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Abstract. We show that functions over perfect matchings of complete graphs admit
unique presentations as harmonic polynomials annihilated by certain differential op-
erators. Moreover, we give a concrete description of these harmonic polynomials by
computing the unique harmonic presentation of the standard basis of Specht polynomi-
als. At the core of these results is a class of incidence matrices that we call the matching
inclusion matrices. The algebraic combinatorics of these matrices are related to Jack
polynomials, which leads us to some elegant formulas for particular weighted sums of
Jack characters for arbitrary α. Along the way, we prove a perhaps new combinatorial
identity related to Jack characters that equates the product of the top row of α-upper
hook lengths of a shape λ to a weighted sum of so-called tableau transversals of λ.
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1 Introduction

The Boolean hypercube {0, 1}n is the archetypal setting for discrete analysis. It has
many desirable properties, such as the fact that every function on the hypercube admits
a unique presentation as a multilinear polynomial of R[x1, . . . , xn] with nice spectral
properties, e.g., it adheres to the representation theory of the binary Hamming scheme
(see [4], for example). According to the latter, the space R{0, 1}n decomposes into n + 1
irreducible subspaces V0 ⊕V1 ⊕ · · · ⊕Vn. We can decompose each function f ∈ R{0, 1}n

according to this decomposition as f = f=0 + f=1 + · · ·+ f=n, where f=d is the part be-
longing to Vd. It turns out that f=d is just the dth homogeneous part of the unique
multilinear presentation of f . Furthermore, we know a simple basis for Vd, namely the
degree-d monomials. Fundamental duality principles such as these between the polyno-
mial presentation and spectral representation (i.e., Fourier basis) have been invaluable in
the analysis of Boolean functions and theoretical computer science (see [8]).

For other combinatorial domains it is not so clear that such duality principles hold,
and a natural question is to what extent these principles extend to other domains. In this
work we address these questions for perfect matchings of graphs (pairwise-disjoint sets of
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edges that cover all of the vertices), in particular, those of the complete bipartite graph
Kn,n = ([n], [n], E) and the complete graph K2n = ([2n], E), which we denote as Mn,n and
M2n. Let us single out the former, which can be identified with the symmetric group Sn.
Let x := {xi,j}n

i,j=1 be the set of indeterminants indicating whether the input permutation
sends i to j or not, so that any function on Sn can be presented as a polynomial of R[x].

Does every function f ∈ RSn admit a unique presentation as a multilinear poly-
nomial of R[x]? Equivalently, does 0 ∈ RSn admit only 0 ∈ R[x] as its multilinear
polynomial presentation? While this is true for the hypercube, it is easily seen to be
false for Sn, and indeed many other combinatorial domains. For example, any mono-
mial that is a multiple of xi,jxi,k or xi,kxj,k for any i, j, k ∈ [n] must vanish on Sn. To
avoid degeneracies such as this, we consider polynomial presentations modulo the ideal
I = {x2

i,j = xi,j, xi,jxi,k, xi,kxj,k for all i, j, k ∈ [n]} to ensure multilinearity and that no
monomial vanishes over all permutations. We call polynomials of R[x]/(I) succinct.
It is clear that the degree-d monomials of a succinct polynomial can be identified with
d-matchings of Kn,n, and moreover, that any f ∈ RSn admits a succinct presentation of
degree at most (n − 1). Indeed, for any σ ∈ Sn, the degree-n monomial corresponding
to the n-matching σ has a degree-(n − 1) presentation, as each (n − 1)-matching extends
to a unique perfect matching. However, we can still present the zero function 0 ∈ RSn as
a succinct linear polynomial z(x) of the following form: z(x) = ∑n

i=1 ∑n
j=1 ci,jxi,j where

ci,j = li + rj such that ∑n
i=1 li + ∑n

j=1 rj = 0. Indeed, we have z(σ) = 0 for all σ ∈ Sn since
σ is a bijection, i.e., ∑j xi,j = 1 for all i ∈ [n], and ∑i xi,j = 1 for all j ∈ [n]. This shows
there is not a unique succinct presentation of any f ∈ RSn; therefore, we must further
constrain the presentation if we are to obtain a uniqueness result. We show that if we
also require the presentation to be harmonic (see Section 3), then this presentation is in
fact unique, and moreover, that it adheres to the natural “degree decomposition” of RSn
and RM2n:

RSn ∼=
n−1⊕
d=0

Vd, Vd :=
⊕

λ⊢n:λ1=n−d

Vλ

and

RM2n ∼=
n−1⊕
d=0

Vd, Vd :=
⊕

λ⊢n:λ1=n−d

V2λ,

where 2λ ⊢ 2n is the shape obtained by doubling each part of λ (see [2] for more details).

Theorem 1.1. Any real-valued function f on perfect matchings of {Kn,n, K2n} can be presented
uniquely as a succinct harmonic polynomial p. Moreover, the unique succinct harmonic presen-
tation of the ⊥-projection f=d of f onto Vd equals the dth homogeneous part p=d of p.

We call p the canonical presentation of f . The Specht polynomials { fs,t}s,t, where s, t
range over all standard λ-tableaux, form a well-known basis of degree-n polynomials
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for the λ-isotypic component Vλ. We show the canonical presentation of this basis can
be obtained by applying an appropriately defined differential operator Dλ1 defined in
Section 4.

Theorem 1.2. For all standard λ-tableaux s, t, and standard 2λ-tableaux u, the canonical pre-
sentations of fs,t and fu are ps,t(x) = dλ(1)−1Dλ1 fs,t and pu(x̌) = dλ(2)−1Dλ1 fu respectively,
where dλ(α) is the product of the α-upper hook lengths that compose the top row of λ.

The paper is organized as follows. We first show in Section 2 that succinct harmonic
presentations of functions exist. Next, we prove in Section 3 that such presentations are
unique, proving Theorem 1.1. Central to this result is a class of incidence matrices, inter-
esting in their own right, that we call the matching inclusion matrices, which are analogues
of the well-studied and remarkable set incidence matrices (see [5]). In Section 4 we prove
Theorem 1.2 using the representation theory of Sn and the algebraic combinatorics of
Jack polynomials. Along the way, we prove a perhaps new combinatorial identity re-
lated to Jack characters that equates the product of the top row of upper hook lengths to
a weighted sum of so-called tableau transversals defined in Section 4.

Finally, in places where the proofs for the domains Mn,n and M2n are identical
mutatis mutandis, we prove only the Mn,n case.

2 Existence

Let Mn,n ∼= Sn and M2n be the collections of perfect matchings of Kn,n and K2n respec-
tively. For any 0 ≤ k ≤ n, let Mk

n,n and Mk
2n be the collections of k-matchings (sets of k

pairwise-disjoint edges) of Kn,n and K2n respectively. For any set X, let RX be the space
of real-valued functions on X. Let nk := n!/(n − k)!.

Recall that x = {xi,j}n
i,j=1 where each xi,j is an indeterminant for the edge (i, j) of

Kn,n. Let x̌ = {xij}ij∈E be the set of indeterminants for the edges of K2n = (V, E). We
say p ∈ C[x] is a presentation of f ∈ CMn,n if p(M) = f (M) for all M ∈ Mn,n, and
p ∈ C[x̌] is a presentation of f ∈ CM2n if p(M) = f (M) for all M ∈ M2n. If p, q are
presentations of f , we write p ≡ q. Let I = {x2

i,j = xi,j, xi,jxi,k, xi,kxj,k for all i, j, k ∈ [n]}.
We say p ∈ C[x] is succinct if p ∈ C[x]/⟨I⟩. Let J = {x2

e = xe, xex f for all e, f ∈
E(K2n) : |e ∩ f | = 1}. We say p ∈ C[x̌] is succinct if p ∈ C[x̌]/⟨J ⟩. As mentioned in
the introduction, we often identify degree-d monomials of succinct polynomials by their
corresponding d-matchings. We say that a succinct polynomial p ∈ C[x] is harmonic if
∆i,∗p := ∑n

j=1 ∂p/∂xi,j = 0 for all i ∈ [n] and ∆∗,j p := ∑n
i=1 ∂p/∂xi,j = 0 for all j ∈ [n]. A

succinct polynomial p ∈ C[x̌] is harmonic if ∆v p := ∑u ̸=v ∂p/∂xuv = 0 for all v ∈ V(K2n).
First, we show for any f ∈ RSn, that there exists a succinct harmonic presentation of

f . For any p ∈ R[x], let p=d ∈ R[x] be the homogeneous degree-d polynomial that is the
degree d part of p. Let Φd(p) be the sum of squares of coefficients of p=d.
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Theorem 2.1. Every f ∈ RSn has a succinct harmonic presentation of degree at most n − 1.

Proof. Let p be a succinct presentation of f of degree at most n − 1. Suppose p is not
harmonic, thus we may assume, without loss of generality, that ∆i,∗p ̸= 0, containing say
the term cm where c > 0 and m is a degree-d monomial. Let J be the set of all j ∈ [n]
such that m is not a multiple of xk,j for some k ∈ [n]. For any j ∈ J, let cj be the coefficient
of xi,jm. Thus c = ∑j∈J cj. Let q := p − cm(∑j∈J xi,j − 1)/|J|. If m = 1 then ∑j∈J xi,j = 1.
Thus p ≡ q. Moreover, we have

Φd+1(p)− Φd+1(q) = ∑
j∈J

(
c2

j −
(

cj −
c
|J|

)2
)

=
2c
|J| ∑

j∈J
cj −

c2

|J| =
c2

|J| > 0.

Using the expression above, we now prove by induction on deg p that for any suc-
cinct polynomial p there is a harmonic succinct polynomial q of degree at most deg p
that is also a presentation of f . The base case deg p = 0 holds vacuously, so sup-
pose that deg p = d + 1. Since the space of succinct polynomials that are a presen-
tation of f is compact, there exists a succinct presentation q of f of degree at most
deg p that minimizes Φd+1. By induction, there is a harmonic polynomial r such that
r ≡ q − q=d+1. We also have that q=d+1 is harmonic; otherwise, there exists a q′ ≡ q
such that Φ(q)d+1 − Φ(q′)d+1 > 0, a contradiction. This proves q=d+1 + r is a succinct
harmonic presentation of f of degree at most deg p, as desired.

The same proof mutatis mutandis shows the following.

Theorem 2.2. Any f ∈ RM2n admits a succinct harmonic presentation of degree at most n− 1.

Having showed that succinct harmonic presentations of functions over perfect match-
ings exist, it remains to show that such presentations are unique, thus giving a canonical
way of presenting a function over perfect matchings as a polynomial.

3 Uniqueness

In this section we prove Theorem 1.1, that if p is a succinct harmonic presentation of a
nonzero function f on perfect matchings, then p is the unique succinct harmonic presen-
tation of f , and that p=d is the unique succinct harmonic presentation of f=d.

Let Wℓ,k be the binary Mℓ
n,n ×Mk

n,n bipartite matching inclusion matrix defined such
that Wℓ,k[M, m] = 1 if m ⊆ M, 0 otherwise. Let An,k be the Mn,n ×Mn,n matrix defined
such that An,k[M, M′] = |{m ∈ Mk

n,n : m ⊆ M and m ⊆ M′}| for all M, M′ ∈ Mn,n. It is
clear that An,k = Wn,kW⊤

n,k, thus An,k ⪰ 0.
Let W ′

ℓ,k be the binary Mℓ
2n ×Mk

2n non-bipartite matching inclusion matrix defined such
that W ′

ℓ,k[M, m] = 1 if m ⊆ M, 0 otherwise. Let Bn,k be the M2n ×M2n matrix defined
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such that Bn,k[M, M′] = |{m ∈ Mk
2n : m ⊆ M and m ⊆ M′}| for all M, M′ ∈ M2n. It is

clear that Bn,k = W ′
n,k(W

′
n,k)

⊤, thus Bn,k ⪰ 0.

Proposition 3.1. We have ∑n
k=0 αk An,k ≻ 0 and ∑n

k=0 βkBn,k ≻ 0 if αk, βk > 0 for all k.

Theorem 3.2. If p is a succinct harmonic polynomial that vanishes on Mn,n, then p = 0.
Moreover, the unique succinct harmonic presentation of any f ∈ Vd is homogeneous of degree d.

Proof. Let p = ∑m c(m)m, where m ranges over all matchings of Kn,n and m is identified
as the monomial ∏(i,j)∈m xi,j. We prove by induction on |m| that c(m) = 0 for all m.

Let m be a matching of size d, and consider the average pm of p over the set Mn,n(m)
of perfect matchings M ∈ Mn,n that contain m. If m′ ⊆ M and m ⊆ M for some perfect
matching M, then we say m′ is compatible with m. The probability of drawing from
Mn,n(m) a perfect matching M such that m′ ⊆ M is 1/(n − d)|m

′\m|. Since p(M) = 0 for
all M ∈ Mn,n(m), we have pm = 0, thus

0 = pm = ∑
m′ compatible with m

1

(n − d)|m
′\m| c(m

′).

Let A, B be the two subsets of the same size such that m is a perfect matching between
A and B. Let M be the set of matchings between A and B. Then we can rewrite pm as

0 = pm =
n−d

∑
e=0

1
(n − d)e ∑

w⊆m
∑

w′∈M
|w′|=e

c(ww′),

where the notation ww′ denotes the matching w ⊔ w′. Let (si, tj) denote an edge of Kn,n.
Fix w ⊆ m and e ≥ 0. Then the innermost summation on the RHS can be written as

∑
w′∈M
|w′|=e

c(ww′) =
1
e! ∑

s1,...,se∈A
si ̸=sj

∑
t1,...,te∈B

ti ̸=tj

c(w(s1, t1) · · · (se, te)).

Fix distinct s1, . . . , se ∈ A. Then the innermost summation on the RHS equals

∑
t1,...,te∈B

ti ̸=tj

c(w(s1, t1) · · · (se, te)) = ∑
t1∈B

∑
t1 ̸=t2∈B

· · · ∑
t1,...,te−1 ̸=te∈B

c(w(s1, t1) · · · (se, te)).

Let Aw, Bw be the two subsets such that w is a perfect matching between Aw and Bw.
Since p is harmonic, we have ∑t1,...,te−1 ̸=te∈Bw c(w(s1, t1) · · · (se, te)) = 0, since the LHS is
the coefficient of w(s1, t1) · · · (se−1, te−1) in ∆se,∗p. Thus

∑
t1,...,te−1 ̸=te∈B

c(w(s1, t1) · · · (se, te)) = − ∑
te∈Bw\B

c(w(s1, t1) · · · (se, te)).
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Exchanging summations and applying the same argument to se ∈ A as well gives us

∑
w′∈M
|w′|=e

c(ww′) =
1
e! ∑

s1,...,se−1∈A
si ̸=sj

∑
t1,...,te−1∈B

ti ̸=tj

∑
se∈Aw\A

∑
te∈Bw\B

c(w(s1, t1) · · · (se, te)).

Repeating this argument successively for te−1, se−1, . . . , t1, s1 gives

∑
w′∈M
|w′|=e

c(ww′) =
1
e! ∑

s1,...,se∈Aw\A
si ̸=sj

∑
t1,...,te∈Bw\B

ti ̸=tj

c(w(s1, t1) · · · (se, te)).

The double sum on the RHS vanishes unless |Aw \ A| ≥ e. Note that |Aw \ A| = d − |w|,
so the coefficients vanish by induction unless |w|+ e ≥ d, that is, unless d − |w| ≤ e. It
follows that the double sum vanishes unless e = d − |w|, in which case after division by
e! it is equal to ∑w′∈M(m\w) c(ww′), where M(m \ w) is the set of all perfect matchings
on the same vertices as m \ w. Let αi := 1/(n − d)d−i. We arrive at the following system:

∑
w⊆m

α|w| ∑
w′∈M(m\w)

c(ww′) = 0 for all m ∈ Md
n,n.

Our goal is to show c(m) = 0 for all m ∈ Md
n,n is the only solution. Let A and B

be d-sets of vertices on the left and right of V(Kn,n), and consider all perfect matchings
m ∈ M(A, B) between A and B. Each choice of A, B, induces a subsystem of the above
system of equations, and it suffices to show it has full rank. To this end, we show that
the matrix associated to this subsystem of equations is positive definite.

In the equation corresponding to m ∈ M(A, B), the coefficient corresponding to the
perfect matching m′ ∈ M(A, B) is ∑w⊆(m∩m′) α|w|. Identifying M(A, B) with Md,d, for
each m ∈ Md,d we get an equation of the form ∑m′∈Md,d ∑d

i=0 αi Ad,i[m, m′]c(m′) = 0. The

matrix of this system is ∑d
i=0 αi Ad,i, which by Proposition 3.1 is positive definite.

By induction, we have c(m) = 0 for all matchings m, i.e., p = 0, as desired.
Finally, the second part of the theorem can be shown by a routine induction.

Theorem 3.3. If p is a succinct harmonic polynomial that vanishes on M2n, then p = 0.
Moreover, the unique succinct harmonic presentation of any f ∈ Vd is homogeneous of degree d.

Proof of Theorem 1.1. For any f ∈ RSn, there is a e such that f ∈ V≤e := V0 ⊕ · · · ⊕ Ve, so
that f = f=0 + · · ·+ f=e (similarly for f ∈ RM2n). Applying Theorems 2.1 and 3.2 for
Mn,n and Theorems 2.2 and 3.3 for M2n gives the desired result.

4 The Structure of Canonical Presentations

In this section we give explicit descriptions of canonical presentations by determining the
canonical presentations of the Specht bases { fs,t ∈ R[x] : s, t standard λ-tableaux, λ ⊢ n}
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and { fu ∈ R[x̌] : u standard 2λ-tableau, λ ⊢ n} of RSn and RM2n. Here, we define

fs,t(x) := ∑
τ∈Rs

∑
σ∈Ct

sgn(σ)x(τs, σt) and fu(x̌) :=
1

∏i 2λi λi!
∑

τ∈Ru

∑
σ∈Cu

sgn(σ)x(τσu)

where Ct (Rt) is the column (row) stabilizer of t, x(s, t) := ∏(i,j)∈λ xsi,j,ti,j , x(u) := ∏ab xab
such that ab ranges over all pairs of aligned adjacent elements in the 2λ-tableau u (i.e.,
a is in an odd column, and b is the following entry on the same row). Computing the
canonical presentation ps,t of fs,t will require us to introduce a few differential operators
and compute the eigenvalues of An,k and Bn,k, which we have already shown to be PSD.
These eigenvalues are intimately related to a class of symmetric functions known as Jack
polynomials, which we overview in the next section.

From the definition above, one can show that Specht polynomials can be expressed as
a sum of λ1-many products of determinants corresponding to the pairs of columns of s, t
(adjacent columns of u). Let Dk := (∑n

i,j=1 ∂/∂xi,j)
k/k! and D′

k := (∑ij∈E(K2n) ∂/∂xij)
k/k!.

Let D := D1, D′ := D′
1. Let I = i1, . . . , id ∈ [n] be distinct and J = j1, . . . , jd ∈ [n] be

distinct. Let X be the d × d matrix with Xa,b = xia,jb . Define the quasi-determinant to be

q(I, J)(x) := ∑
i∈I,j∈J

∂

∂xi,j
det X = ∑

i∈I,j∈J

∂

∂xi,j
∑

π∈Sd

sgn(π) ∏
s∈[d]

xis,jπ(s)
.

We define q(I, J)(x̌) similarly, replacing the ordered pair i, j with the 2-set ij.

Proposition 4.1. q(I, J) is harmonic.

Proof. Without loss of generality, let ia = a and jb = b for any a, b ∈ [d]. We have
q([d], [d]) = ∑π∈Sd

sgn(π)∑t∈[d] ∏s∈[d]:s ̸=t xs,π(s). Now suppose that we sum the partial
derivatives with respect to xi,1, xi,2, . . . , xi,n for any i ∈ [n]. If i /∈ [d] then this is clearly
0; otherwise, ∑π∈Sd

sgn(π)∑t∈[d]:t ̸=i ∏s∈[d]:s ̸=t,i xs,π(s). Each monomial appears exactly
twice with different signs, as sgn(π) = −sgn((i, t)π); therefore, the sum vanishes.

A similar proof shows q(I, J)(x̌) is harmonic.
Let f ′s,t(x) and f ′u(x̌) be the quasi-Specht polynomials defined by replacing determinants

with q(·, ·), i.e., f ′s,t(x) := ∑τ∈Rs ∏λ1
i=1 q((τs)i, ti) and f ′u(x̌) := ∑τ∈Ru ∏λ1

i=1 q((τu)2i−1, u2i)
where ti is the ith column of t. It is clear that quasi-Specht polynomials are harmonic.

The quasi-Specht and Specht polynomials are related by the formula f ′s,t = Dλ1 fs,t.
Indeed, by the product rule, applying D to a product of quasideterminants is the same as
summing over all ways to apply it to each factor. By Proposition 4.1, if we apply D twice
to the same factor then we get zero, and so when applying Dλ1 , we must apply each D
to a different factor, and there are λ1! ways to do this. Similarly, we have f ′u = D′

λ1
fu.

Although f ′s,t is harmonic, it is not a presentation of fs,t, i.e., f ′s,t ̸≡ fs,t (similarly, f ′u ̸≡
fu). In the next section, we use Jack polynomials to compute two constants dλ(1), dλ(2)
such that dλ(1)−1 f ′s,t, dλ(2)−1 f ′u are in fact the canonical presentations of fs,t, fu.



8 Y. Filmus and N. Lindzey

4.1 Jack Polynomials

We refer the reader to [7, 9] for more details on symmetric functions and Jack polyno-
mials. Let x := x1, x2, . . . and y := y1, y2, . . . be disjoint sets of indeterminants. For any
α ∈ R, let ⟨·, ·⟩α be the inner product on the ring Λ = ⊕nΛn of symmetric functions
(graded by degree) defined such that ⟨pλ, pµ⟩α = δλµαℓ(λ)zλ where ℓ(λ) denotes the
number of parts of an integer partition λ ⊢ n and zλ is the order of the centralizer of a
permutation of cycle-type λ ⊢ n. Recall that ⊴ denotes the dominance ordering on λ ⊢ n
(see [7]). For a given α ∈ R, the Jack polynomials {Jλ}λ⊢n are the unique vector space
basis of Λn such that ⟨Jλ, Jµ⟩α = 0 if λ ̸= µ, Jλ = ∑µ⊴λ cλµmµ, and [m1n ]Jλ = n!. A skew
tableau on r cells is a horizontal strip (r-strip for short) if no two of its cells lie in the same
column. We write µ + r = λ if |λ| ≥ |µ| and they differ by an r-strip. Let Jr := J(r).

Let aλ(i, j) and lλ(i, j) be the arm length and leg length of a cell □ = (i, j) ∈ λ, i.e.,
the number of cells in row i to the right of (i, j), and the number of cells in column
j below (i, j). Let h∗λ(□) := aλ(□)α + lλ(□) + α and hλ

∗ (□) := aλ(□)α + lλ(□) + 1 be
the α-lower hook length and α-upper hook length of □ ∈ λ. Let H∗

λ := ∏□∈λ h∗λ(□) and
Hλ
∗ := ∏□∈λ hλ

∗ (□). The coefficients θλ
µ(α) of the Jλ’s written in the power sum basis,

i.e., Jλ = ∑µ⊢n θλ
µ(α)pµ, are sometimes called the Jack characters (see [9]).

For all λ ⊢ n, k ≤ n, let ηλ
k (α) := ∑µ⊢n θλ

µ(α)fp(µ)k where fp(µ) is the number of parts
of µ equal to 1. We show ηλ

k (α) is the α-Kostka number [7, p. 327] uλµ =: Kλ,(n−k,1k)(α) of
shape λ and content (n − k, 1k) scaled by the upper hook product of λ.

Theorem 4.2. ηλ
k (α) = Hλ

∗ Kλ,(n−k,1k)(α).

Proof. We have ∑λ Jλ(x)Jλ(y)/Hλ
(α)

H(α)
λ = ∏i,j(1 − xiyj)

−1/α = ∏r≥1 exp pr(x)pr(y)/αr
by the Cauchy identity [9]. Recall that p1 = J1 and hr = Jr for all r. Differentiating k
times with respect to p1(y) and then setting pr(y) = 1 for all r gives

∑
λ

ηλ
k (α)

Hλ
(α)

H(α)
λ

Jλ(x) = α−k pk
1 ∏

r≥1
exp

pr(x)
αr

= α−k ∑
r

Jk
1 Jr

αrr!
= k! ∑

r

∑µ⊢k Jr Jµ

αrr! Hµ

(α)
H(α)

µ

.

By Pieri’s rule [9], we have [Jλ]Jr Jµ = ∏□∈µ Aλµ(□)∏□∈λ Bλµ(□)αrr!/Hλ
∗ H∗

λ if λ/µ is
an r-strip, 0 otherwise, where

Aλµ(□) =

{
hµ
∗(□) if λ/µ does not contain a square in the same column as □;

h∗µ(□) otherwise,

Bλµ(□) =

{
h∗λ(□) if λ/µ does not contain a square in the same column as □;
hλ
∗ (□) otherwise.
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Equating coefficients of Jλ(x) gives ηλ
k (α) = k! ∑µ ∏□∈µ Aλµ(□)∏□∈λ Bλµ(□)/Hµ

∗ H∗
µ

where µ ranges over all shapes such that λ/µ is a (n − k)-strip. Let Cλµ (Rλµ) be the cells
of λ that belong to a column (row) that intersects λ/µ. We have

ηλ
k (α) = Hλ

∗ ∑
µ⊢k

µ+(n−k)=λ

k!
Hµ
∗

∏
□ ̸∈Cλµ

h∗λ(□)hµ
∗(□)

hλ
∗ (□)h∗µ(□)

= Hλ
∗ ∑

µ⊢k
µ+(n−k)=λ

k!
Hµ
∗

∏
□∈Rλµ\Cλµ

h∗λ(□)hµ
∗(□)

hλ
∗ (□)h∗µ(□)

,

where we have identified µ as a subshape of λ. The product over □ ∈ Rλµ\Cλµ is ψ
(α)
λ/µ

as defined in [7, VI (10.11)]. Since [m1k ]Pµ = k!/Hµ
∗ where the Pµ’s are the normalized

Jack polynomials [7, VI Section 10], the summation equals Kλ,(n−k,1k)(α), as desired.

Let dλ(α) = ∏λ1
j=1 hλ

∗ (1, j). Stanley [9] showed [xλ1
1 ]Jλ(x) = dλ(α)J(λ2,...,λℓ)

(x2, x3, . . .),
so Theorem 4.2 can be seen as a straightforward generalization of this result.

Let An,n and A2n be the commutative Bose–Mesner algebras generated by binary matri-
ces {Aλ}λ⊢n that are indexed by perfect matchings M (of Kn,n and K2n respectively) and
defined such that Aλ[M, M′] = 1 if the multi-union M ∪ M′ is isomorphic to a disjoint
union of cycles C2λ1 ⊔ · · · ⊔ C2λℓ(λ)

where C2λi denotes the cycle on 2λi edges (see [4] for
more details on the Bose–Mesner algebras of association schemes).

Corollary 4.3. The eigenvalues of An,k are {ηλ
k (1)}λ⊢n. The eigenvalues of Bn,k are {ηλ

k (2)}λ⊢n.
In particular, for any λ ⊢ n, we have ηλ

n−λ1
(1) = dλ(1) and ηλ

n−λ1
(2) = dλ(2).

Proof. The Jack character θλ
µ(α) for α = 1, 2 is the λ-eigenvalue of the basis element Aµ

of An,n and A2n respectively (see [7, VII Section 2 Example 5]). We may write An,k and
Bn,k as

An,k =
1
k! ∑

µ⊢n
fp(µ)k Aµ (Aµ ∈ An,n) and Bn,k =

1
k! ∑

µ⊢n
fp(µ)k Aµ (Aµ ∈ A2n),

which completes the first part of the proof. Finally, if k = n − λ1, then there is a single
µ = (λ2, . . . , λℓ(λ)) such that λ/µ is a λ1-strip, thus Kλ,(n−k,1k)(α) is easily computed.

Proof of Theorem 1.2. Note that W⊤
n,k, (W ′

n,k)
⊤ are the functional analogues of Dn−k, D′

n−k,
as f ′s,t = Dλ1 fs,t is (n − λ1)-homogeneous and [m] f ′s,t = ∑M⊇m[M] fs,t (similarly for f ′u).
Let Eλ ∈ An,n, Eλ ∈ A2n be the ⊥-projections onto Vλ, V2λ. For all fs,t ∈ Vλ, fu ∈ V2λ

and µ ̸= λ, we have Eµ fs,t = 0, Eµ fu = 0, thus

An,n−λ1 fs,t = ∑
µ⊢n

η
µ
n−λ1

Eµ fs,t = dλ(1) fs,t, Bn,n−λ1 fu = ∑
µ⊢n

η
µ
n−λ1

Eµ fu = dλ(2) fu.

The foregoing shows that f ′s,t(σ) = [Dλ1 fs,t](σ) = (Wn,n−λ1W⊤
n,n−λ1

fs,t)σ = (An,n−λ1 fs,t)σ

for all σ ∈ Sn, and similarly, that f ′u(M) = (Bn,n−λ1 fu)M for all M ∈ M2n. By Corol-
lary 4.3, we have ps,t := dλ(1)−1 f ′s,t ≡ fs,t and pu := dλ(2)−1 f ′u ≡ fu. Since f ′s,t, f ′u are
harmonic, we deduce that ps,t, pu are canonical presentations, as desired.
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4.2 A Combinatorial Identity for dλ(α)

The main result of this section is Theorem 4.6 which gives a combinatorial formula for
dλ(α) in terms of tableau transversals. The formula was inspired by the fact that fs,t and fu
are eigenfunctions of An,k and Bn,k, and that our combinatorial arguments in these cases
readily generalized to arbitrary α. Indeed, for α = 1, 2 it is well-known that there are
combinatorial expressions for θλ

µ(1), θλ
µ(2) in terms of perfect matchings by appealing to

their representation theory (see [1, Ch. 11], for example); however, such combinatorial
expressions for general α are elusive (see [6], for example). Here, we are only considering
particular weighted sums of Jack characters, nevertheless, this expression for dλ(α) might
shed some light on the combinatorics of θλ

µ(α).
A transversal T of a tableau λ is a set of cells which forms a transversal of the columns

of λ. For example, S = {(2, 1), (1, 2), (2, 3), (1, 4)} is a transversal of (4, 3, 2, 1) ⊢ 10. We
define the α-weight of a transversal T to be wα(T) = HT

∗ . For example, wα(S) = (α + 1)2.
Let Tλ be the collection of transversals of λ. Define wα(λ) := ∑T∈Tλ

wα(T).
For any n ∈ R and k ∈ Z, recall that the binomial coefficient generalizes as a real-

valued function (n
k) := ∏k

i=1(n − i + 1)/k!. The following can be shown via negative
binomial coefficient identities and Vandermonde’s identity for real-valued arguments.

Theorem 4.4. For a, b ∈ R and c ∈ N, we have (a+b+c−1
c ) = ∑c

d=0 (
a+c−d−1

c−d )(b+d−1
d ).

Let N!α := N · (N − α)!α where N!α = 1 if N < α. For any k ≤ N, let Nkα be the
product of the first k factors of N!α. The following consequence of Theorem 4.4 will be
useful.

Proposition 4.5. Let α ∈ R and i, k ∈ Z such that 0 ≤ i ≤ k. For all N ≥ k, we have

Nkα =
k

∑
j=0

(
k
j

)
(α(j + i)− 1)j

α (N − 1 − α(j + i))k−j
α .

Proof. Let N = αn + r such that 0 ≤ r < α. It suffices to show that

Nkα

αkk!
=

k

∑
j=0

(α(j + i)− (α − 1))j
α

αj j!
(N − 1 − α(j + i))k−j

α

αk−j(k − j))!
, equivalently,

(
n + r/α

k

)
=

k

∑
j=0

(
j + i − (α − 1)/α

j

) (
n − (j + i) + (r − 1)/α

k − j

)
.

Theorem 4.4 with a = n − k − i + (r − 1)/α, b = i + 1/α, c = k, d = j gives the result.

An inner corner of a shape λ is a cell □ ∈ λ such that hλ(□) = 1. The following relates
α-weighted sums of tableau transversals to upper hook products along the top row.
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Theorem 4.6. dλ(α) = wα(λ)

Proof. We proceed by induction on n = |λ|. The claim is vacuously true for |λ| = 1. Let
(r, c) ∈ λ be the inner corner of λ such that r is maximum. Let λ− ⊢ (n − 1) be the shape
obtained from λ by removing (r, c). By induction, we have

∑
T∈Tλ−

wα(T) =
λ−

1

∏
j=1

hλ−
∗ (1, j) = (hλ

∗ (1, c)− 1)
λ1

∏
j ̸=c

hλ
∗ (1, j).

Let T ′ := Tλ \ Tλ− be the transversals of λ that contain (r, c). It suffices to show that

∑
T∈T ′

wα(T) =
λ1

∏
j ̸=c

hλ
∗ (1, j).

By our choice of (r, c), the shape induced by the columns of λ with index less than c
is (rc−1) ⊢ r(c − 1). Let µ be the shape obtained from λ by deleting its cth column.
There are (c−1

j ) ways a transversal T ∈ T ′ can choose j columns from µr. For every such

choice, the α-weight along the rth row is (j + 1)!α = (j + 1)j
α . Let h := hλ

∗ (1, 1) and
X := ∏λ1

l=c+1 hλ
∗ (1, l). By induction, the remaining α-weight on the rows (µ1, . . . , µr−1)

is (h − 1 − (j + 1))c−1−j
α X. Summing over all j with N = h, k = c − 1, and i = 1 in

Proposition 4.5 gives

∑
T∈T ′

wα(T) = [hc−1α ]X =

[
c−1

∑
j=0

(
c − 1

j

)
(j + 1)j

α (h − 1 − (j + 1))c−1−j
α

]
X.

This gives us ∑T∈T ′ wα(T) = hc−1α X = ∏λ1
j ̸=c hλ

∗ (1, j) as desired.

In the full version of this work we also give bijective combinatorial proofs of dλ(1),
dλ(2).

5 Conclusion and Open Questions

We determined the canonical presentation of the Specht basis; however, there are other
bases that one might argue are better suited for discrete analysis. For example, the well-
known Gelfand–Tsetlin (GZ) basis is orthogonal whereas the Specht basis is not. The issue
here is that the GZ basis is defined inductively, and it is not clear if a “nice” combinatorial
expression (e.g., [3]) for these vectors exists, which we leave as an open question.

We believe that the matching inclusion matrices are interesting in their own right and
may share some of the same desirable properties as the set incidence matrices (see [10]).
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For example, computational results show for all k ≤ n = 6 that the nonzero elemen-
tary divisors of Wn,k and W ′

n,k are all equal to 1. Set incidence matrices have played a
distinguished role in extremal combinatorics, and it would be interesting to see if the
matching inclusion matrices can be leveraged to this avail.

Finally, we note that this work is part of a larger programme to broaden the horizons
of discrete analysis to other domains beyond the hypercube and its variants [2]. In
the full version of this work we present our results in more generality to include other
domains. Many open questions remain, and we hope these results smooth the way for
doing discrete analysis over the space of perfect matchings and other related domains.
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