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Abstract. The monopole-dimer model is a signed variant of the monomer-dimer model
which has determinantal structure. We extend the monopole-dimer model for planar
graphs introduced by the second author (Math. Phys. Anal. Geom., 2015) to Cartesian
products thereof and show that the partition function of this model can be expressed as a
determinant of a generalised signed adjacency matrix. We then give an explicit product
formula for three-dimensional grid graphs a la Kasteleyn and Temperley–Fischer, in
which case the partition function turns out to be fourth power of a polynomial when all
grid lengths are even. Finally, we generalise this product formula to k dimensions, again
obtaining an explicit product formula.
Saaransh (सारांश). मोनोपोल-डाइमर मॉडल मोनोमर-डाइमर मॉडल का एक ˃चȥन्हत प्रकार ह,ै ʹजसमें
िनधार्रक संरचना होती ह।ै हम दसूरे लेखक (Math. Phys. Anal. Geom., 2015) द्वारा पेश िकए गए
मोनोपोल-डाइमर मॉडल, जोिक तलीय ग्राफ के Ǻलये पȼरभािषत ह,ै का तलीय ग्राफों के कातɁय गुणन के Ǻलए
िवस्तार करते हैं। अतः दशार्ते हैं िक इस मॉडल का िवभाजन फलन एक सामान्यीकृत एडजेसेंसी आव्यूह के
िनधार्रक के रूप में व्यक्त िकया जा सकता ह।ै इसके अलावा हम ित्र-आयामी िग्रड ग्राफ के Ǻलए एक स्पष्ट उत्पाद
सूत्र प्रस्तुत करते हैं जसैा िक कास्टेǺलन तथा टेम्परली–िफशर ने िद्व-आयामी िग्रड ग्राफ के Ǻलए िकया था।
ित्र-आयामी िग्रड ग्राफ का िवभाजन फलन सभी िग्रड लबंाई सम होने पर एक बहुपद कɃ चौथी घात ह।ै अतं में,
हम इस उत्पाद सूत्र को k आयामों के Ǻलए सामान्यीकृत करते हैं, तथा िफर से एक स्पष्ट उत्पाद सूत्र प्राप्त करते
हैं।
Keywords: dimer model, monopole-dimer model, Cartesian product, plane graph, Pfaf-
fian orientation

1 Introduction
The dimer model originally arose as the study of the physical process of adsorption of di-
atomic molecules (like oxygen) on the surface of a solid. Abstractly it can be thought of as
enumerating perfect matchings in an edge-weighted graph. For planar graphs, Kasteleyn [8]
solved the problem completely by showing that the partition function can be written as
a Pfaffian of a certain adjacency matrix built using a special class of orientations called
Pfaffian orientations on the graph. An immediate corollary of Kasteleyn’s result is that the
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Pfaffian is independent of the orientation. For the case of two-dimensional grid graphs Qm,n,
Kasteleyn [9] and Temperley–Fisher [5, 10] independently gave an explicit product formula.
For example, when m and n are even, horizontal (resp. vertical) edges have weight a (resp.
b), the partition function can be written as

2mn/2
m/2

∏
i=1

n/2

∏
j=1

(
a2 cos2 iπ

m + 1
+ b2 cos2 jπ

n + 1

)
. (1.1)

This formula is remarkable because although each factor is a degree-two polynomial in a and
b with not-necessarily rational coefficients, the product turns out to be a polynomial with
nonnegative integer coefficients. In particular, when a = b = 1, it is not obvious from this
formula that the resulting product is an integer.

There have been attempts to generalise the dimer model while preserving this nice struc-
ture. The natural physical generalisation is the monomer-dimer model, which represents
adsorption of a gas cloud consisting of both monoatomic and diatomic molecules. The ab-
stract version here is the enumeration of all matchings of a graph. This is known to be a
computationally difficult problem [7] and the partition function here does not have such a
clean formula. However, when there is a single monomer on the boundary of a plane graph,
the partition function can indeed be written as a Pfaffian [11]. A lower bound for the parti-
tion function of the monomer-dimer model for d-dimensional grid graphs has been obtained
by Hammersley–Menon [6] by generalising the method of Kasteleyn and Temperley–Fisher.

In another direction, a signed version of monomer-dimer model called the monopole-
dimer model has been introduced by the second author [2] for planar graphs. Configurations
of the monopole-dimer model can be thought of as superpositions of two monomer-dimer
configurations having monomers (called monopoles there) at the same locations. Thus, one
ends up with even loops and isolated vertices. What makes the monopole-dimer model
less physical is that configurations have a signed weight. On the other hand, the partition
function here can be expressed as a determinant. Moreover, it is a perfect square for a
2m × 2n grid graph. A combinatorial interpretation of the square root is given in [3].

In this work, we generalise the monopole-dimer model to certain non-planar graphs in a
canonical way. We formulate this for Cartesian products of planar graphs in Section 3. We
first show that the partition function is a determinant of a generalised adjacency matrix built
using Pfaffian orientations. As in the dimer model, we see immediately that the determinant
is independent of the orientation.

We then focus on the special family of grid graphs in higher dimensions. We give an
explicit product formula for the partition function of the monopole-dimer model on three-
dimensional grid graphs in Section 4 generalising (1.1). One peculiar feature of this partition
function is that it is a fourth power of a polynomial when all side lengths are even. Just as
for the partition function of the monopole-dimer model for two-dimensional grids, it would
be interesting to obtain a combinatorial interpretation of the fourth root. We then briefly
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discuss the higher dimensional case in Section 5 and give a similar explicit product formula
in the even case.

The proofs will appear in a longer version [1]. We begin with the background definitions
and previous results in Section 2.

2 Background
We begin by recalling basic terminology from graph theory. A graph is an ordered pair
G = (V(G), E(G)), where V(G) is the set of vertices of G and E(G) is a collection of
two-element subsets of V(G), known as edges. We will work with undirected graphs and we
will always assume that the graphs are finite and naturally labelled from {1, 2, . . . , |V(G)|}.
We allow multiple edges, but no loops. Recall that a planar graph is a graph which can
be embedded in the plane, i.e. it can be drawn in such a way that no edges will cross each
other. Such an embedding of a planar graph is referred as a plane graph and it divides the
whole plane into regions, each of which is called a face. An orientation on a graph G is
the assignment of arrows to its edges. A graph with an orientation is called an oriented
graph. An orientation on a labelled graph obtained by orienting its edges from lower to
higher labelled vertex is called a canonical orientation.

Definition 1. An orientation on a plane graph G is said to be Pfaffian if it satisfies the
property that each simple loop enclosing a bounded face has an odd number of clockwise
oriented edges. A Pfaffian orientation is said to possess the clockwise-odd property.

4
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1

2

Figure 1: An oriented graph on 4 vertices.

For example, the orientation in Figure 1 is a Pfaffian orientation. Kasteleyn has shown
that every plane graph has a Pfaffian orientation [8]. A dimer covering or perfect matching is
a collection of edges in the graph G such that each vertex is covered in exactly one edge. The
set of all dimer coverings of G will be denoted as M(G). Let G be an edge-weighted graph
on 2n vertices with edge-weight we for e ∈ E(G). Then the dimer model is the collection
of all dimer covers together with the weight of each dimer covering M ∈ M(G) given by
w(M) = ∏e∈M we. The partition function of the dimer model on G is then defined as

ZG := ∑
M∈M(G)

w(M).
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To state Kasteleyn’s celebrated result, recall that the Pfaffian of 2n × 2n skew-symmetric
matrix A is given by

Pf(A) =
1

2nn! ∑
σ∈S2n

sgn(σ) Aσ1,σ2 Aσ3,σ4 . . . Aσ2n−1,σ2n ,

and Cayley’s theorem says that for such a matrix, det(A) = Pf(A)2.

Theorem 2 (Kasteleyn [8]). If G is a plane graph with Pfaffian orientation O, then the
partition function of the dimer model on G is given by ZG = Pf(KG), where KG is a signed
adjacency matrix defined by

(KG)u,v =


we if u → v in O,
−we if v → u in O,
0 otherwise.

Let us now recall the loop-vertex model [2]. Let G be a simple weighted graph on n
vertices with an orientation O, vertex-weights x(v) for v ∈ V(G) and edge-weights av,v′ ≡
av′,v for (v, v′) ∈ E(G). A loop-vertex configuration C of G is a subgraph of G consisting of

• directed loops of even length (with length > 2),

• doubled edges (which can be thought of as loops of length 2),

• isolated vertices,

with the condition that each vertex of G is either an isolated vertex or is covered in exactly
one loop. The set of all loop vertex configurations of G will be denoted as L(G). Figure 2
shows a graph and two loop-vertex configurations on it.

1

3

4
2a1,2

a1,3
a1,4

a2,3
a3,4

(a) A plane graph

2

1

3

4
2

(b) The directed cycle (1234)
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(c) The doubled edge (14) and
isolated vertices 2 and 3

Figure 2: A graph G in (a) and two loop-vertex configurations on it in (b) and (c).

The sign of an edge (v, v′) ∈ E(G), is given by

sgn(v, v′) :=

{
1 if v → v′ in O,
−1 if v′ → v in O.

(2.1)
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Let ℓ = (v0, v1, . . . , v2k−1, v2k = v0) be a directed even loop in G. The weight of the loop ℓ
is given by

w(ℓ) := −
2k−1

∏
i=0

sgn(vi, vi+1) avi,vi+1 . (2.2)

Then the loop-vertex model on the pair (G,O) is the collection L(G) with the weight of a
configuration, C = (ℓ1, . . . , ℓj; v1, . . . , vk) consisting of loops ℓ1, . . . , ℓj and isolated vertices
v1, . . . , vk, given by

w(C) =
j

∏
i=1

w(ℓi)
k

∏
i=1

x(vi). (2.3)

The (signed) partition function of the loop-vertex model is defined as

ZG,O := ∑
C∈L(G)

w(C).

Example 3. Let G be a weighted graph on four vertices with vertex weights x for all the
vertices and edge weights as shown in Figure 2a. Then the weights of the configuration
shown in Figures 2b and 2c are a1,2a2,3a3,4a1,4 and x2a2

1,4. The partition function of the
loop-vertex model on the graph in Figure 2a with canonical orientation is

ZG,O = x4 + a2
1,2x2 + a2

1,3x2 + a2
1,4x2 + a2

2,3x2 + a2
3,4x2 + a2

1,2a2
3,4 + a2

1,4a2
2,3 + 2a1,2a2,3a3,4a1,4.

Theorem 4 ([2, Theorem 2.5]). The partition function of the loop-vertex model on (G,O)
is

ZG,O = det (KG),

where KG is a generalised adjacency matrix of (G,O) defined as:

KG(v, v′) =


x(v) if v = v′,
av,v′ if v → v′ inO,
−av,v′ if v′ → v inO,

0 if (v, v′) /∈ E(G).

(2.4)

Example 5. The generalised adjacency matrix for the graph G in Figure 2a with the canonical
orientation is

KG =


x a1,2 a1,3 a1,4

−a1,2 x a2,3 0
−a1,3 −a2,3 x a3,4
−a1,4 0 −a3,4 x

 ,

and

detKG = x4 + a2
1,2x2 + a2

1,3x2 + a2
1,4x2 + a2

2,3x2 + a2
3,4x2 + a2

1,2a2
3,4 + a2

1,4a2
2,3 + 2a1,2a2,3a3,4a1,4,

which is that same as ZG,O from Example 3.
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If G is a simple vertex- and edge-weighted plane graph and O is a Pfaffian orientation
on it, then the loop-vertex model is called the monopole-dimer model. In that case, it can
be seen [2] that the weight of a loop ℓ = (v0, v1, . . . , v2k−1, v2k = v0) can be written as

w(ℓ) = (−1)number of vertices enclosed by ℓ
2k−1

∏
j=0

avj,vj+1 . (2.5)

Then Theorem 4 shows that the partition function of the monopole-dimer model on a plane
graph is given by a determinant which turns out to be independent of the Pfaffian orientation.

3 Monopole-dimer model on Cartesian products
We now extend the definition of the monopole-dimer model to Cartesian products of plane
graphs. Let us first recall some more definitions.

The degree of a vertex is the number of edges incident to it and an even graph G is one
in which all the vertices have even degree. A cycle decomposition of an even graph G is a
family D consisting of edge-disjoint cycles of G such that

∪
c∈D

E(c) = E(G). (3.1)

Veblen’s theorem [4, Theorem 2.7] shows that a graph admits a cycle decomposition if and
only if it is even.

Definition 6. We say that the sign of a cycle decomposition D = {c1, c2, . . . , ck} of an even
plane graph G is given by

sgn(D) :=
k

∏
i=1

(−1)1+number of vertices in V(G) enclosed by ci . (3.2)

Example 7. For the even plane graph shown in Figure 3a, the sign of its cycle decomposition
{(1, 2, 3, 4), (3, 4, 5, 6), (5, 7)} shown in Figure 3b is

(−1)1+0 × (−1)1+1 × (−1)1+0 = 1.

Recall that a bipartite graph is a graph G whose vertex set can be partitioned into two
subsets X and Y such that each edge of G has one end in X and other end in Y. Bipartite
graphs only have cycles of even length.

Lemma 8. Let G be a connected, bipartite, even plane graph. Then all cycle decompositions
of G have the same sign.
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(b) H split as (1234)(3456)(57)

Figure 3: (a) A plane graph on 7 vertices and (b) a cycle decomposition of it.

Proof sketch. Let D be a cycle decomposition of G. Since G is even and connected, the
boundary of the outer face of G is a closed trail. For simplicity, we suppose the boundary is
a single cycle c. Then by performing certain sign-preserving moves on D, we obtain another
cycle decomposition D1 containing c which has the same sign as D. Let G1 be obtained from
G by removing all the edges of c and the resulting isolated vertices. Note that although G1 can
be disconnected, the regions enclosed by its connected components G1,1, G1,2, . . . , G1,t of G1
will not intersect. Now, D1 \ {c} is a cycle decomposition of G1. By again performing similar
sign-preserving moves on D1 \ {c}, we obtain a cycle decomposition D2 of G containing c and
d1,1, d1,2, . . . , d1,t, the boundary cycles of G1,1, G1,2, . . . , G1,t respectively, such that sgnD1 =
sgnD2. Now remove d1,1, d1,2, . . . , d1,t from G1 to obtain G2 and continue this process. Since
G is finite, this process must stop. In fact, it will stop at the cycle decomposition obtained
by successively including outer boundaries of G1, G2 and so on.

The Cartesian product of two graphs G1 and G2 is the graph G1□G2 with vertex set
V(G1)× V(G2) and edge set{

((u1, u2), (u′
1, u′

2))

∣∣∣∣∣ either u1 = u′
1, (u2, u′

2) ∈ E(G2)

or u2 = u′
2, (u1, u′

1) ∈ E(G1)

}
.

The above definition generalises to the Cartesian product of k graphs denoted as G1□ · · ·□Gk.
We will call edges in G1□ · · ·□Gk of the form ((u1, . . . , ui, . . . , uk), (u1, . . . , u′

i, . . . , uk)) as
Gi-edges. Let Pn denote the path graph on n vertices. Figure 4 shows the Cartesian product
P4□P3. We will use the notation [n] for the set {1, . . . , n}.

Definition 9. We define the oriented Cartesian product of (G1,O1), . . . , (Gk,Ok), denoted
L = (G1□G2□ · · ·□Gk,O), as the graph G1□G2□ · · ·□Gk with orientation O given as
follows. For each i ∈ [k], if ui → u′

i in Oi, then O gives orientation (u1, . . . , ui, . . . , uk) →
(u1, . . . , u′

i, . . . , uk) if ui+1 + ui+2 + · · ·+ uk + (k − i) ≡ 0 (mod 2) and (u1, . . . , u′
i, . . . , uk)

→ (u1, . . . , ui, . . . , uk) otherwise.

Definition 10. The i-projection of a subgraph S of G1□G2□ · · ·□Gk, denoted as S̃i, is the
graph obtained by contracting all but Gi-edges of S.
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8 7 6 5

1211109

Figure 4: The Cartesian product, P4□P3, with a boustrophedon labelling; see Section 4.

Consider k plane, bipartite, simple oriented graphs G1, G2, . . . , Gk with Pfaffian orien-
tations O1,O2, . . . ,Ok respectively, and let L be their oriented Cartesian product. Let
ℓ = (w0, w1, . . . , w2k−1, w2k = w0) be a directed even loop in L, and Li be a cycle decompo-
sition of the i-projection ℓ̃i. For i ∈ [k], let G(i) be the graph G1□ · · ·□Gi−1□Gi+1□ · · ·□Gk.
For (v1, . . . , vi−1, vi+1, . . . , vk) ∈ V(G(i)), let G(i)

v1,...,vi−1,vi+1,...,vk be the induced subgraph of
L given by {(v1, . . . , vi−1, v, vi+1, . . . , vk) ∈ V(L) | v ∈ V(Gi)} and let ei be the number of
edges lying both in ℓ and G(i)

v1,...,vi−1,vi+1,...,vk such that vi+1 + · · ·+ vk + (k − i) ≡ 1 (mod 2).
Then the sign of ℓ is defined by

sgn(ℓ) := −
k−1

∏
i=1

(−1)ei
k

∏
i=1

sgn(Li). (3.3)

Note that the sign of ℓ is well-defined by Lemma 8. Now suppose that L has been given
vertex weights x(w) for w ∈ V(L) and edge weights ae for e ∈ E(L). Then the weight of the
loop ℓ is defined as

w(ℓ) := sgn(ℓ) ∏
e∈E(ℓ)

ae. (3.4)

Definition 11. The (extended) monopole-dimer model on the weighted oriented Cartesian
product L is the collection L of monopole-dimer configurations on L where the weight of
each configuration C = (ℓ1, . . . , ℓj; v1, . . . , vk) is

w(C) =
j

∏
i=1

w(ℓi)
k

∏
i=1

x(vi).

The (signed) partition function of the monopole-dimer model on the oriented Cartesian
product L is

ZL := ∑
C∈L

w(C).

Note that the definition of ZL is independent of the Pfaffian orientations O1,O2, . . . ,Ok.
The following theorem is a generalisation of Theorem 4 when G is plane and O is Pfaffian.
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Theorem 12. Let G1, G2, . . . , Gk be k simple, plane, and bipartite graphs with Pfaffian
orientations O1,O2, . . . ,Ok respectively. The (signed) partition function of the monopole-
dimer model for the weighted oriented Cartesian product L of G1, G2, . . . , Gk is given by

ZL = detKG, (3.5)

where KG is the generalised adjacency matrix defined in (2.4) for L.

The proof strategy is similar to that of Theorem 4.

4 Three-dimensional grids
Recall that Pn is the path graph on n vertices. With the natural labelling on Pn, denote
it with the canonical orientation as (Pn,On). Consider the two-dimensional grid graph
Pl□Pm = {(i, j) | i ∈ [l], j ∈ [m]} whose vertex (i, j) has label 2sl + i if j = 2s + 1 and
2sl − i + 1 if j = 2s. Such a ‘snake-like’ labelling is known as a boustrophedon labelling [6].
With the canonical orientation, denote this graph as (Pl□Pm,Ol,m). Figure 4 shows this
labelling on P4□P3.

Theorem 13. Let G be the oriented Cartesian product of (Pl□Pm,Ol,m) with (Pn,On). Let
vertex weights be x for all vertices of G, edge weights be a, b, c for the edges along the x-, y-
and z-directions respectively. Then the partition function of the monopole-dimer model on
G is given by

ZG =
⌊n/2⌋

∏
j=1

⌊m/2⌋

∏
s=1

⌊l/2⌋

∏
k=1

(
x2 + 4a2 cos2 πk

l + 1
+ 4b2 cos2 πs

m + 1
+ 4c2 cos2 π j

n + 1

)4

×



1 l, n, m ∈ 2N,
T2

n,m(b, c; x) l /∈ 2N, m, n ∈ 2N,
T2

n,l(a, c; x) l, n ∈ 2N, m /∈ 2N,
T2

n,m(b, c; x) T2
n,l(a, c; x) Sn(c; x) l, m /∈ 2N, n ∈ 2N,

T2
m,l(a, b; x) l, m ∈ 2N, n /∈ 2N,

T2
n,m(b, c; x) T2

m,l(a, b; x) Sm(b; x) l, n /∈ 2N, m ∈ 2N,
T2

n,l(a, c; x) T2
m,l(a, b; x) Sl(a; x) l ∈ 2N, m, n /∈ 2N,

x T2
n,m(b, c; x) T2

n,l(a, c; x) T2
m,l(a, b; x) Sn(c; x) Sm(b; x) Sl(a; x) l, m, n /∈ 2N,

where

Sn(c; x) =
⌊n/2⌋

∏
k=1

(
x2 + 4c2 cos2 πk

n + 1

)
,
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and

Tn,l(a, b; x) =
⌊n/2⌋

∏
j=1

⌊l/2⌋

∏
k=1

(
x2 + 4a2 cos2 πk

l + 1
+ 4b2 cos2 π j

(n + 1)

)
.

The proof of Theorem 13 follows a similar strategy to that of [9, 5] for the two-dimensional
dimer model. Here, one has to diagonalise a triple tensor product and various special cases
have to be considered carefully.

We make a few remarks about this result. First, the orientation on G is Pfaffian over all
standard planes and G is non-planar when at least two of l, m, n are greater than 2. Second,
although it is not obvious from Theorem 13, ZG is always a polynomial in x, a, b, c with
nonnegative integer coefficients. Moreover, ZG is the fourth power of a polynomial when
l, m and n are all even and the square of a polynomial when exactly two of l, m and n are
even. Third, the formula in Theorem 13 coincides with the already known partition function
[2] of the two-dimensional grid graph for l = 1 or m = 1 or n = 1. Finally, although it is
not obvious from the construction, the formula is symmetric in all three directions. That is
to say, it is symmetric under any permutation interchanging (a, l), (b, m) and (c, n).

The boustrophedon labelling that induces the orientation over the three-dimensional grid
graph G of Theorem 13 is as follows. The vertex (i, j, k) has label

2tlm + 2s + i if j = 2s + 1, k = 2t + 1,
2tlm + 2sl − i + 1 if j = 2s, k = 2t + 1,
2tlm − 2s − i + 1 if j = 2s + 1, k = 2t,
2tlm − 2sl + i if j = 2s, k = 2t,

where i ∈ [l], j ∈ [m] and k ∈ [n]. Figure 5 shows this labelling on the graph P3□P2□P3.

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

2

Figure 5: The boustrophedon labelling on P3□P2□P3.

Proposition 14. The partition function of the monopole-dimer model on the oriented Carte-
sian product of (Pl□Pm,Ol,m) with (Pn,On) is same as the partition function of the monopole-
dimer model on the oriented Cartesian product of (Pl,Ol) with (Pm□Pn,Om,n).
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Proof sketch. The orientation in both the cases is that induced from the same boustrophedon
labelling. Moreover, the partition function of the monopole-dimer model is same as the
partition function of the loop-vertex model on Pl□Pm□Pn with the canonical orientation
induced from boustrophedon labelling.

5 Higher-dimensional grid graphs
We now generalise our results to higher dimensional grid graphs. For the sake of brevity, we
focus only on the case where all the side lengths are even. The general result will appear
in [1].

Theorem 15. Let G be the oriented Cartesian product of (P2m1□P2m2 ,O2m1,2m2), (P2m3 ,
O2m3), . . . , (P2mk ,O2mk). Let vertex weights be x for all vertices of G and edge weights be ai
for the P2mi-edges. Then the partition function of the monopole-dimer model on G is given
by

ZG =
m1

∏
i1=1

· · ·
mk

∏
ik=1

(
x2 +

k

∑
s=1

4a2
s cos2 isπ

2ms + 1

)2k−1

. (5.1)

The proof strategy is similar to that of [6, Section 4]. Using ideas similar to the proof
of Proposition 14, it can be shown that for s ∈ [k − 1], the formula above coincides with
the partition function of the monopole-dimer model on the oriented Cartesian product of
P2m1 , P2m2 , . . . , P2ms−1 , (P2ms□P2ms+1), P2ms+2 , . . . , P2mk .

As for the three-dimensional case, it is not obvious from the formula for ZG that it is
a polynomial with nonnegative integer coefficients. The formula is also symmetric under
any permutation of (a1, m1), . . . , (ak, mk). Finally, (5.1) tells that the partition function
of monopole-dimer model is the 2(k−1)’th power of a polynomial. Again a combinatorial
interpretation of the underlying polynomial would be interesting.

We end with an example for a well-studied family of graphs.
Example 16. Consider the d-dimensional oriented hypercube, Qd, built as an oriented Carte-
sian product of d copies of (P2,O2) as in Theorem 15. Then the partition function of the
monopole-dimer model on Qd is given by

ZQd = (x2 + a2
1 + · · ·+ a2

d)
2d−1

.
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