θ : VT(Φ) → VS(Φ) be given by

θ(σ) =

{
σ|S if σ|S ∈ Φ,
0 otherwise.

In the full version, we show that θ is surjective and G-invariant.

4.1 Convex characters

Definition 13. We say that φ is a balanced convex character if, for every H-structure h ∈ HN
the following conditions are satisfied:

1. If |N| = 1, then φ(h) = 1.

2. If |N| > 1, then there exists proper S ⊂ N such that ∆S,N\S(h) ̸= 0.

3. If φ(h) = 1 and we have ⊆ N such that ∆S,N\S(h) ̸= 0, then φ(h|S) = φ(h/S) = 1.

Note that the second condition implies that h is not primitive for any H-structure h.
However, since the H-structures form bases for the linearized species K(H), we are still
allowing for K(H) to have primitive elements.

Example 14. Let H be a linearized Hopf monoid. If, for every H-structure h, there exists a
proper S ⊂ N such that ∆S,N\S(h) ̸= 0, then χ is a balanced convex character. Similarly,
ψ is a balanced convex character for the Hopf monoid of double posets DP.

Definition 15. Let (H, φ) be a linearized combinatorial Hopf monoid. Let N be a finite
set, and let V be the collection of all proper subsets of N, and define κ : V → [|N|] by
κ(S) = |S|. Given h ∈ HN, define the φ-coloring complex of h to be the relative simplicial
complex on V given by

Σφ(h) = {{F1, . . . , Fk} : ∅ ⊂ F1 ⊂ · · · ⊂ Fk ⊂ N and
k

∏
i=0

φ(h|Fi+1/Fi) = 1}.

where we set F0 = ∅ and Fk+1 = N.

Example 16. Let G be the linearized combinatorial Hopf monoid of graphs. Then the
character χ is balanced convex. The φ-coloring complex Σχ(g) consists of chains S1 ⊂
S2 ⊂ · · · ⊂ Sk ⊂ N such that Si \ Si−1 is an independent set for all i. This relative
simplicial complex can be represented as Σ \ Γ(g), where Σ is the Coxeter complex of
type A, and Γ(g) is collection of flags S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N where Si+1 \ Si must
contain an edge for some i. The subcomplex Γ(g) is the coloring complex of a graph
studied by Steingrímsson [10].
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Example 17. Let DP be the linearized combinatorial Hopf monoid of double posets. Let
(p1, p2) be the double poset appearing in Figure 2. Then Σψ(p1, p2) is the balanced
relative simplicial complex appearing in Figure 3.

Theorem 18. Let (H, φ) be a linearized combinatorial Hopf monoid. Suppose that φ is a balanced
convex character. Let N be a finite set, and let V be the collection of all proper subsets of N, and
define κ : V → [|N| − 1] by κ(S) = |S|. Given h ∈ HN, let Σφ(h) be the φ-coloring complex.
Then Σφ(h) is a balanced relative simplicial complex of dimension |N| − 2.

We have Aut(h) ⊆ Aut(Σφ(h)). If G ⊆ Aut(h), then

ΨH,φ(h,G, x) = F(Σφ(h),G, x).

The proof is related to prior work in [11]. Given a φ-proper coloring f , recall that
Ni( f ) = {v : f (v) ≤ i}. We consider the set F( f ) = {Ni( f ) : i ∈ N} = {F1, . . . , Fk}
where F1 ⊂ F2 ⊂ · · · ⊂ Fk = N. This defines a function Σ between Fφ(h) and collections
of chains of subsets of N. The definition of balanced convex character ensures that
Σ(Fφ(h)) is a balanced relative simplicial complex. The function is G-invariant, and
given F ∈ Σφ(h), we have

∑
f∈Fφ(h):F( f )=F

x f = Mκ(F),|N|.

5 Future Work

We can also study the basis of fundamental quasisymmetric functions FS,n. Given
a group G, we let χ1, . . . , χn be the irreducible characters for G. When we express
ΨH,φ(h,G, x) in terms of χi and Fα,n, are the resulting coefficients positive integers? We
say that (h,G) is F-effective in this case. This would imply that ∑n≥0 ΨO

H,φ(h,G, n)tn =
h(t)

(1−t)d+1 where the coefficients of h(t) are positive. In a previous paper [12], we studied
this question for ΨDP,ψ(d,G, x), finding examples where the answer was ‘no’, as well as
conditions for which the answer is ‘yes’.

Conjecture 19. Let H be a linearized combinatorial Hopf monoid with balanced convex character.
Suppose that Σφ(h) is relatively shellable for all h. Then ΨH,φ(h,G, x) is F-effective.

Another interesting problem is to study combinatorial reciprocity theorems. We have
a combinatorial reciprocity theorem for ΨDP,ψ(d,G, x) which we proved in [12]. Is there
a general method for constructing such combinatorial reciprocity theorems?
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