
Séminaire Lotharingien de Combinatoire 86B (2022) Proceedings of the 34th Conference on Formal Power
Article #63, 12 pp. Series and Algebraic Combinatorics (Bangalore)

Shuffle Lattices and Bubble Lattices

Thomas McConville*1 and Henri Mühle†2

1Kennesaw State University, 30144 Kennesaw (GA), USA
2Technische Universität Dresden, 01062 Dresden, Germany

Abstract. C. Greene introduced the shuffle lattice as an idealized model for DNA mu-
tation and discovered remarkable combinatorial and enumerative properties of these
structures. In this article we attempt an explanation of these properties from a lattice-
theoretic point of view. To that end, we introduce and study an order extension of the
shuffle lattice, the bubble lattice. Intriguingly, most of the combinatorics of the bubble
lattice can be encoded by means of two simplicial complexes, the noncrossing matching
complex and the noncrossing bipartite complex. We present an intriguing relationship be-
tween the f -vectors of these complexes and relate it to the rank-generating function of
the shuffle lattice.

Keywords: shuffle words, insertion, deletion, transposition, noncrossing graphs

1 Introduction

Motivated by an idealized model for mutations in DNA sequences, C. Greene intro-
duced the shuffle lattice. The ground set of this lattice is the set Shuf(m, n) of shuffles
of order-preserving repetition-free words whose letters are taken from two disjoint, lin-
early ordered alphabets X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}. The shuffle order
is determined by inserting letters of Y or deleting letters of X from any given word.
In [6], Greene studied this poset extensively and discovered several surprising enumer-
ative relationships among its characteristic polynomial, its zeta polynomial and its rank-
generating function. Namely, each of these invariants occurs as a specialization of the
same Jacobi polynomial. Greene’s enumerative results were recovered in [11] using al-
gebraic methods, but the presence of the Jacobi polynomials remained mysterious.

In this abstract we seek to explain the enumerative relationships among the combi-
natorial invariants of the shuffle lattice using combinatorial lattice theory. We introduce
an alternate partial ordering on the set Shuf(m, n), which we call the bubble order. This is
the extension of the shuffle order, where we also allow the exchange of adjacent letters
from X and Y. The resulting bubble lattice is indeed a lattice, and its combinatorial struc-
ture can be explained using two simplicial complexes: the noncrossing matching complex
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and the noncrossing bipartite complex. In this abstract we state that the f -vectors of these
simplicial complexes are related in an intriguing fashion and can be used to recover the
rank-generating polynomial of the shuffle lattice.

This abstract is organized as follows: we start in Section 2 with the recapitulation of
the basic definitions as well as the formal introduction of the bubble lattice. In Section 3,
we characterize the cover relation in the bubble lattice and introduce the noncrossing
matching complex. In Section 4, we sketch the proof that the bubble lattice is in fact a
lattice and define the noncrossing bipartite complex. In Section 5, we conduct a refined
face-enumeration in the noncrossing matching and noncrossing bipartite complex, and
relate the resulting formulas to the rank-generating function of the shuffle lattice. Due
to the space limitations, we have most often omitted proofs of our statements, and refer
the interested reader to the full version of this abstract [7, 8].

2 Basics

2.1 Shuffle Words

For nonnegative integers m and n, we consider two disjoint sets of letters:

X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}.

A word over the disjoint union X ⊎ Y is simple if it does not contain duplicate letters.
The support of a word is the set of letters it contains. The empty word is denoted by ϵ

and we usually (at least in the examples) write the letters of X in red and the letters of
Y in blue.

A subword of a simple word w = w1w2 · · ·wk is any word of the form wi1wi2 · · ·wiℓ

with 1 ≤ i1 < i2 < · · · < iℓ ≤ k. For i ∈ [k] def
= {1, 2, . . . , k} we write wı̂ for the subword

of w obtained by deleting the letter wi.
If u, v are simple words, then the restriction of u to v, denoted by uv, is the subword

of u formed by the common letters of u and v. For instance, if u = x1y1x2x3y3 and
v = x3y1x4, then the restriction of u to v is uv = y1x3.

Our main interest lies in order-preserving simple words. That means, if we define

x def
= x1x2 · · · xm and y def

= y1y2 · · · yn,

then we consider the set of simple words w with the property that wx is a subword of
x and wy is a subword of y. We call such words shuffle words of x and y, and we write
Shuf(m, n) for the set of all shuffle words. It is easy to see that the number of shuffle
words depends only on the cardinalities of X and Y, and not on the concrete elements
of X and Y.
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(a) The shuffle poset Shuf(2, 1).
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(b) The bubble poset Bub(2, 1).

Figure 1: Two posets of shuffle words.

2.2 Operations on Shuffle Words

Let u = u1u2 · · · uk ∈ Shuf(m, n). Lemma 4.6 in [6] states that u is uniquely determined
by its interface, i.e. the set of letters x ∈ X, y ∈ Y for which there exists i ∈ [k − 1] such
that ui = y and ui+1 = x, and its residue, i.e. the letters of u which are not in the interface.
This motivates the following two operations on Shuf(m, n).

An indel is a relation u → uı̂ if ui ∈ X or uı̂ → u if ui ∈ Y. In other words, an
indel of u is a shuffle word obtained from u by either inserting a letter of y or deleting a
letter of x. A (forward) transposition swaps two letters ui and ui+1 if ui ∈ X and ui+1 ∈ Y.
In this situation, we write u ⇒ u′, where u′ = u1u2 · · · ui−1ui+1uiui+2 · · · uk. Drawing
inspiration from the analogous situation for permutations, we define the inversion set of
u by

Inv(u) def
=

{
(xs, yt) | there exist i < j such that ui = yt and uj = xs

}
.

Now we use indels and transpositions to define two partial orders on Shuf(m, n). The
shuffle order, denoted by ≤shuf , is the reflexive and transitive closure of indels, and the
bubble order, denoted by ≤bub, is the reflexive and transitive closure of indels and transpo-

sitions1. We write Shuf(m, n) def
=

(
Shuf(m, n),≤shuf

)
and Bub(m, n) def

=
(
Shuf(m, n),≤bub

)
for the corresponding partially ordered sets (posets). Figure 1a shows Shuf(2, 1) and Fig-
ure 1b shows Bub(2, 1). The poset Shuf(m, n) was intensively studied in [6], while
the poset Bub(m, n) is new. The main purpose of this abstract is to exhibit several re-
markable structural and enumerative correspondences between these two posets and
introduce some new combinatorial structures arising in the context of shuffle words.

1The name “bubble order” is to emphasize that this is an order extension of the shuffle order in which
we have to bubble sort the words before we can perform an indel.
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3 Covering Pairs and the Noncrossing Matching Complex

We first describe the “local structure” of Bub(m, n). To that end, we study the covering
pairs in Bub(m, n), i.e. the relations u <bub v such that there exists no w with u <bub

w <bub v. We write u ⋖bub v in that event.
While it is easily checked that every transposition corresponds to a covering pair

in Bub(m, n), the same is not necessarily true for indels. In fact, let u = x1x2y1 and
v = x1y1. Then, u → v, because we delete the letter x2. However, this is not a covering
pair, because the word w = x1y1x2 lies strictly between u and v, see Figure 1b. In fact,
we have u ⇒ w → v. In some sense, transpositions are prioritized over deletions.

Let u = u1u2 · · · uk. Recall that for i ∈ [k] we denote by uı̂ the word obtained by
deleting the letter ui. Then, uı̂ → u if ui is in y and u → uı̂ if ui is in x. We define a new
relation ↪→ on Shuf(m, n) by setting

v ↪→ v′ if and only if

{
v = u and v′ = uı̂ if ui, ui+1 ∈ X,
v = uı̂ and v′ = u if ui, ui+1 ∈ Y.

In both cases, if i = k, then we just have to check the condition for uk. We call ↪→ a
right indel, because the inserted (resp. deleted) letter needs to be as far right as possible.
Clearly, u ↪→ v implies u → v, but the converse is not true. For instance, x1y2x2y4 →
x1y2y4 → y1x1y2y4 are not right indels, because in the first indel, the deleted letter x2
is neither at the end of the word nor followed by another letter from X. In the second
indel, the inserted letter y1 ends up before a letter from X.

Lemma 3.1. For u, v ∈ Shuf(m, n) we have u ⋖bub v if and only if either u ⇒ v or u ↪→ v.

The definition of ↪→ and ⇒ implies that there are essentially three different types
of covering pairs. We use this to define the following labeling of the covering pairs of
Bub(m, n):

λ(u, v) def
=


x if u ↪→ v, uy = vy, ux \ vx = {x},
y if u ↪→ v, ux = vx, vy \ uy = {y},
(x, y) if u ⇒ v, Inv(v) \ Inv(u) =

{
(x, y)

}
.

(3.1)

For v ∈ Shuf(m, n), let

λ↓(v)
def
=
{

λ(u, v) | u ↪→ v or u ⇒ v
}

.

Figure 2a shows Bub(2, 1) with this labeling.
We now construct a simplicial complex whose faces are in bijection with the shuffle

words in Shuf(m, n). Recall that X = {x1, . . . , xm} and Y = {y1, . . . , yn}, and define

T def
= X ⊎ Y ⊎ (X × Y). We call the elements of X ⊎ Y loops and elements of X × Y edges.

Then a loop z and an edge {x, y} are crossing if z = x or z = y. Two edges (xs1 , yt1) and
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(a) The poset Bub(2, 1) labeled by λ. (b) The noncrossing matching complex
Γ(2, 1). The gray triangle indicates a two-
dimensional face. In each node, the vertex
at the top represents y1, and the two ver-
tices at the bottom represent x1 and x2.

Figure 2: The noncrossing matching complex of a bubble lattice.

(xs2 , yt2) are crossing if s1 < s2 and t1 > t2. Two elements of T are noncrossing if they do

not cross in one of the mentioned ways. The noncrossing matching complex Γ def
= Γ(m, n) is

the abstract simplicial complex on T whose faces are collections of pairwise noncrossing
elements of T . The term “crossing” is motivated by the following graphical represen-
tation of Γ. We draw vertices labeled by x1, x2, . . . , xm on a horizontal line and vertices
labeled by y1, y2, . . . , yn on another horizontal line such that the line containing the y’s is
above the line containing the x’s. An edge (xs, yt) is then illustrated by connecting the
vertices xs and yt. Then, two edges are crossing if and only if their corresponding lines
intersect.

The noncrossing matching complex recovers essential information on the bubble lat-
tice.

Proposition 3.2. The map λ↓ : Shuf(m, n) → Γ(m, n) is a bijection.

Proof sketch. It is straightforward to verify that for every v ∈ Shuf(m, n), the set of labels
λ↓(v) consists of mutually noncrossing elements of T .

Since any v ∈ Shuf(m, n) is uniquely determined by its interface and its residue, it is
clear that the assignment v 7→ λ↓(v) is a bijection from Shuf(m, n) to (the set of faces of)
Γ(m, n).

We now prove that Γ(m, n) has another intriguing topological property: it is (non-
pure) vertex decomposable in the sense of [1, 10]. Let us briefly recall the necessary
definitions and fix a simplicial complex ∆ with vertex set M. For F ∈ ∆, the link of F in
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∆ is
lk∆(F) def

=
{

G ∈ ∆ | F ∩ G = ∅ and F ∪ G ∈ ∆
}

.

The deletion of F in ∆ is
del∆(F) def

=
{

G ∈ ∆ | F ̸⊆ G
}

.

A vertex v ∈ M is a shedding vertex if both the link lk∆(v) and the deletion del∆(v)
are vertex decomposable and the complexes lk∆(v) and del∆(v) do not share facets. A
simplicial complex ∆ is vertex decomposable if it is a simplex or contains a shedding vertex.
A simplicial complex ∆ is shellable if there exists a total order ≺ on the facets of ∆
such that for every two facets F, G with F ≺ G there exists a facet H ≺ G such that
F ∩ G ⊆ H ∩ G and dim H ∩ G = dim ∆ − 1. Such a total order (if it exists) is a shelling
order of ∆. By [1, Theorem 11.3], every vertex-decomposable complex is shellable.

Proposition 3.3. The noncrossing matching complex Γ(m, n) is vertex decomposable, and there-
fore shellable.

Proof sketch. The proof proceeds by induction on m + n. The induction base is trivial
for n = 0, since Γ(m, 0) is a simplex. For n = 1, the claim can be deduced from the
results of [9], where it was shown that a simplicial complex isomorphic to Γ(m, 1) is
vertex decomposable. For n > 1, we consider the vertex v = (xs, yt) for s ∈ [m] and
t ∈ [n] and show that it is a shedding vertex of Γ(m, n). Indeed, the link lkΓ(m,n)(v)
is isomorphic to the join Γ(m1, n1) ∗ Γ(m2, n2), for appropriate choices of m1, n1, m2, n2.
By successively deleting vertices (xs, yt′) for t′ ∈ [n] we may show that v satisfies the
remaining properties.

4 Lattice Structure and the Noncrossing Bipartite Complex

Now we move to the “global structure” of Bub(m, n). Recall that a lattice is a poset in
which every two elements have a least upper bound and a greatest lower bound.

Proposition 4.1. For m, n ≥ 0, the poset Bub(m, n) is a lattice.

Proof sketch. It is straightforward to verify that Bub(m, n) is isomorphic to the dual poset
of Bub(n, m). Therefore, it remains to establish the existence of joins in Bub(m, n). In
order to explicitly construct the join of u, v ∈ Shuf(m, n), we first determine the letters of
X contained in both u and v, and then we determine the letters of Y which are contained
in u or v. These letters form the support of several shuffle words, and we choose the
minimal shuffle word from this set which satisfies the “disorder” introduced by both u
and v, i.e. which letters from Y must necessarily appear before which letters of X.

Example 4.2. Let m = n = 5 and consider u = x2x4y1y4x5y5 and v = x3y1y3x4x5. Then,
we consider all words in Shuf(m, n) using the letters {x4, x5} and {y1, y3, y4, y5}. The
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minimal element with these letters is clearly w̃ = x4x5y1y3y4y5. We observe that x5
appears after y1 and y4 in u and after y1 and y3 in v. Moreover, x4 also appears after y1
and y3 in v. Therefore, the join of u and v is w = y1y3x4y4x5y5.

In the remainder of this section, we present a geometric interpretation of Bub(m, n).
More precisely, we construct a certain simplicial complex with the property that the 1-
skeleton of its dual polytope can be oriented in such a way that it agrees with the Hasse
diagram of Bub(m, n).

Let r def
= m + n. We introduce two new letters x0 and y0 and define x̃ def

= x0x1 · · · xm

and ỹ def
= y0y1 · · · yn. Let X̃ def

= X ⊎ {x0} and Ỹ def
= Y ⊎ {y0} be the supports of x̃ and

ỹ, respectively. Consider a multigraph G̃ = G̃(m, n) with vertex set X̃ ⊎ Ỹ and edge set
U = L ⊎ E where

L def
=

{
{z} | z ∈ X ⊎ Y

}
, and E def

=
{
{x, y} | x ∈ X̃, y ∈ Ỹ

}
\ {{x0, y0}}.

In other words, G̃ is formed by deleting the edge {x0, y0} from the complete bipartite
graph with independent sets X̃ and Ỹ, then adding a loop at each vertex except x0 and y0.

We say that edges {xs1 , yt1} and {xs2 , yt2} are crossing if s1 < s2 and t1 > t2. A loop
{z} and an edge {x, y} are crossing if z = x or z = y. Any two elements of U that are not
crossing in one of these two ways are said to be noncrossing.

The noncrossing bipartite complex ∆ def
= ∆(m, n) is the abstract simplicial complex with

ground set U whose faces are collections of pairwise noncrossing elements. See Figure 3a
for an illustration of ∆(2, 1). By construction, the noncrossing matching complex Γ(m, n)
is a subcomplex of ∆(m, n).

Let w = w1w2 · · ·wk ∈ Shuf(m, n). We let w̃ = w−1w0w1 · · ·wk where w−1 = x0 and
w0 = y0, and define ϕ(w) to be the following r-element subset of U :

• if z ∈ X ⊎ Y is not in the support of w, then {z} ∈ ϕ(w);

• if wj ∈ X and i = max{i′ < j | wi′ ∈ Ỹ}, then {wj, wi} ∈ ϕ(w);

• if wj ∈ Y and i = max{i′ < j | wi′ ∈ X̃}, then {wi, wj} ∈ ϕ(w).

For example, if m = n = 3, then

ϕ(x2y1y2x3) =
{
{x1}, {y3}, {x2, y0}, {x2, y1}, {x2, y2}, {x3, y2}

}
.

Proposition 4.3. The map ϕ is a bijection from Shuf(m, n) to the set of facets of ∆(m, n).

By construction, ϕ(w) contains r = m + n elements. Thus, Proposition 4.3 implies
that ∆(m, n) is a pure simplicial complex of dimension r − 1. The next two lemmas
establish that the 1-skeleton of the dual of ∆(m, n) can be oriented in such a way that
one obtains the Hasse diagram of Bub(m, n). This is illustrated in Figure 3b, which
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(a) The noncrossing bipartite complex
∆(2, 1).
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(b) The dual polytope of ∆(2, 1).

Figure 3: The noncrossing bipartite complex and its dual polytope. These are two-
dimensional polytopes realized in a three-dimensional space. We have drawn a pro-
jection where hidden edges are dashed.

shows the dual of ∆(m, n). The vertices of this dual polytope (which are the facets of
∆(m, n)) are labeled by their corresponding shuffle words under the map ϕ−1. It is left
to the reader to recover the orientation of the 1-skeleton of this polytope that recovers
the bubble lattice Bub(m, n); see also Figure 1b.

Lemma 4.4. For any σ ∈ ∆(m, n), the set of shuffle words w ∈ Shuf(m, n) with σ ⊆ φ(w) is
a closed interval of Bub(m, n).

Lemma 4.5. For shuffle words u, v, we have dim ϕ(u) ∩ ϕ(v) = r − 2 if and only if either
u ⋖bub v or v ⋖bub u.

We conclude this section with the fact that ∆(m, n) is shellable.

Proposition 4.6. Any linear extension of Bub(m, n) induces a shelling order on the facets of
∆(m, n). Consequently, ∆(m, n) is shellable.

Proof sketch. Fix a linear extension ≺ of ≤bub and pick u, v ∈ Shuf(m, n) with u ≺ v. By
abuse of notation, we use the same symbol ≺ for the total order on the facets of ∆(m, n)
induced via the map ϕ. We thus have ϕ(u) ≺ ϕ(v). Now, u <bub v and we consider
σ = ϕ(u) ∩ ϕ(v). By Lemma 4.4, any w ∈ Shuf(m, n) with σ ⊆ ϕ(w) must belong
to the closed interval [u, v] in Bub(m, n). In particular, we may choose w such that
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u ≤bub w ⋖bub v, which then implies ϕ(w) ≺ ϕ(v). But then we have σ ⊆ ϕ(w) ∩ ϕ(v)
and with Lemma 4.5 we get dim ϕ(w) ∩ ϕ(v) = r − 2 = dim ∆(m, n)− 1. Thus ≺ is a
shelling order of ∆(m, n).

5 Enumerative Properties

Let us now turn to some enumerative aspects of the simplicial complexes Γ(m, n) and
∆(m, n). In general, the f -vector of a simplicial complex ∆ is the sequence

f∆
def
= ( f−1, f0, f1, . . .),

where fi counts the i-dimensional faces of ∆.
We start by computing a refined variant of the f -vector of the noncrossing matching

complex Γ(m, n). We define the in-degree of u ∈ Shuf(m, n) by

in(u) def
=

∣∣{u′ ∈ Shuf(m, n) | u′ ⋖bub u
}∣∣.

By Proposition 3.2, in(u) describes the size of the corresponding face λ↓(u) of Γ(m, n).
By Lemma 3.1, a covering pair in Bub(m, n) can either correspond to an indel or to a
transposition. We thus define the indel-degree of u by

in↪→(u) def
=

∣∣{u′ ∈ Shuf(m, n) | u′ ↪→ u
}∣∣,

and the transpose-degree of u by

in⇒(u) def
=

∣∣{u′ ∈ Shuf(m, n) | u′ ⇒ u
}∣∣.

Evidently, in(u) = in↪→(u) + in⇒(u).

Lemma 5.1. The number of elements u ∈ Shuf(m, n) with in⇒(u) = a and in↪→(u) = b is
(m

a )(
n
a)(

m+n−2a
b ).

Proof sketch. Any u ∈ Shuf(m, n) is determined by its interface, i.e. pairs (xs, yt) where
yt immediately precedes xs. Choosing an interface consisting of a such pairs can be
done in (m

a )(
n
a) ways and each such pair is the label of a covering pair corresponding to

a transposition. Any letter of X not in the support of u is the label of a covering pair
corresponding to an indel and any letter of Y in the support of u, but not part of a pair
in the interface, is the label of a covering pair corresponding to an indel. Clearly, these
letters can be obtained in (m+n−2a

b ) ways.

We may thus compute the H-triangle of Bub(m, n), defined by

Hm,n(p, q) def
= ∑

u∈Shuf(m,n)
pin(u)qin↪→(u).
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Proposition 5.2. For m, n ≥ 0, we have

Hm,n(p, q) = ∑
a≥0

(
m
a

)(
n
a

)
pa(1 + pq)m+n−2a.

The f -vector of Γ(m, n) is then obtained as the coefficient sequence of Hm,n(p, 1).

Remark 5.3. Somewhat surprisingly, the polynomial Hm,n(p, 1) appears already in [6,
Corollary 4.8] and was used to establish the rank symmetry of Shuf(m, n) and for show-
ing its decomposition into symmetrically placed Boolean lattices.

Next, we wish to describe the f -polynomial of the noncrossing bipartite complex
∆(m, n). To that end, we define the F-triangle by

Fm,n(p, q) def
= ∑

σ∈∆(m,n)
p|σ∩E|q|σ∩L|.

More precisely, the variable p keeps track of the number of edges per face and the
variable q keeps track of the number of loops per face. The f -vector of ∆(m, n) is obtained
from the coefficient sequence of Fm,n(p, p). It is not immediately obvious, but follows for
instance from the next result that the h-vector of ∆(m, n) is obtained from the coefficient
sequence of Hm,n(p, 1).

Our main result relates the F- and the H-triangle associated with Bub(m, n) by an
explicit variable substitution. This establishes a remarkable connection between the f -
vectors of the noncrossing matching and the noncrossing bipartite complex.

Theorem 5.4. For m, n ≥ 0, we have

Hm,n(p, q) = (p − 1)m+nFm,n

(
1

p − 1
,

1 + p(q − 1)
p − 1

)
.

Equivalently, we have

Fm,n(p, q) = pm+nHm,n

(
p + 1

p
,

q + 1
p + 1

)
.

Proof sketch. Using the shellability of ∆(m, n) and the fact that Bub(m, n) is obtainable
from an orientation of the 1-skeleton of the dual of ∆(m, n) we may relate the reverse
h-vector of ∆(m, n) to the f -vector of Γ(m, n). Some explicit computation then yields the
result.

Example 5.5. By inspection of Figure 2a, we compute

H2,1(p, q) = p3q3 + 3p2q2 + 2p2q + 3pq + 2p + 1 = (1 + pq)3 + 2p(1 + pq)
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in accordance with Proposition 5.2. The evaluation H2,1(p, 1) has the coefficient sequence
(1, 5, 5, 1) which agrees with the f -vector of Γ(2, 1), see Figure 2b. By Theorem 5.4, we
get

F2,1(p, q) = 3p3 + 5p2q + 3pq2 + q3 + 7p2 + 8pq + 3q2 + 5p + 3q + 1.

The evaluation F2,1(p, p) has the coefficient sequence (12, 18, 8, 1), which is the (reverse)
f -vector of ∆2,1, see Figure 3a.

Lastly, we state a relation of the F- and H-triangle associated with Bub(m, n) with a
natural polynomial associated with the shuffle lattice Shuf(m, n). Recall that the Möbius
function of a finite poset P = (P,≤) is defined for all x, y ∈ P by

µP(x, y) def
=


1 if x = y,
−∑x<z≤y µP(x, z) if x < y,
0 otherwise.

It was shown in [6] that Shuf(m, n) is a graded poset. If we denote by rk the rank
function and by µ the Möbius function of the shuffle poset Shuf(m, n), then the M-triangle
of Shuf(m, n) is

Mm,n(p, q) def
= ∑

u,v∈Shuf(m,n)
µ(u, v)prk(u)qrk(v).

The second main outcome of this abstract is the following conjectural relation of the
M-triangle with the F- and H-triangle.

Conjecture 5.6. For m, n ≥ 0, we have

Mm,n(p, q) = (1 − q)m+nHm,n

(
q(p − 1)

1 − q
,

p
p − 1

)
= (pq − 1)m+nFm,n

(
1 − q
pq − 1

,
1

pq − 1

)
.

Example 5.7. It can be verified directly in Figure 1a that

M2,1(p, q) = p3q3 − 5p2q3 + 5p2q2 + 7pq3 − 12pq2 − 3q3 + 5pq + 7q2 − 5q + 1,

which confirms Conjecture 5.6 in this case.

We wish to end this abstract with the following observation. The structural and
enumerative relationships between the bubble lattice and the shuffle lattice as well as the
noncrossing matching and the noncrossing bipartite complex that we have outlined here
is completely analogous to the relationship between remarkable, important structures
associated with a finite irreducible Coxeter group W and a Coxeter element c ∈ W.
More precisely, the analogous structures in this setting are the c-Cambrian lattice and the
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c-noncrossing partition lattice, as well as the canonical join complex of the c-Cambrian lattice
and the c-cluster complex. F-, H- and M-triangles associated with these structures were
defined in [3, 4] and they exhibit the same relations as the ones stated in Theorem 5.4 and
Conjecture 5.6.

Other structures exhibiting a similar behavior were studied for instance in [2, 5]. This
indicates that there should exist a more general setting of which all these structures are
concrete examples.
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