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Abstract. The neighborhood complex of a graph was introduced by Lovász to provide
topological lower bounds on chromatic number, and more general homomorphism
complexes of graphs were further studied by Babson and Kozlov. Such ‘Hom com-
plexes’ are also related to reconfiguration problems as well as a notion of discrete
homotopy. Here we initiate the detailed study of Hom complexes for directed graphs
(digraphs). For any pair of digraphs G and H we consider the polyhedral complex
−−→
Hom(G, H) that parametrizes the digraph homomorphisms f : G → H. Such com-
plexes have applications in the study of chains in graded posets and cellular resolu-
tions of monomial ideals.

We study topological properties of
−−→
Hom complexes and relate them to graph opera-

tions including products, adjunctions, and foldings. We introduce the notion of the
neighborhood complex of a digraph and establish several properties regarding its
topology, including its homotopy type as a

−−→
Hom complex, dependence on directed

bipartite subgraphs, and vanishing theorems for higher homology. Inspired by the no-
tion of reconfiguration for digraph colorings we study the connectivity of

−−→
Hom(G, Tn)

for Tn a tournament, obtaining a complete answer for the case of transitive Tn. Finally
we use paths in the internal hom objects of directed graphs to define various notions
of homotopy, and discuss connections to the topology of

−−→
Hom complexes.

Keywords: digraph, directed homomorphism complex, directed neighborhood com-
plex, tournament, reconfiguration, homotopy

1 Introduction and background

The study of the chromatic number of graphs and more general graph homomorphisms
is an active area of research (see for instance the recent monograph [13]). In his seminal
proof of Kneser’s conjecture Lovász [16] introduced topological methods to the study of
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graph colorings via the neighborhood complex N (G) of a graph G. Using a Borsuk–
Ulam type argument he showed that the topology (connectivity) of N (G) provides a
lower bound on χ(G), the chromatic number of G.

It turns out that the neighborhood complex can be recovered (up to homotopy) as a
special case of a more general notion of a homomorphism complex Hom(T, G), parametriz-
ing all graph homomorphisms from T to G (with N (G) being the special case that
T = K2). Details of this construction were worked out by Babson and Kozlov in [2].
Since these original works, several authors have studied homomorphism complexes and
their applications to various combinatorial problems. We refer to [11] for an overview of
these developments.

As Kozlov [15] has pointed, one can define a Hom complex in any category where there
is notion of a multihomomorphism between objects. In [17] Matsushita considered Hom
complexes of ‘r-sets’, which include hypergraphs and other generalizations of graphs.
He showed how such complexes can be modeled by simplicial sets and how many re-
sults from Hom complexes of graphs, including the ×-homotopy theory of [8], can be
extended to this setting.

In this work we apply these ideas to the class of directed graphs (or digraphs for short).
For two digraphs G and H we consider the complex

−−→
Hom(G, H) that parametrizes ho-

momorphisms f : G → H. We will see that many of the categorical properties of such
complexes that were satisfied in the undirected setting carry over to this context. Some
of our results follow directly from the general theory of homomorphism complexes al-
luded to above, but in many cases we require new tools and constructions that seem
specific to the directed graph setting. At the same time we will see that the

−−→
Hom com-

plexes of digraphs exhibit behavior that is not seen in the undirected setting, providing
insight into the nuances of the category of directed graphs.

We consider homomorphism complexes of digraphs to be a natural area of study
in its own right, but we see how these concepts also connect to several other areas of
existing research. For instance in [4] Braun and Hough study a morphism complex
associated to maximal chains in a graded poset. These complexes can be recovered as
−−→
Hom(T, G(P)) complexes of directed graphs by considering the Hasse diagram G(P) of
the underlying poset P, and choosing T to be a directed path.

Homomorphism complexes of directed graphs also make an appearance in commu-
tative algebra. In [9] the first author and Engström showed that minimal resolutions of
the class of cointerval monomial ideals are supported on complexes that can be described
as digraph homomorphism complexes. The idea of using homomorphism complexes to
describe resolutions of monomial ideals was further investigated by Braun, Browder, and
Klee in [3], where they considered ideals defined by nondegenerate morphisms between
simplicial complexes. It is our hope that a thorough understanding of homomorphism
complexes of digraphs may lead to further applications of this kind.
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In addition, the 1-skeleton of
−−→
Hom(G, H) provides a natural model to study recon-

figuration questions regarding homomorphisms of directed graphs. In many areas of
combinatorics, one is interested in moving among solutions to a given problem via a
reconfiguration graph. This has practical applications when exact counting of solutions is
not possible in reasonable time, in which case Markov chain simulation can be used. For
these questions the connectedness, diameter, realizability, and algorithmic properties of
the configuration graph are typically studied (see [18] for a survey). In our context a
pair of homomorphisms of directed graphs f , g : G → H will be considered adjacent if
f and g agree on all but one vertex, defining a reconfiguration graph that corresponds
to the 1-skeleton of

−−→
Hom(G, H). For undirected graphs the connectivity and diameter of

this graph are well studied with many results and open questions, but it seems that the
analogous questions for digraphs have not been explored.

Finally, the connectivity and higher topology of
−−→
Hom(G, H) is also a natural place

to consider a notion of homotopy for directed graphs. For any two digraphs G and H
the 0-cells of

−−→
Hom(G, H) are given by the homomorphisms G → H, and hence paths in

the 1-skeleton of
−−→
Hom(G, H) provide a natural notion of homotopy between them. This

perspective was investigated for undirected graphs by the first author in [8] and with
Schultz in [10], where the resulting notion was called ×-homotopy. In both the undi-
rected and directed setting, homotopy can be described by certain paths in the exponen-
tial graph HG, and can also be recovered via a certain ‘cylinder’ object. For digraphs we
see that HG is itself a directed graph, and there is an additional subtlety regarding which
notion of path in HG one considers. This leads to a hierarchy of homotopies which relate
to homomorphism complexes and other topological constructions, and also connect to
existing theories from the literature (see for instance [1] and [12]).

2 Definitions and examples

2.1 The category of directed graphs and
−−→
Hom complexes

For us a directed graph (or digraph) G = (V(G), E(G)) consists of a finite vertex set V(G)
and an edge set E(G) ⊆ V(G)× V(G). Hence our digraphs have at most one directed
edge from any vertex to another, and may have loops (v, v). Also note that we allow both
(v, w) ∈ E(G) and (w, v) ∈ E(G) (in which we have a bidirected edge). If G is a digraph
we let Go denote the subgraph of G induced on the set of looped vertices. If (v, w) is an
edge in G we will often write v ∼ w and say that ‘v is adjacent to w’. If G is a digraph
and v ∈ V(G) we define the out-neighborhood and in-neighborhood of v as

−→
N G(v) = {w ∈ V(G) : (v, w) ∈ E(G)},
←−
N G(v) = {w ∈ V(G) : (w, v) ∈ E(G)}.
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For any two directed graphs G and H a (digraph) homomorphism is a vertex set map-
ping f : V(G) → V(H) that preserves adjacency, so that if (x, y) ∈ E(G) we have
( f (x), f (y)) ∈ E(H). We let

−−→
Hom0(G, H) denote the set of all directed graph homo-

morphisms from G to H.
If G and H are directed graphs the (categorical) product G× H is the directed graph

with vertex set V(G×H) = V(G)×V(H) and with adjacency given by ((g, h), (g′, h′)) ∈
E(G × H) if (g, g′) ∈ E(G) and (h, h′) ∈ E(H). Given directed graphs G and H the
exponential graph HG is the digraph with vertex set given by all vertex set mappings
f : V(G)→ V(H) with adjacency given by ( f , g) is a directed edge if whenever (v, v′) ∈
E(G) we have ( f (v), g(v′)) ∈ E(H). With this definition one can check that for any
digraphs G, H, and K, we have a natural bijection of sets

φ :
−−→
Hom0(G× H, K)

∼=−→ −−→Hom0(G, KH).

We next turn to the main definition of the paper. For this we follow closely the
construction of the Hom complex of undirected graphs as studied in [2]. Here if G and
H are directed graphs we define a multihomomorphism to be a map α : V(G)→ 2V(H)\{∅}
such that if (v, w) ∈ E(G) we have α(v)× α(w) ⊆ E(H). We let ∆V(H) denote the simplex
whose vertex set is V(H), and use C(G, H) to denote the polyhedral complex given by
the direct product ∏x∈V(G) ∆V(H). The cells of C(G, H) are given by direct products of
simplices ∏x∈V(G) σx.

Definition 2.1. Suppose G and H are directed graphs. Then
−−→
Hom(G, H) is the polyhe-

dral subcomplex of C(G, H) with cells given by all multihomomorphisms α : V(G) →
2V(H)\{∅}. An element

∏
x∈V(G)

σx ∈ C(G, H)

is in
−−→
Hom(G, H) if and only if for all (x, y) ∈ E(G) we have (u, v) ∈ E(H) for any u ∈ σx

and v ∈ σy. In particular the vertex set of
−−→
Hom(G, H) is given by the set

−−→
Hom0(G, H) of

all directed graph homomorphisms f : G → H.

Note that for directed graphs G and H the set of all multihomomorphisms natu-
rally forms a poset P(G, H), where α ≤ β if α(v) ⊆ β(v) for all v ∈ V(G). The poset
P(G, H) can be seen to be the face poset of the regular CW-complex

−−→
Hom(G, H). If

we let |P(G, H)| denote the geometric realization of the order complex of this poset we
then have that |P(G, H)| is the barycentric subdivision of

−−→
Hom(G, H), so that in particular

|P(G, H)| and
−−→
Hom(G, H) are homeomorphic. In many of our proofs we will think of

−−→
Hom(G, H) as a poset, by which we mean the poset P(G, H) described above.

We note that we can recover any complex Hom(G, H) of undirected graphs via our
construction in the ‘usual’ way of embedding graphs into the category of directed
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graphs. Namely, given undirected graphs G and H we construct directed graphs Ĝ
and Ĥ where for each edge in the underlying graph we introduce a bidirected edge
(a directed edge in each direction). One can then see that

−−→
Hom(Ĝ, Ĥ) = Hom(G, H).

Hence the construction of
−−→
Hom complexes for digraphs is in particular a generalization

of the theory for graphs. We also point that if P and Q are graded posets then a strictly
order preserving poset map P → Q can be thought of as a homomorphism of directed
graphs G(P) → G(Q), where G(P) is the Hasse diagram of P thought of as a directed
graph. Hence our construction of

−−→
Hom complexes for directed graphs generalizes the

work of Braun and Hough in [4], where the topology of complexes of maximal chains in
a graded poset is studied.

Inspired by constructions in the undirected setting, we also introduce notions of
directed neighborhood complexes as follows.

Definition 2.2. Suppose G is a directed graph. The out-neighborhood complex
−→N (G) is the

simplicial complex on vertex set {v ∈ V(G) : indeg(v) > 0}, with facets given by the out
neighborhoods

−→
N G(v) for all v ∈ V(G).

The in-neighborhood complex
←−N (G) has vertex set {v ∈ V(G) : outdeg(v) > 0}, and

facets given by the in-neighborhoods
←−
N G(v) for all v ∈ V(G).

1

2

3

4

5

(a) G

3

2

4
1

(b)
−→N (G)

3

2 5

4
1

(c)
←−N (G)

Figure 1: A graph G, along with its out- and in-neighborhood complexes.

2.1.1 Examples

We next discuss some examples of
−−→
Hom complexes. Here we let

−→
L n,
−→
C n and

−→
Kn denote

the directed path graph 1 → 2 → · · · → n, directed cycle graph 1 → 2 → · · · → n → 1,
and the transitive n-tournament, respectively. We have the following easy observations.

•
−−→
Hom(

−→
L r,
−→
L s) is a disjoint union of s− r+ 1 points if s ≥ r, and is empty otherwise.

•
−−→
Hom(

−→
C r,
−→
C s) is a disjoint union of s points if s divides r, and is empty otherwise.

•
−−→
Hom(

−→
K n−1,

−→
Kn) is a path on n vertices.
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T6 −−→
Hom(

−→
K 3, T6)

Figure 2: The tournament T6 and its complex of morphisms from the acyclic 3-
tournament.

1

2

3

4

5
6

7

T7

0,4,1 6,3,0

6,3,0 0,4,1

6,4,1

6,3,1 6,4,1

6,3,1

−−→
Hom(

−→
C 3, T7) ∼= Möbius strip

Figure 3: The tournament T7 and its complex of morphisms from the 3-cycle
−→
C 3.

3 Summary of results

We next give an overview of our contributions, and refer to [11] for precise statements
and proofs.

3.1 Structural results

Our first collection of results involve structural properties of the
−−→
Hom complexes that

parallel those of homomorphism complexes in the undirected setting. These include
functorial properties of

−−→
Hom(−,−) as well as graph operations that induce homotopy

equivalences on the relevant complexes. In this setting we will often describe our ho-
motopy equivalences in terms of poset maps which induce strong homotopy equivalences
on the underlying topological spaces. We refer to [11] for further discussion. Our first
result involves products and adjunctions.

Theorem 3.1. For digraphs A, B, and C, we have strong homotopy equivalences

1.
−−→
Hom(A, B× C) ≃ −−→Hom(A, B)×−−→Hom(A, C);
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21
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6

O6

1,3,2

1,5,2

1,5,4

1,3,4

6,3,2

6,5,2

6,3,4

6,5,4

2,1,3

2,6,3

2,6,5

2,1,5

4,1,3

4,6,3

4,1,5

4,6,5

3,2,1

3,4,1

3,4,6

3,2,6

5,2,1

5,4,1

5,2,6

5,4,6

−−→
Hom(

−→
C 3, O6)

Figure 4: The octahedral graph O6 and its complex of morphisms from the 3-cycle
−→
C 3.

2.
−−→
Hom(A× B, C) ≃ −−→Hom(A, CB).

As an important consequence of the above we have
−−→
Hom(G, H) ≃ −−→Hom(1, HG),

where 1 is the graph consisting of a single looped vertex. This latter complex can be
described as a clique complex of a certain subgraph of HG, we refer to [11] for details.

Our next result involves the notion of a folding in the digraph setting. Here if v, w ∈
V(G) are vertices of a digraph G with the property that

−→
N G(v) ⊆

−→
N G(w) and

←−
N G(v) ⊆←−

N G(w) then we have a homomorphism G → G\{v} given by v 7→ w (and u 7→ u for all
u ̸= v) called a (directed) folding.

Theorem 3.2. If G → G\{v} is a directed folding then for any digraph H we have strong
homotopy equivalences

1.
−−→
Hom(H, G) ≃ −−→Hom(H, G\{v});

2.
−−→
Hom(G\{v}, H) ≃ −−→Hom(G, H).

Example 3.3. As an example of a folding we refer to Figure 5. Here we let C1
3 denote

the directed graph on vertex set [4] and E(C1
3) = E(

−→
C 3) ⊔ {(4, 1)}. Note that we have a

directed folding C1
3 →

−→
C 3.

The functorial properties of the
−−→
Hom complexes also allow for a general obstruc-

tion theory for digraph homomorphisms in the spirit of the ‘topological lower bounds’
on chromatic number discussed above. In this context a natural example is given by an
application of Dold’s theorem to the free Z3-action on the complexes

−−→
Hom(

−→
C 3, G) for var-

ious choices of G. For example if G is any digraph with the property that
−−→
Hom(

−→
C 3, G)

is 2-connected then G does not admit a homomorphism into the graph T7 depicted in
Figure 3. We again refer to [11] for more discussion.



8 A. Dochtermann and A. Singh

T5 −−→
Hom(

−→
C 3, T5)

−−→
Hom(C1

3 , T5)

Figure 5: The tournament T5 and two of its (homotopy equivalent)
−−→
Hom complexes.

3.2 Topology of directed neighborhood complexes

Our next results involve the topology of the out- and in-neighborhood complexes
−→N (G)

and
←−N (G), as defined above. We refer to [11] for details and precise statements but we

summarize our results here. Our first theorem compares the topology of the out- and
in-neighborhood complexes of digraphs.

Theorem 3.4. For any directed graph G we have homotopy equivalences

−→N (G) ≃ ←−N (G) ≃ −−→Hom(K2, G).

In [11] we provide three proofs of this theorem, including the observation that
−→N (G)

and
←−N (G) can be viewed as dual nerves of a relation in a Dowker type construction. We

also prove that any simplicial complex can be recovered up to isomorphism as
−→N (G)

for some directed graph G. This stands in contrast to the undirected setting, where the
neighborhood complex must be homotopy equivalent to a space with a free Z2-action.

Again motivated by results in the undirected setting, we next address the effect that
directed bipartite subgraphs have on the topology of directed neighborhood complexes.
Here

−→
K m,n is the graph with vertex set [m] ∪ [n] and with all directed edges {(i, j) : i ∈

[m], j ∈ [n]}. We then have the following result, which extends an analogous property
for neighborhood complexes of undirected graphs first established by Kahle in [14].

Theorem 3.5. If a digraph G does not contain a copy of
−→
K m,n (for any m + n = d) then the

complex
−→N (G) admits a strong deformation retract onto a complex of dimension at most d− 3.

Our main result in this setting is a vanishing theorem regarding the homology of the
neighborhood complexes. In what follows a digraph G is simple if for any pair of vertices
u, v ∈ V(G) we never have (u, v) ∈ E(G) and (v, u) ∈ E(G). Also recall that a simplicial
complex X is n-Leray if H̃i(

−→N (G)) = 0 for all i ≥ n, and that this property holds for any
induced subcomplex. We then have the following.
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Theorem 3.6. If G is a simple directed graph on at most 2n + 2 vertices then
−→N (G) is n-Leray.

This result is tight in the sense that there exists a digraph Tm on m = 2n + 3 vertices
with

−→N (Tm) ≃ Sn, see [11]. In [11] we also discuss an operation on digraphs G that
has the effect of suspending (up to homotopy equivalence) the corresponding complex
−→N (G). This is a digraph analogue of the Mycielskian µ(G) of an undirected graph G,
and extends results of Csorba from [7].

3.3 Reconfiguration into tournaments

Our next collection of results involve complexes of the form
−−→
Hom(G, Tn), where Tn is a

tourmanent (an orientation of the complete graph) on n vertices. Tournaments play an
important role in digraph theory, and for instance homomorphisms G → Tn can be used
to define a notion of oriented chromatic number χo(G). We are interested in properties of
−−→
Hom(G, Tn) and how they compare to homomorphism complexes of undirected graphs.
In particular the connectivity of

−−→
Hom(G, Tn) is a natural place to study reconfiguration

questions as a digraph analogue of the well-studied question of mixings of (undirected)
graph colorings. In this context one is interested in the connectivity and diameter of the
(1-skeleton of the) complex

−−→
Hom(G, Tn).

We mostly study the case that Tn =
−→
Kn is an acyclic (or transitive) tournament. We note

that in the undirected setting, the connectivity of even Hom(G, K3) is a subtle question
(see [6]). For the case of digraph homomorphisms into transitive tournaments we have
a much more straightforward answer. Our main result in this setting is the following.

Theorem 3.7. Let
−→
Kn denote the transitive tournament on n vertices. Then for any digraph G

the complex
−−→
Hom(G,

−→
Kn) is empty or contractible. Furthermore, if

−−→
Hom(G,

−→
Kn) is nonempty

then the diameter of its 1-skeleton satisfies

diam((
−−→
Hom(G,

−→
Kn))

(1)) ≤ |V(G)|.

In the special case that G =
−→
Km is itself a transitive tournament we can say more

about the topology and polyhedral structure of
−−→
Hom(

−→
Km,
−→
Kn). In particular we show

that such complexes can be recovered as certain mixed subdivisions of a dilated simplex
m∆n−m, and are hence homeomorphic to an (n−m)-dimensional ball for any m ≤ n (see
Figure 6).

It is an open question to determine the possible homotopy types of
−−→
Hom(G, Tn) for

other choices of tournaments Tn. For instance does the topology of
−−→
Hom(K2, Tn) ≃−→N (Tn) say something about the combinatorial properties of Tn? In [11] we show that

any sphere Sn can be recovered up to homotopy type as
−→N (Tn) for some choice of
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tournament Tn, but for instance we have yet to find an example of a neighborhood
complex

−→N (Tn) that has torsion in its homology.

1, 3 1, 4

2, 42, 3

1, 2

3, 4

−−→
Hom(

−→
K 2,
−→
K 4)

2, 3, 4
2, 3, 5 2, 4, 5

3, 4, 5

1, 4, 5

1, 2, 5

1, 2, 3

1, 2, 4

1, 3, 4

−−→
Hom(

−→
K 3,
−→
K 5)

Figure 6: Examples of
−−→
Hom complexes between acyclic tournaments.

3.4 Discrete homotopy for directed graphs

Our last collection of results involves applications of
−−→
Hom complexes to various notions

of homotopy for directed graphs. Recall that the vertices of
−−→
Hom(G, H) correspond to the

graph homomorphisms f : G → H. This naturally suggests the following.

Definition 3.8. Suppose G and H are digraphs and f , g : G → H are homomorphisms.
Then f is bihomotopic to g (written f

↔≃ g) if there exists a path from f to g in the complex
−−→
Hom(G, H).

Bihomotopy is a special case of the strong homotopy of r-sets as developed by Mat-
sushita [17] and is a digraph analogue of the ×-homotopy developed in [8]. We study
properties of bihomotopy, including its relation to paths in exponential graphs and how
the resulting notion of

↔≃-equivalence of digraphs is characterized by the topology of
−−→
Hom complexes. This in particular leads to a digraph analogue of a result of Brightwell
and Winkler from [5], and more generally we have the following.

Theorem 3.9. Bihomotopy of digraphs satisfy the following properties.

1. We have f
↔≃ g if and only if there exists a bidirected path from f to g in HG;

2. Directed foldings G → G− v preserve bihomotopy type;

3. G
↔≃ 1 if and only if

−−→
Hom(T, G) is connected for any digraph T.

We use other notions of paths in HG to define increasingly weaker notions of ho-
motopy for digraph homomorphisms. The existence of a directed path in HG defines
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a notion of dihomotopy f
→≃ g, whereas a path in the underlying undirected graph of

HG defines a line homotopy f ≃ g. Dihomotopy is an example of a ‘directed homotopy
theory’, whereas line homotopy is related to constructions of Grigor’yan, Lin, Muranov,
and Yau from [12].

By definition we have the following hierarchy of homotopies.

f
↔≃ g⇒ f

→≃ g⇒ f
−≃ g.

To see that these implications are strict we refer to Figure 7. Here a homomorphism
f : G → H is denoted by ( f (a), f (b)). Note that (0, 1)

→≃ (3, 2) and (0, 1)
−≃ (4, 5).

a b

(a) The graph G

2

0 1

3

4 5

(b) The graph H

(0,1)

(2,3)(1,0)

(3,2) (4,5)

(5,4)

(c)
−−→
Hom(G, H)

(0,1)

(2,3)(1,0)

(3,2) (4,5)

(5,4)

(d) The graph (HG)o

Figure 7: An illustration of the various homotopies.

From Theorem 3.9 we have seen that the topology of the
−−→
Hom complex characterizes

bihomotopies of digraph homomorphisms, and allows for higher categorical construc-
tions. In the case of line homotopy we conjecture that the directed clique complex of a
digraph plays a similar role, see [11] for more details. In both cases this leads to a ho-
mology theory for digraphs that is invariant under the relevant homotopy equivalence. It
is an open question to decide whether any of these notions of equivalence can be given
the structure of a model category.
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