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Abstract. We consider acyclic reorientation posets of directed acyclic graphs. We
characterize those which are lattices and provide formulas to compute meets and joins
in these lattices. We next characterize those which are distributive, semidistributive,
congruence normal, or congruence uniform lattices. In the latter case, we introduce a
combinatorial gadget to encode the join irreducibles acyclic reorientations and exploit
it to describe the canonical representations, the congruence lattices, and the polytopal
realizations of the quotients of these acyclic reorientation lattices.

Résumé. Nous considérons les ordres partiels sur les réorientations acycliques des
graphes orientés acycliques. Nous caractérisons ceux qui sont des treillis et donnons
des formules pour calculer les bornes inférieures et supérieures dans ces treillis. Nous
caractérisons ensuite ceux qui sont des treillis distributifs, semi-distributifs, congru-
ence normaux, ou congruence uniformes. Dans le dernier cas, nous introduisons des
gadgets combinatoires qui encodent les réorientations acycliques sup-irréductibles et
les exploitons pour décrire les représentations canoniques, les treillis de congruences,
et les réalisations polytopales des quotients de ces treillis de réorientations acycliques.

Keywords: directed graphs, acyclic orientations, graphical zonotopes, lattices

Fix a (finite and simple) directed acyclic graph D. Consider the poset ARD of all
acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs (with
respect to D). Its minimal element is D, its maximal element is the reverse of D, its cover
relations are given by flipping a single arc, and it is clearly self-dual under reversing all
arcs. For instance, ARD is (isomorphic to) the boolean lattice when D is a forest, and
the weak order on permutations when D is a tournament. See Figure 1.

These acyclic reorientations posets and the underlying flip graphs have been exten-
sively studied, in particular for counting [18], traversing [15], and generating [1, 17] all
acyclic orientations of a graph. Here, we consider acyclic reorientation posets from
a lattice theoretic perspective: after characterizing the directed acyclic graphs D for
which ARD is a lattice, we explore lattice properties of ARD, in particular the com-
binatorics and geometry of the lattice quotients of ARD when it is semidistributive. The
prototypical example is the Tamari lattice [19] seen as quotient of the weak order, its con-
nection with non-crossing partitions, and its realization by the associahedron of [6, 16].

Many details and all proofs omitted in this extended abstract can be found in [8].
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boolean lattice weak order lattice another lattice not a lattice

Figure 1: Some acyclic reorientation posets. The first three are lattices while the fourth
is not. The first is boolean as D is a forest, the second is the weak order as D is a
tournament. The red arcs are reversed while the green arcs are not.

1 Acyclic reorientation lattices

Recall that the transitive reduction (resp. transitive closure) of D is the directed graph
obtained by deleting from (resp. adding to) D all arcs whose endpoints are connected by
a directed path in D of length at least 2. These operations clearly play an important role
for acyclic reorientations: for instance, note that an arc in an acyclic reorientation E of D
is flippable if and only it belongs to the transitive reduction of E.

In this paper, we say that D is vertebrate when the transitive reduction of any induced
subgraph of D is a forest. For instance, any forest and any tournament is vertebrate. Our
starting observation is the following result illustrated in Figure 1.

Theorem 1. The acyclic reorientation poset ARD is a lattice if and only if D is vertebrate.

There are at least two possible proofs of Theorem 1. The first is to observe that
the acyclic reorientation poset of a vertebrate directed acyclic graph can be obtained
from the acyclic reorientation lattice of its transitive reduction by a sequence of convex
doublings [2]. The second is to characterize the sets of arcs of D whose reorientation is
acyclic, and to use it to describe the join and meet operations in the acyclic reorientation
lattice of a vertebrate directed acyclic graph. We now sketch the second approach.

It is classical that a subset B of ([n]2 ) is the inversion set of a permutation of [n] if and
only if both B and ([n]2 )∖ B are transitive. We say that a subset B of arcs of D is (i) closed
if all arcs of D in the transitive closure of B belong to B, (ii) coclosed if its complement is
closed, and (iii) biclosed if it is both closed and coclosed.

Proposition 2. If D is vertebrate, a set of edges is biclosed if and only if its reorientation is acyclic.
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With Proposition 2 at hand, we can refine Theorem 1 as follows. For the weak or-
der on permutations, it is well-known that, for any permutations π1, . . . , πk of [n], the
inversion set of π1 ∨ · · · ∨ πk (resp. of π1 ∧ · · · ∧ πk) is the transitive closure (resp. the
complement of the transitive closure) of the inversion sets (resp. of the complements of
the inversion sets) of π1, . . . , πk. This generalizes for vertebrate directed acyclic graphs.

Theorem 3. If D is vertebrate, then the join (resp. meet) of some acyclic reorientations E1, . . . , Ek
of D is obtained by reversing all arcs of D that belong (resp. do not belong) to the transitive closure
of the arcs reversed (resp. not reversed) in at least one of the reorientations E1, . . . , Ek.

2 Lattice properties

In this section, we assume that D is vertebrate and we study classical lattice properties of
the acyclic reorientation lattice ARD, illustrated in Figure 2. We refer to [3] for a detailed
reference on these lattice properties and just briefly recall the needed definitions.

Before starting, recall first that an element x is join (resp. meet) irreducible if it covers
(resp. is covered by) a unique element denoted x⋆ (resp. x⋆). For instance, the join
(resp. meet) irreducibles of the boolean lattice are the singletons (resp. complements of
singletons), and the join (resp. meet) irreducibles in the weak order on permutations are
the permutations with a single descent (resp. ascent). More generally, it is immediate
that an acyclic reorientation E of D is join (resp. meet) irreducible in ARD if and only if
the transitive reduction of E contains a single reversed (resp. not reversed) arc.

distributive semidistributive not semidistributive

Figure 2: Some acyclic reorientation lattices. The first is distributive, the second is
not distributive but semidistributive, the third is not semidistributive. They are all
congruence normal, hence the first two are also congruence uniform.
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2.1 Distributivity and semidistributivity

A finite lattice (L,≤,∧,∨) is distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (or equivalently
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)) for any x, y, z ∈ L. The following statement says that an
acyclic reorientation lattice is distributive if and only if it is a boolean lattice.

Proposition 4. The poset ARD is a distributive lattice if and only if D is a forest.

A finite lattice (L,≤,∧,∨) is join semidistributive if the equality x ∨ y = x ∨ z im-
plies the distributivity law x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L. Equivalently, L is join
semidistributive if for any cover relation x⋖ y in L, the set K∨(x, y) := {z ∈ L | x ∨ z = y}
has a unique minimal element k∨(x, y). Note that k∨(x, y) is join irreducible. The meet
semidistributivity and the maps K∧ and k∧ are defined dually. A lattice L is semidistributive
if it is both join and meet semidistributive.

Our next statement characterizes semidistributivity for acyclic reorientation lattices.
We say that D is filled when for any directed path π in D, if the arc joining the endpoints
of π belongs to D, then all arcs joining any two vertices of π also belong to D. From
now on, we abbreviate vertebrate and filled by skeletal. For instance, any forest and any
tournament is skeletal. In fact, it is not difficult to check that the skeletal directed acyclic
graphs are precisely the directed forests on which some directed paths are replaced by
tournaments. For example, the first two graphs of Figure 2 are skeletal.

Proposition 5. The poset ARD is a semidistributive lattice if and only if D is skeletal.

Semidistributivity enables to consider canonical representations. A join representation
of x ∈ L is a subset J ⊆ L such that x =

∨
J. Such a representation is irredundant

if x ̸= ∨
J′ for any strict subset J′ ⊊ J. The irredundant join representations of an ele-

ment x ∈ L are ordered by containement of the lower ideals of their elements, i.e. J ≤ J′

if and only if for any y ∈ J there exists y′ ∈ J′ such that y ≤ y′ in L. The canonical join
representation of x is the minimal irredundant join representation of x for this order when
it exists. Its elements are called canonical joinands of x. The canonical meet representations
and the canonical meetands are defined dually.

A classical result affirms that a finite lattice L is join (resp. meet) semidistributive if
and only if any element of L admits a canonical join (resp. meet) representation. More-
over, in a join (resp. meet) semidistributive lattice, the canonical join (resp. meet) rep-
resentation of y ∈ L is y =

∨
x⋖y k∨(x, y) (resp. y =

∧
y⋖z k∧(y, z)). Combining this

description with Proposition 5, we obtain the following description generalizing [14].

Proposition 6. Assume that D is skeletal. The canonical join (resp. meet) representation of an
acyclic reorientation E of D is given by E =

∨
a Ea (resp. E =

∧
a Ea) where:

• a runs over all arcs of D reversed (resp. not reversed) in the transitive reduction of E,
• Ea is the acyclic reorientation of D where an arc is reversed (resp. not reversed) if and only

if it is the only arc reversed (resp. not reversed) in E along a directed path in D joining the
endpoints of a.
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2.2 Congruence normality and uniformity

A congruence of a finite lattice (L,≤,∧,∨) is an equivalence relation on L such that x ≡ x′

and y ≡ y′ implies x∨ y ≡ x′ ∨ y′ and x∧ y ≡ x′ ∧ y′. The lattice quotient L/≡ is the lattice
on the classes of ≡, where for any two classes X and Y, the order is given by X ≤ Y
if and only if x ≤ y for some x ∈ X and y ∈ Y, and the join X ∨ Y (resp. meet X ∧ Y)
is the class of x ∨ y (resp. x ∧ y) for any x ∈ X and y ∈ Y. The lattice quotient L/≡ is
isomorphic to the subposet of L induced by the minimal elements in their classes.

The set con(L) of all congruences of L, ordered by refinement, forms itself a dis-
tributive lattice where the meet is the intersection of relations and the join is the tran-
sitive closure of union of relations. For any x, y ∈ L, there is a unique minimal con-
gruence con(x, y) in which x ≡ y. For a join irreducible element j of L, the congru-
ence con(j⋆, j) is join irreducible in the congruence lattice con(L). The lattice L is called:

• congruence normal if con(j⋆, j) ̸= con(m, m⋆) for any join irreducible j and meet
irreducible m such that j ≤ m,

• congruence uniform if the map j 7→ con(j⋆, j) (resp. m 7→ con(m, m⋆)) is a bijection
between the join (resp. meet) irreducible elements of L and that of con(L).

A lattice is congruence uniform if and only if it is congruence normal and semidistribu-
tive. Using a standard characterization of congruence normal (resp. uniform) lattices in
terms of convex (resp. interval) doublings [2], we obtain the following statements.

Proposition 7. The poset ARD is a congruence normal lattice for any vertebrate acyclic D.

Proposition 8. The poset ARD is a congruence uniform lattice if and only if D is skeletal.

3 Ropes

Assume that D is skeletal, so that ARD is a congruence uniform lattice. We introduce
ropes, non-crossing rope diagrams, and the subrope order, generalizing [14]. They pro-
vide models for the irreducibles, canonical representations, and congruences of ARD.

Figure 3: Correspondence between join irreducibles of ARD and ropes of D.
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3.1 Ropes and irreducibles

A rope of D is a quadruple (u, v,▽,△) where (u, v) is an arc of D and ▽⊔△ is a partition
of the vertices that appear in the interior of a path from u to v in D (or equivalently
since D is filled, the vertices w so that both (u, w) and (w, v) belong to D).

For an acyclic reorientation E of D and an arc (u, v) ∈ D, set ρE
u,v := (u, v,▽E

u,v,△E
u,v)

where ▽E
u,v and △E

u,v are defined by ▽E
u,v := {w ∈ V | (u, w) ∈ D∖E and (w, v) ∈ D ∩ E}

and △E
u,v := {w ∈ V | (u, w) ∈ D ∩ E and (w, v) ∈ D∖E}. This map enables us to con-

nect the ropes of D with the join and meet irreducibles of ARD:
• for a join (resp. meet) irreducible I of ARD, let ρ∨(I) (resp. ρ∧(I)) be the rope ρI

u,v
where (u, v) is the only arc reversed (resp. not reversed) in the transitive restric-
tion of I,

• for a rope ρ := (u, v,▽,△) on D, let I∨(ρ) (resp. I∧(ρ)) be the reorientation of D
where an arc (w, w′) of D is reversed (resp. not reversed) if and only if w ∈ △∪{u}
and w′ ∈ ▽∪ {v} (resp. w ∈ ▽∪ {u} and w′ ∈ △∪ {v}).

These maps are illustrated in Figure 3. To represent a rope (u, v,▽,△), we highlight in
red the arc (u, v) and we mark with down and up triangles the vertices of ▽ and △.

Proposition 9. If D is skeletal, the two maps ρ∨ and I∨ (resp. ρ∧ and I∧) are inverse bijections
between the join (resp. meet) irreducibles of ARD and the ropes of D.

3.2 Non-crossing rope diagrams and canonical representations

Two ropes (u, v,▽,△) and (u′, v′,▽′,△′) are crossing if there are distinct vertices w ̸= w′

such that w ∈ (▽∪ {u, v}) ∩ (△′ ∪ {u′, v′}) and w′ ∈ (△∪ {u, v}) ∩ (▽′ ∪ {u′, v′}). A
non-crossing rope diagram is a collection of pairwise non-crossing ropes of D.

We now connect the non-crossing rope diagrams of D with the elements of ARD:
• for an acyclic reorientation E of D, let δ∨(E) (resp. δ∧(E)) be the set of ropes ρE

u,v
for all arcs (u, v) reversed (resp. not reversed) in the transitive reduction of E,

• for a non-crossing rope diagram δ of D, define the reorientation E∨(δ) :=
∨

ρ∈δ I∨(ρ)
(resp. E∧(δ) :=

∧
ρ∈δ I∧(ρ)) of D.

Proposition 10. If D is skeletal, the two maps δ∨ and E∨ (resp. δ∧ and E∧) are inverse bijections
between acyclic reorientations of D and non-crossing rope diagrams of D.

Proposition 10 enables us to rewrite Proposition 6 in terms of ropes, hence to connect
the canonical join complex of ARD (i.e. the simplicial complex of canonical join repre-
sentations of ARD [14]) to the noncrossing rope complex of D (i.e. the simplicial complex
of non-crossing rope diagrams of D). These complexes are illustrated in Figure 3.

Corollary 11. Assume that D is skeletal. The canonical join (resp. meet) representation of any
acyclic reorientation E of D is E =

∨
ρ∈δ∨(E) I∨(ρ) (resp. E =

∧
ρ∈δ∧(E) I∧(ρ)). Hence, the

canonical join (resp. meet) complex of ARD is isomorphic to the non-crossing rope complex of D.
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3.3 Subrope order and congruences

Recall from Section 2.2 that the set con(L) of congruences of a lattice L, ordered by
refinement, is a distributive lattice. When L is congruence uniform, con(L) is isomorphic
to the set of lower ideals of the forcing order on join irreducibles of L, defined by j ≺ j′ if
con(j′⋆, j′) refines con(j⋆, j). Moreover, for a congruence ≡ of L corresponding to a lower
ideal I of the forcing order,

• an element of L is minimal in its ≡-class if and only if all the join irreducibles in
its canonical join representation belong to I,

• the canonical joinands of a congruence class X in L/≡ are the classes of the canon-
ical joinands of the minimal element in X.

Dual statements hold using meets instead of joins. In view of these statements, un-
derstanding the congruences and quotients of a congruence uniform lattice amounts to
understanding the forcing order on the join irreducibles of L and its lower ideals.

For acyclic reorientation lattices, the forcing order is not difficult to describe in terms
of ropes. A rope ρ := (u, v,▽,△) is a subrope of a rope ρ′ := (u′, v′,▽′,△′) if and only
if {u, v} ⊆ {u′, v′} ∪▽′ ∪△′ and ▽ ⊆ ▽′ while △ ⊆ △′. The subrope order is the order
on ropes of D defined by ρ ≺ ρ′ if ρ is a subrope of ρ′.

Proposition 12. Assume that D is skeletal. For any two join irreducibles J and J′ of the acyclic
reorientation lattice ARD, J forces J′ if and only if ρ∨(J) is a subrope of ρ∨(J′).

Corollary 13. If D is skeletal, the congruence lattice of ARD is isomorphic to the lattice of lower
ideals of the subrope order for D.

Throughout the end of this paper, we denote by I≡ the lower ideal of the subrope
order corresponding to a congruence ≡ of ARD.

Corollary 14. Assume that D is skeletal. For any congruence ≡ of ARD,
• an acyclic reorientation E of D is minimal in its ≡-class if and only if δ∨(E) ⊆ I≡,
• ARD/≡ is isomorphic to the subposet of ARD induced by {E ∈ ARD | δ∨(E) ⊆ I≡}.

A symmetric statement holds for maximal elements and δ∧.

Example 15. Fix a pair (℧, Ω) of subsets of vertices of D. The coherent congruence ≡(℧,Ω) is
the congruence of ARD whose rope ideal is the set I(℧,Ω) of ropes (u, v,▽,△) of D with ▽ ⊆ ℧
and △ ⊆ Ω. In particular, we call

• sylvester congruence of ARD the congruence ≡(V,∅), and Tamari lattice of D the quo-
tient ARD/≡(V,∅), generalizing [19]. See Figure 4.

• Cambrian congruences of ARD the coherent congruences ≡(℧,Ω) such that ℧ ⊔ Ω = V,
and Cambrian lattices of D the corresponding quotients of ARD, generalizing [13].

The coherent congruences of ARD are the analogues of the permutree congruences of the weak
order [9]. They share many interesting properties developed in [8, Sect. 5.4]. We conjecture that:

• the graph of the Tamari lattice is regular if and only if D has no induced or or ,
• the Cambrian lattices of D are equinumerous if and only if D has no induced .
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Figure 4: The subrope order, the sylvester congruence, and the Tamari lattice on D.

4 Quotient fans and quotientopes

We now switch to the geometric side of this paper. As originally observed in [4], the
acyclic reorientation poset ARD can be interpreted geometrically on the graphical fan
of D or on the graphical zonotope of D. When D is skeletal, we consider the quotient
fans of the congruences of ARD and show that they are normal fans of quotientopes.

4.1 Graphical fan, shards, and quotient fans

Graphical fan. We work in the vector space RV indexed by the vertex set V of D. We
denote the standard basis by (ev)v∈V , and let 1U := ∑u∈U eu for U ⊆ V. The graphical
arrangement HD of D is the arrangement of the hyperplanes Huv :=

{
x ∈ RV

∣∣ xu = xv
}

for all arcs (u, v) ∈ D. It defines the graphical fan FD of D, whose chambers are the
closures of the connected components of RV ∖

⋃
(u,v)∈D Huv. See Figure 5. The cones

of FD are in bijection with ordered partitions of D, i.e. pairs (µ, ω) where
• µ is a partition of V where each part induces a connected subgraph of D,
• ω is an acyclic reorientation on the quotient graph D/µ.

In particular, the chambers of FD correspond to the acyclic reorientations of D, and
the rays of FD correspond to the biconnected subsets of D (i.e. a non-empty connected
subset of V whose complement in its connected component of D is also non-empty and
connected). The Hasse diagram of ARD is isomorphic to the dual graph of the graphical
fan FD, oriented by ωD := ∑(u,v)∈A ev − eu.

For instance, when D is a tournament on [n], the graphical fan FD is the braid fan,
defined by the hyperplanes Hij for 1 ≤ i < j ≤ n. Its cones correspond to ordered
partitions of [n], its regions to permutations of [n], its rays to proper subsets of [n], and
its dual graph is isomorphic to the Hasse diagram of the weak order on Sn.
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Shards and quotient fan. Assume that D is skeletal, so that ARD is a congruence
uniform lattice. Generalizing [11, 12], define the shard of a rope ρ := (u, v,▽,△) of D as

Σρ :=
{

x ∈ RV ∣∣ xw ≤ xu = xv ≤ xw′ for any w ∈ ▽ and w′ ∈ △
}

.

For a congruence ≡ of ARD, the quotient fan F≡ is then defined equivalently as follows:
• the chambers of F≡ are obtained by glueing the chambers of the graphical arrange-

ment of D corresponding to acyclic reorientations in the same class of ≡,
• the union of the walls of F≡ is the union of the shards Σρ for ρ in the rope ideal I≡.

The Hasse diagram of the quotient ARD/≡ is isomorphic to the dual graph of the
quotient fan F≡, oriented in the direction ωD := ∑(u,v)∈A ev − eu.

We call sylvester fan of D the quotient fan for the sylvester congruence. See Figure 5.

4.2 Graphical zonotope, shard polytopes, and quotientopes

Graphical zonotope. The graphical zonotope ZD is the Minkowski sum of the segments
[eu, ev] for all (u, v) ∈ A. The graphical fan FD is the normal fan of the graphical zono-
tope ZD. Hence, the faces of ZD are in bijection with ordered partitions of D. In particu-
lar, the vertices of ZD correspond to the acyclic reorientations of D, and the facets of ZD
correspond to the biconnected subsets of D. The Hasse diagram of ARD isomorphic to
the graph of ZD, oriented in the direction ωD := ∑(u,v)∈A ev − eu.

For instance, when D is a tournament on [n], the graphical zonotope ZD coincides
up to a translation of vector 1 with the classical permutahedron, defined equivalently as:

• the convex hull of the points ∑i∈[n] σi ei for all permutations σ of [n],
• the intersection of the hyperplane

{
x ∈ Rn

∣∣ ⟨ 1 | x ⟩ = (n+1
2 )

}
with the halfspaces{

x ∈ Rn
∣∣ ⟨ 1U | x ⟩ ≥ (|U|+1

2 )
}

for all proper subsets ∅ ̸= U ⊊ [n],
• the Minkowski sum of the vector 1 and the segments [ei, ej] for all 1 ≤ i < j ≤ n.

Figure 5: The graphical arrangement, the graphical zonotope, the sylvester fan, and
the associahedron of a skeletal directed acyclic graph D.
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Quotientopes and associahedra. Assume that D is skeletal, so that ARD is a congru-
ence uniform lattice. The main result of this section is the following statement.

Theorem 16. Assume that D is skeletal. For any congruence ≡ of ARD, the quotient fan F≡
is the normal fan of a polytope.

We call quotientope any polytopal realization of the quotient fan F≡. We provide
two general approaches to construct quotientopes in Theorems 17 and 19, and we dis-
cuss a third approach specific to the sylvester, Cambrian, and coherent congruences in
Proposition 20.

We call associahedron for D any quotientope for the sylvester congruence ≡(V,∅). See
Figure 5. Following Example 15, we conjecture that:

• the associahedron for D is simple if and only if D has no induced or or ,
• the quotientopes of all Cambrian congruences have isomorphic face lattices if and

only if D has no induced .

Quotientopes from classical associahedra. Our first approach to realize the quotient
fan F≡ as a polytope is based on the associahedra [16, 6, 5]. Recall first that when D
is the increasing tournament on [n], the sylvester fan is the normal fan of the classical
associahedron, defined equivalently as:

• the convex hull of the points ∑j∈[n] ℓ(T, j) r(T, j) ej for all binary trees T on n nodes,
where ℓ(T, j) and r(T, j) respectively denote the numbers of leaves in the left and
right subtrees of the node j of T (labeled in inorder), see [6],

• the intersection of the hyperplane
{

x ∈ Rn
∣∣ ⟨ 1 | x ⟩ = (n+1

2 )
}

with the halfspaces{
x ∈ Rn

∣∣ 〈 1[a,b]
∣∣ x

〉
≥ (b−a+2

2 )
}

for all intervals 1 ≤ a ≤ b ≤ n, see [16],
• the Minkowski sum of △[a,b] for all intervals 1 ≤ a ≤ b ≤ n, where for I ⊆ [n],

△I := conv {ei | i ∈ I} is the face of the standard simplex △[n] labeled by I, see [10].
Similar polytopal realizations were constructed for the quotient fans of the Cambrian
congruences of the weak order in [5]. Here, we skip the precise vertex, facet, and
Minkowski descriptions of these associahedra and refer to [5] for details. We just need
to observe that, for the principal congruence whose rope ideal is the lower ideal gen-
erated by a rope ρ of D, the quotient fan Fρ is the normal fan of an associahedron Aρ

obtained by embedding a Cambrian associahedron of [5] in RV . Mimicking [7, Theo-
rem 1], we now observe that any quotient fan can be realized as a Minkowski sum of
(low dimensional) Cambrian associahedra of [5].

Theorem 17. Assume that D is skeletal. Consider any congruence ≡ of ARD, and let ρ1, . . . , ρp
denote the ropes generating the lower ideal I≡ of the subrope order. Then the quotient fan F≡ is

• the common refinement of the Cambrian fans Fρ1 , . . . ,Fρp ,
• the normal fan of the Minkowski sum of the Cambrian associahedra Aρ1 , . . . ,Aρp .
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Quotientopes from shard polytopes. Our second approach to realize the quotient
fan F≡ as a polytope is based on the shard polytopes introduced in [7]. Consider a
rope ρ := (u, v,▽,△) and let π denote the directed path from u to v in the transitive
reduction of D. Define a ρ-alternating matching as a pair (M▽, M△) with M▽ ⊆ {u} ∪▽
and M△ ⊆ △∪ {v} such that M▽ and M△ are alternating along π. The shard poly-
tope SPρ is the polytope of RV defined as the convex hull of the vectors 1M▽ − 1M△ for
all ρ-alternating matchings (M▽, M△). For instance, the shard polytope SPρ of a rope of
the form ρ := (u, v,▽,∅) is the face △{u,v}∪▽ of the standard simplex, translated by the
vector −ev. The following statement is the fundamental property of shard polytopes.

Proposition 18. Assume that D is skeletal. For any rope ρ of D, the union of the walls of the
normal fan of the shard polytope SPρ contains the shard Σρ and is contained in the union of the
shards Σρ′ for all subropes ρ′ of ρ.

Based on Proposition 18, we obtain polytopal realizations of all lattice quotients
of ARD as Minkowski sums of shard polytopes.

Theorem 19. Assume that D is skeletal. For any congruence ≡ of ARD and any positive coeffi-
cients s ∈ (R>0)

I≡ , the quotient fan F≡ is the normal fan of the Minkowski sum ∑ρ∈I≡ sρ SPρ.

Associahedra as removahedra. Finally, we focus on quotientopes for coherent congru-
ences and more specifically on associahedra. The following statement, visible in Figure 5,
generalizes [16, 10].

Proposition 20. Assume that D is skeletal. The sylvester fan F(V,∅) is the normal fan of the
associahedron AD defined equivalently as

• the polytope obtained from the graphical zonotope ZD by deleting all facet inequalities
corresponding to biconnected subsets U of D not connected in the transitive reduction of D,

• the Minkowski sum of the faces △π of the standard simplex △V , for all directed paths π

in the transitive reduction of D whose endpoints are connected by an arc of D.

In contrast, we are still missing a simple vertex description of the associahedron AD
similar to that of [6] for the classical associahedron.

Note that the construction of Proposition 20 cannot provide a quotientope for any
congruence of ARD. However, based on computer experiments, we conjecture that:

• For any coherent congruence ≡(℧,Ω), the quotient fan F(℧,Ω) is the normal fan
of the polytope obtained by deleting from the facet description of the graphical
zonotope ZD the inequalities normal to the rays of the graphical fan FD that are
not rays of the quotient fan F(℧,Ω). This would extend the permutreehedra of [9].

• For a Cambrian congruence (i.e. with ℧⊔ Ω = V), the resulting polytope coincides
with the Minkowski sum of the shard polytopes of the ropes of I(℧,Ω). This would
extend the case of Cambrian congruences of the weak order treated in [7].
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