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Abstract. In [8] Rietsch and Williams relate cluster structures and mirror symmetry for
Grassmannians Gr(k, n), and use this to construct Newton–Okounkov bodies and as-
sociated toric degenerations. In this article we define a cluster seed for the Lagrangian
Grassmannian, and prove that the associated Newton–Okounkov body agrees up to
unimodular equivalence with a polytope obtained from the superpotential defined by
Pech and Rietsch on the mirror Orthogonal Grassmannian in [5].
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1 Introduction

Let X = LGr(n, 2n) be the variety of n-dimensional Lagrangian subspaces of C2n with
respect to the symplectic form ωij = (−1)jδi,2n+1−j. X is a homogeneous space of type C,
i.e. it can be written as Sp2n/P for a parabolic subgroup P ⊂ Sp2n. We consider its em-
bedding as a subvariety of Gr(n, 2n) in its Plücker embedding Gr(n, 2n) ↪→ P(∧nC2n).
We will index Plücker coordinates on Gr(n, 2n) by elements of ([2n]

n ), the set of n-subsets
of [2n] := {1, 2, . . . , 2n}, or alternatively by Young diagrams λ ⊂ n × n fitting inside
the n × n square. X has dimension N :− (n+1

2 ), and a distinguished anticanonical di-
visor Dac = D0 + · · · + Dn made up of the n + 1 hyperplanes Di = {pn×i = 0} =
{p(n−i+1)...(2n−i)}, where n × i denotes the corresponding Young diagram.

The Langlands dual X∨ is the orthogonal Grassmannian OGco(n + 1, 2n + 1) of co-
isotropic (n + 1)-dimensional subspaces of C2n+1 with respect to a quadratic form Q.
Following [5], we consider X∨ in its minimal embedding X∨ ↪→ P(V∗), where V is
the irreducible representation corresponding to the parabolic subgroup P∨ (P∨ will be
a maximal parabolic subgroup since P was). As noted in [5, Section 3], because X

is cominuscule, its cohomology is isomorphic (by the geometric Satake correspondence)
to V.

In this article, we identify a particular seed, which we call the co-rectangles seed, and
show that the Newton–Okounkov body corresponding to this seed is unimodularly
equivalent to the superpotential polytope defined using the Landau–Ginzburg model
studied in [5].
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2 The co-rectangles Seed

Seeds in a cluster structure of rank l for a commutative algebra are specified by a pair
(x, B) of cluster variables x = (x1, . . . , xm) and an m × l extended exchange matrix B, for
some m ≥ l. If the topmost l × l square submatrix of B is skew-symmetric, we can
replace B with a quiver Q, which is a directed, oriented graph which may have parallel
edges, but no 2-cycles or loops, and some vertices designated as ‘frozen.’ For brevity, we
do not give a full definition of a cluster algebra, and instead refer to [1, Section 3.1].

The seeds for the coordinate rings of Grassmannians Gr(k, n) studied in [8], which
were first proven to give a cluster structure in [9], can be described by quivers, and
furthermore certain seeds admit an additional description in terms of certain planar,
bicolored graphs called plabic graphs. When we wish to distinguish the vertices of a
plabic graph according to the bicoloring, we will refer to them as hollow (◦) or filled
(•). Roughly speaking, x corresponds to the set of face labels of a plabic graph G, and Q
corresponds to the dual graph of G. A more thorough exposition of plabic graphs can
be found in [6], where they were first introduced, and the relationship between cluster
seeds and plabic graphs for Grassmannians can be found in [8, Section 5-6].

2.1 The co-rectangles Symmetric Plabic Graph

Certain plabic seeds for the Grassmannian can be used to obtain seeds for the Lagrangian
Grassmannian by quiver folding. We first recall the notion of symmetric plabic graphs [2].

Definition 1 ([2, Definition 5.1]). A symmetric plabic graph for X is a plabic graph G with
2n boundary vertices, labelled clockwise by 1, . . . , 2n, and a distinguished diameter d of
the bounding disk satisfying the following conditions:

1. d has one endpoint between vertices 2n and 1, and the other between n and n + 1.

2. No vertex of G lies on d.

3. Reflecting G through d gives a graph identical to G with the colors of vertices
reversed.

Our seed comes from the co-rectangles symmetric plabic graph Gco-rect
n (faces are la-

belled by complements of rectangular Young diagrams in the n × n square). We define
Gco-rect

n by example for n = 4 (see figure 1). We note that our Gco-rect
n is mutation equiva-

lent to Grec
n,2n of [8], so in particular satisfies a technical assumption called reducedness.

2.2 The Network Parametrization (X -cluster seed) for X

We will now describe how to use a symmetric plabic graph to construct a network torus
in X. This will allow us to compute valuations associated to a seed using plabic graphs
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Figure 1: The co-rectangles symmetric plabic graph Gco-rect
4 .

in the following section. We summarize the presentation in [8, Section 6].

Definition 2. A perfect orientation O of a plabic graph G is an orientation of each edge of
G such that each filled internal vertex is incident to exactly one edge directed away from
it, and each hollow vertex is incident to exactly one edge directed towards it. The source
set IO of O is the set of boundary vertex labels which are sources of G as a directed graph
with edge directions O.

Let G denote a plabic graph with a perfect orientation O. If we need further assump-
tions on G, they will be stated explicitly.

Definition 3. Let J be a subset of the boundary vertices of G with |J| = |IO|. A flow
from IO to J is a collection of pairwise vertex-disjoint paths with sources IO \ (IO ∩ J)
and sinks J \ (IO ∩ J).

Because each path p in a flow F begins and ends at a boundary vertex of G, p parti-
tions the faces of G into two sets, those to the left of p and those to the right of p in the
direction of the path. Let pL denote the set of face labels to the left of p.
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Definition 4. For a path p in a flow F, we define the weight of p to be wt(p) = ∏λ∈pL
xλ.

For a flow F, we define the weight to be wt(F) = ∏p∈F wt(p). Finally, for a subset J of
the boundary vertices of G with |J| = |IO|, let F denote the set of all flows from IO to J,
and define the flow polynomial PG

J = ∑F∈F wt(F).

Now let G = Gco-rect
n be the co-rectangles plabic graph. In what follows, we will need

a perfect orientation Oco-rect on G, defined as follows.

Definition 5. Set {1, 2, . . . , n} to be sources, and {n + 1, n + 2, . . . , 2n} to be sinks. (The
edges adjacent to vertices 1 ≤ i ≤ n will be directed away from i, and the edges adja-
cent to vertices n + 1 ≤ i ≤ 2n will be directed towards i.) Because symmetric plabic
graphs are also usual plabic graphs, then there is a unique such perfect orientation by [7,
Lemma 4.5], see [8, Remark 6.4]. We call this Oco-rect.

This is the choice of perfect orientation we will use for the rest of the article. For an
example of the above definitions, see example 1, where we give our perfect orientation
for n = 3, and compute a flow polynomial.

Next, let S = {xµ | µ is a face label of Gco-rect
n } be the set of face labels of the co-

rectangles plabic graph. We think of these as coordinates on the network torus TG
∼=

(C∗)|S|, and we use the flow polynomials to define an embedding of TG into Gr(n, 2n).

Theorem 1 ([6, Theorem 12.7], [8, Theorem 6.8]). Let G be the co-rectangles plabic graph,
and J ∈ ([2n]

n ). Consider the map Φ : TG → Gr(n, 2n) defined by sending (xµ | µ ∈ S) ∈
TG 7→ (PG

J (xµ) | J ∈ ([2n]
n )) ∈ Gr(n, 2n). Then Φ is well-defined, and gives an embedding

TG ↪→ Gr(n, 2n).

Finally, let G = Gco-rect
n be the co-rectangles symmetric plabic graph. We define

the equivalence relation ∼ on S given by xµ ∼ xµT , where µT denotes the transpose
partition to µ. In Karpman’s language, this corresponds to taking a symmetric weighting,
and Karpman shows that restricting to these weightings gives an embedding whose
image lands inside of X ⊂ Gr(n, 2n). We think of S/ ∼ as coordinates on the torus
Tco-rect :− TGco-rect

n
∼= (C∗)|S/∼|, and we use the flow polynomials to define an embedding

of Tco-rect into X.

Theorem 2 ([2, Theorem 5.15]). Let G = Gco-rect
n be the co-rectangles symmetric plabic graph,

and J ∈ ([2n]
n ). Consider the map Φ : Tco-rect ↪→ X which is defined by sending (xµ | µ ∈

S/ ∼) ∈ Tco-rect 7→ (PG
J (xµ = xµT) | J ∈ ([2n]

n )) ∈ X. Then Φ is well-defined, and gives an
embedding Tco-rect ↪→ X.

Thus we associate to Gco-rect
n and Oco-rect a dense torus Tco-rect ↪→ X. On the level

of coordinate rings, this induces an injection C[X] ↪→ C[Tco-rect], so we may express
polynomials in the Plücker coordinates on X as Laurent polynomials in the coordinates
on Tco-rect.
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3 Polytopes

3.1 The Newton–Okounkov body ∆co-rect

We associate to the co-rectangles symmetric plabic graph Gco-rect
n and ample divisor

D = Dn a Newton Okounkov body ∆co-rect(D) by the following procedure, following
[8, Definition 8.1]. First, we define a valuation using the inclusion C[X] ↪→ C[Tco-rect]
obtained at the end of the previous section.

Definition 6. Fix a total order on the torus coordinates S defined at the end of the
previous section. Then we define the valuation valco-rect : C[X] \ {0} → Z|S| by sending
f ∈ C[X] to the exponent vector of the lexicographically minimal term when f is viewed
as an element of C[Tco-rect], i.e. as a Laurent polynomial in the torus coordinates.

Now, using this valuation, we define the Newton–Okounkov body:

Definition 7. Let valco-rect be as above. Then we define

∆co-rect = conv

(
∞⋃

r=1

1
r

valco-rect(H0(X,O(rD)))

)
.

Concretely, the nonzero sections in H0(X,O(rD)) can be identified with Laurent
polynomials whose numerators are degree r homogeneous polynomials in the Plücker
coordinates of X, and whose denominators are the Plücker coordinate pr

n×n. For Gco-rect
n

and Oco-rect, the only flow from [n] to [n] is the empty flow, so the expression of pn×n on
the torus Tco-rect is 1. Therefore, computing valuations of sections H0(X,O(rD)) reduces
to computing valuations of elements of C[X], so we can use definition 6.

Example 1. For the flow in figure 2, there are no face labels to the left of the path 1 → 1.

The face labels to the left of 3 → 4 are . The face labels to the left of 2 → 5 are , ,
, , , and , contributing a monomial x2

(3,3,3)x
2
(3,3)x

2
(3,3,1)x(3,3,2). There is one more

flow, contributing a monomial x2
(3,3,3)x

2
(3,3)x

2
(3,3,1)x(3,3,2)x(3,1,1). These are the only flows

from {1, 2, 3} to {1, 4, 5} for G = Gco-rect
n and Oco-rect, so the flow polynomial is the sum

of these
PG
{1,4,5} = (x2

(3,3,3)x
2
(3,3)x

2
(3,3,1)x(3,3,2))(1 + x(3,1,1))

The minimal term is (x2
(3,3,3)x

2
(3,3)x

2
(3,3,1)x(3,3,2)), so the valuation (rearranging the coordi-

nates) is (0, 2, 0, 2, 1, 2), agreeing with the coordinates given in example 2 below.

Alternatively, because symmetric plabic graphs are also plabic graphs in the usual
sense, we can compute Plücker coordinate valuations for plabic seeds more directly
from Young diagrams.
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Figure 2: The co-rectangles symmetric plabic graph for n = 3, with acyclic perfect
orientation, and (minimal) flow from {1, 2, 3} to {1, 5, 4} in purple.

Definition 8. For any skew partition ν ⊂ n × n, we define maxdiag(ν) to be the maxi-
mum number of boxes along any diagonal of slope −1.

Proposition 1. For µ ⊂ n × n a face label of G and λ ⊂ n × n arbitrary , we have

valco-rect(pλ)µ =

{
maxdiag(µ\λ) + maxdiag(µT\λ) if µ ̸= µT,
maxdiag(µ\λ) if µ = µT.

Example 2. For LGr(3, 6), we have 14 Plücker coordinates with their valuations in coor-

dinates (156, 126, 145, 125, 124, 123) (or in Young diagrams ( , , , , , )):

I ∈ ([6]3 ) valco-rect(pI)
123 (0, 0, 0, 0, 0, 0)
124 (0, 0, 0, 0, 0, 1)

125 = 134 (0, 1, 0, 1, 1, 1)
126 = 234 (1, 1, 1, 2, 1, 1)

135 (0, 2, 0, 2, 1, 1)
136 = 235 (1, 2, 1, 2, 1, 1)

145 (0, 2, 0, 2, 1, 2)

I ∈ ([6]3 ) valco-rect(pI)
146 = 245 (1, 2, 1, 2, 1, 2)
156 = 345 (1, 3, 1, 3, 2, 2)

236 (2, 2, 1, 2, 1, 1)
246 (2, 2, 1, 2, 1, 2)

256 = 346 (2, 3, 1, 3, 2, 2)
356 (2, 4, 1, 4, 2, 2)
456 (2, 4, 1, 4, 2, 3)

The convex hull of these valuations has f -vector (14, 51, 86, 78, 39, 10) and volume
16 = deg LGr(3, 6). Although 456 appears as a face label of the co-rectangles plabic
graph, there is no flow beginning at {1, 2, 3} with this face to the left; hence every
valco-rect(pλ)456 = 0 for any λ. Thus we exclude this coordinate in order to work with a
full-dimensional polytope.
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The fact that the volume of the convex hull of the valuations of the Plücker coordi-
nates is equal to the degree of LGr(3, 6) in the example above is not an accident. In fact,
as we will see in the proof of theorem 1:

Theorem 3. conv({valco-rect(pλ) | λ ⊂ n × n}) = ∆co-rect is a Newton–Okounkov body for X

with respect to the valuation valco-rect. (Equivalently, the Plücker coordinates form a Khovanskii
basis for C[X] with respect to the valuation valco-rect.)

3.2 The superpotential polytope Γ

We use the Laurent polynomial expression for the restriction of the superpotential Wq

to a torus (C∗)(
n+1

2 ) ↪→ X∨ for the Landau-Ginzburg model for X found by Pech and
Rietsch:

Definition 9 ([5, Proposition A.1]). Let coordinates on the torus above be given by aij for
1 ≤ i ≤ j ≤ n, and let Λ denote the set of strict partitions with at least one part of size n
that are contained in the maximal, right-justified staircase in the n × n square. For any
λ ∈ Λ, label each box by (i, j) where i indexes the row and j the column. Then set λj
to be the largest index such that (λj, j) ∈ λ. Then the restriction of the superpotential to
this torus is given by

Wq = ∑
i≤j∈[n]

aij + ∑
λ∈Λ

q
∏j∈[n] aλj j

Example 3. For n = 3, the superpotential has (3+1
2 ) + 23−1 = 10 terms:

a11 + a12 + a13 + a22 + a23 + a33 +
q

a11a12a13
+

q
a11a12a23

+
q

a11a22a23
+

q
a11a22a33

where the last four terms correspond to the diagrams 11 12 13 , 11 12 13
23

, 11 12 13
22 23

, and 11 12 13
22 23

33

In order to define the superpotential polytope Γ, we first define tropicalization for
Laurent polynomial whose coefficients are all positive, real numbers.

Definition 10 ([8, Definition 10.7]). For any Laurent polynomial h in variables z1, . . . , zk
with coefficients in R>0, we define Trop(h) : Rk → R inductively. To begin, we set
Trop(zi)(y1, . . . , yk) = yi, and we denote this tropicalization by a capital letter Trop(zi) =
Zi. Next, if h1 and h2 are any Laurent polynomials with positive coefficients, and c1, c2
are any positive real numbers, then

Trop(c1h1 + c2h2) = min(Trop(h1), Trop(h2)) and Trop(h1h2) = Trop(h1) + Trop(h2).

This inductively defines Trop(h).
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Following [8, Definition 10.14], we make the following definition for the Γ.

Definition 11. Consider Wq : R(n
2) × R → R as a Laurent polynomial with positive coef-

ficients in the variables aij (corresponding to the first factor of R(n
2) and q corresponding

to the second factor of R. Then the superpotential polytope Γ is defined by

Γ = {y ∈ R(n
2) | Trop(Wq)(y, 1) ≥ 0}.

Implicitly, we are “tropicalizing” qi to i by the evaluation Trop(Wq)(y, 1).

Example 4. The superpotential polytope for n = 3 corresponding to the potential in
example 3 is a polytope in R(3+1

2 ), with coordinates indexed by the Aij ordered lexico-
graphically, defined by the inequalities:

Aij ≥ 0,

1 − A11 − A12 − A13 ≥ 0,
1 − A11 − A12 − A23 ≥ 0,
1 − A11 − A22 − A23 ≥ 0,
1 − A11 − A22 − A33 ≥ 0.

3.3 Poset polytope combinatorics

In [10], Stanley associated two polytopes to a poset P: the order polytope and the chain
polytope. The chain polytope lives in R|P|, and is defined by the inequalities eb ≥ 0 for
any b ∈ P and for any chain b1 < b2 < · · · < bk of P, we have eb1 + eb2 + · · ·+ ebk

≤ 1.
In particular, because of the positivity inequalities, it is enough to consider the chain
inequalities eb1 + eb2 + · · ·+ ebk

≤ 1 when b1 < b2 < · · · < bk is any maximal chain of P.
Let Pn be the poset on the elements {bij | 1 ≤ i ≤ j ≤ n}, with the cover relations

bij > bi+1j+1, bij+1. The superpotential polytope Γ produced above is the chain polytope
of Pn: the terms aij correspond to the positivity inequalities, and the terms q

∏j∈[n] aij j

correspond to maximal chain inequalities.

b11

b12

b13

b22

b23b33

Figure 3: Hasse diagram of P3
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Example 5. The four maximal chains of P3 are b33 ≤ b22 ≤ b11, b23 ≤ b22 ≤ b11, b23 ≤ b12 ≤
b11, and b13 ≤ b12 ≤ b11. These correspond exactly to the ‘q’ terms of the superpotential
above, so the chain polytope of P3 coincides with the superpotential polytope.

By [10, Theorem 2.2 and Corollary 4.2], the superpotential polytope has as many
vertices as antichains in Pn, and volume equal to the number of linear extensions of Pn.

Lemma 1. The number of antichains of Pn is Cn+1 = 1
n+2(

2n+2
n+1 ).

Hence the superpotential polytope has Cn+1 many vertices. This is also the number
of Young diagrams contained in the n × n square up to transpose, and hence the num-
ber of distinct Plücker coordinates for the Lagrangian Grassmannian X. This bijection
is described in more detail later as part of the proof that the superpotential polytope
coincides with the Newton–Okounkov body.

Example 6. We illustrate the bijection between Dyck paths and antichains.

·

· ·

· · ·

· · · ·

· · · · ·

b11

b12

b13

b22

b23b33

Figure 4: Dyck path (dashed, purple) corresponding to the antichain {a12}, with cor-
responding order filter marked in purple.

Lemma 2. The number of linear extensions of Pn is equal to deg(X = LGr(n, 2n)).

Hence the superpotential polytope has volume equal to deg(X). By our choice of
D = Dn (sections of O(rD) correspond to degree r homogeneous polynomials) and G
(the valuation is full rank, for example from proposition 2), the volume of the Newton–
Okounkov bodies constructed above should also be equal to deg(X) (see, e.g., [3, Corol-
lary 3.2] or [4], noting that we are not using the normalized volume, so should disregard
the normalizing factor of dim(X)!).

4 ∆co-rect
∼= Γ

Now we show that for the seed G = Gco-rect
n and corresponding valuation valco-rect,

the Newton–Okounkov body ∆co-rect and superpotential polytope Γ defined above are
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unimodularly equivalent, i.e. that there is a lattice isomorphism sending one polytope to
the other. Our strategy is as follows. First, we define a linear map Mn : R(n+1

2 ) → R(n+1
2 )

with integer entries. We show next that Mn is unimodular, and finally that MR(Γ) =
∆co-rect.

Consider the Plücker coordinates pλ such that (n − 1) × (n − 1) ⊆ λ ⊊ n × n and
there are at least as many boxes to the right of the main diagonal (upper left to lower
right) as there are below. Note that there are (n+1

2 ) such Plücker coordinates: for each
pair (0 ≤ i ≤ j ≤ n − 1), associate the Young diagram containing the (n − 1)× (n − 1)
rectangle with j additional boxes to the right of the diagonal, and i additional boxes
below the diagonal.

Form the (n+1
2 ) × (n+1

2 ) matrix Mn whose columns are the valuations of the above
Plücker coordinates, ordered as follows: order first by decreasing order (i.e. 2n ≤ 2n −
1 ≤ · · · ≤ 1) in the last entry, then break ties by increasing order in the first to last,
second to last, etc. entries. On the level of Young diagrams, this corresponds to ordering
first by increasing number of additional boxes below the main diagonal, and then by
dexreasing number of additional boxes right of the main diagonal. When these diagrams
are indexed by pairs (i, j), the ordering is (i, j) ≤ (i′, j′) if i < i′ or i = i′ and j ≥ j′.

4.1 Unimodularity

Lemma 3. The upper left n × n block of Mn has the form:
1 1 · · · 1 1 2
1 1 · · · 1 2 2
... . . . ...
1 2 · · · 2 2 2
1 1 · · · 1 1 1

 =


1 if i = n,
1 if j ≤ n − i, i ̸=, n
2 if j > n − i, i ̸= n,

and is thus unimodular.

Lemma 4. The lower right (n
2)× (n

2) block of Mn is Mn−1.

Furthermore, since all of the Plücker coordinates indexing the last (n
2) columns of Mn

contain the hook (n, 1n−1), then in particular valco-rect(pIj)(n,1n−1) = 0 for any Ij in these
columns. In other words, the bottom row of the upper right n × (n

2) submatrix of Mn is
the 0 vector.

Lemma 5. The lower left (n
2)× n block of Mn has all columns equal and nonzero.

Proposition 2. Mn is unimodular.
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4.2 Surjectivity

It remains to prove that Mn(Γ) = ∆co-rect. To aid in our proof, we define an auxiliary
polytope δG in the same ambient space as ∆co-rect:

Definition 12. Define δG = conv({valco-rect(pλ) | λ ∈ ([2n]
n )}).

A priori δG ⊂ ∆co-rect (for our choice of G and D, δG = conv(valco-rect(H0(X,O(D))))
is the r = 1 part of the Newton–Okounkov body). For general G, δG ⊊ ∆co-rect (i.e. the
Plücker coordinates may not form a Khovanskii basis), but in our case, we will show
that δG = ∆co-rect by showing that Mn(Γ) = δG, and computing volumes.

Recall that the vertices of Γ are characteristic functions of antichains of Pn. For each
singleton antichain {aij} of Pn, we associate the vertex vij ∈ Γ, and the hook partition
νij = (n + 1 − i, 1j−i). Because j ≤ n, then n + 1 − i > j − i.

Lemma 6. The map {aij} → νij between singleton antichains of Pn and nonempty hook parti-
tions (a, 1b) ⊂ n × n with a > b described above is a bijection.

We first identify where these vertices are sent under Mn, and then use that to identify
which antichains correspond to which Plücker coordinate valuations.

Lemma 7. Mn(vij) = valco-rect(pλ), where λ is the complement of νij in the n × n square, and
the complement is taken by right-justifying νij in the bottom right corner.

Any partition λ ⊂ n × n has a right-justified complement partition λc ⊂ n × n. We
decompose λc into a union of k nonempty (right-justified) hooks λc = ν1 + · · · + νk,
where the decomposition comes from taking the hooks from the boxes of λc along the
main diagonal.

Example 7. For ⊂ , the complement is , which decomposes into the hooks + .

For an asymmetric example, take ⊂ . The complement is , and decomposes into

the hooks + .

Lemma 8. Let λ ⊂ n × n be a partition with at least as many boxes above the main diagonal
as below. Then the hook decomposition of the transpose of the complement corresponds to an
antichain of Pn under the bijection lemma 6.

Example 8. For ⊂ , the complement is , which decomposes into the hooks + ,

corresponding to the elements a13 and a23, respectively. For ⊂ , the complement is

, and decomposes into the hooks + , corresponding to the elements a13, a22.

Lemma 9. Let λ ⊂ n × n be any partition with at least as many boxes above the main di-
agonal as below. Let λc = ν1 + · · · + νk be the hook decomposition of the complement. Then
maxdiag(µ\λ) = ∑i maxdiag(µ\λi), where λi is the complement of νi (right-justified in the
bottom right corner of n × n), for any µ labelling a face of Gco-rect.
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Corollary 1. Let λ ⊂ n× n be any partition with at least as many boxes above the main diagonal
as below. Let λc = ν1 + · · ·+ νk be the hook decomposition with corresponding antichain {xi},
using the bijection from Lemma 8. Then Mn sends the vertex of Γ corresponding to the antichain
{xi}k

i=1 to valco-rect(pλ). Hence ∆co-rect ∼= Γ.

Example 9. Adding the bottom two rows gives the top row, as desired:

µ

valco-rect(p )µ 2 3 1 3 2 2

valco-rect(p )µ 0 1 0 1 1 1

valco-rect(p )µ 2 2 1 2 1 1
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