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Abstract. A hypergraphic polytope is a Minkowski sum of faces of the standard sim-
plex. We study deformations of two fundamental families of hypergraphic polytopes:
the graphical zonotopes and the nestohedra. Namely, we provide irredundant facet
descriptions for the deformation cones of these polytopes. Moreover, we show that the
faces of the standard simplex contained in the deformation cone provide a linear basis
of its vector span, a result that extends to any hypergraphic polytope.

Résumé. Un polytope hypergraphique est une somme de Minkowski de faces du
simplexe standard. Nous étudions les déformations de deux familles fondamentales
de polytopes hypergraphiques : les zonotopes graphiques et les nestoèdres. Nous
donnons des descriptions irredondantes des inégalités définissant les facettes des cones
de déformation de ces polytopes. En outre, nous montrons que les faces du simplexe
standard contenues dans le cone de déformation forment une base linéaire de l’espace
vectoriel qu’il engendre, un résultat qui s’étend à tout polytope hypergraphique.
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1 Introduction

A deformation of a polytope P can be equivalently described as (i) a polytope obtained
from P by gliding its facets orthogonally to their normal vectors without passing a ver-
tex [27, 28], (ii) a polytope obtained from P by perturbing the vertices so that the direc-
tions of all edges are preserved [27, 28], (iii) a polytope whose normal fan coarsens the
normal fan of P [19], (iv) a polytope whose support functionial is a convex piecewise
linear continuous function supported on the normal fan of P [9, Section 6.1][12, Sec-
tion 9.5], or (v) a Minkowski summand of a dilate of P [21, 30]. The deformations of P
form a polyhedral cone under dilation and Minkowski addition, called the deformation
cone of P [27]. Its interior is the type cone of the normal fan of P [19], and contains those
polytopes with the same normal fan as P. When P has rational vertex coordinates, then
the type cone is known as the numerically effective cone and encodes the embeddings of
the associated toric variety into projective space [9].
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There exist several methods to parametrize and describe the deformation cone of a
given polytope (see e.g. [28, Appendix]), for example via the height deformation space and
the wall-crossing inequalities or via the edge deformation space and the polygonal face equa-
tions. However, these methods only provide redundant inequality descriptions of the
deformation cone. Not even the dimension of the deformation cone is easily deduced
from these descriptions, as illustrated by the difficulty of describing which fans have a
nonempty type cone (i.e. describing realizable fans [12, Chapter 9.5.3]), or a one dimen-
sional type cone (i.e. describing Minkowski indecomposable polytopes [20, 21, 29, 30]).

The search for irredundant facet descriptions of deformation cones of particular fam-
ilies of combinatorial polytopes has received considerable attention [3, 6, 7, 23, 27]. The
most prominent example is certainly that of deformed permutahedra. The permutahedron,
defined as the convex hull of the n! permutations of the vector (1, 2, . . . , n) ∈ Rn, is
one of the most studied polytopes in geometric and algebraic combinatorics. Deformed
permutahedra were originally introduced under the name of polymatroids by J. Edmonds
in 1970 as a polyhedral generalization of matroids in the context of linear optimiza-
tion [13]. They were rediscovered under the name of generalized permutahedra by A. Post-
nikov in 2009, who initiated the investigation of their rich combinatorial structure [27].
They have since become a widely studied family of polytopes that appears naturally
in several areas of mathematics, such as algebraic combinatorics [1, 2, 28], optimiza-
tion [15], game theory [10], statistics [22], and economic theory [17]. The set of deformed
permutahedra can be parametrized by the cone of submodular functions [13, 27].

The permutahedron can also be described as the graphical zonotope of the com-
plete graph or as the nestohedron of the complete building set. A graphical zonotope
is a Minkowski sum of edges of the standard simplex, and encodes several combina-
torial properties of the associated graph G. For example, its vertices are in bijection
with the acyclic orientations of G [16] and its volume is the number of spanning trees
of G [31, Example 4.64]. A nestohedron is a simple polytope realizing the nested complex
of an arbitrary building set (a hypergraph fulfilling certain connectivity condition), and is
the Minkowski sum of the associated faces of the standard simplex [14, 27, 33]. When the
building set consists of all connected induced subgraphs of a graph G, one gets the graph
associahedron of G defined in [5] in connection to the wonderful arrangements of [11].

In this extended abstract, we study the deformation cones of arbitrary graphical zono-
topes and nestohedra. Since all these polytopes are deformed permutahedra, their de-
formation cones appear as particular faces of the submodular cone. However, faces of
the submodular cone are far from being well understood: determining its rays for in-
stance remains an open problem since the 1970s [13]. We provide complete irredundant
descriptions of their deformation cones, derive their dimensions and characterize those
which are simplicial. We also obtain that the faces of the standard simplex contained
in these deformation cones provide a linear basis of their vector span, generalizing [2].
In contrast to our irredundant facet descriptions, this latter result easily extends to all
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hypergraphic polytopes [1], i.e. the polytopes obtained as Minkowski sums of faces of the
standard simplex (which include both graphical zonotopes and nestohedra).

Note that the deformation cones of graph associahedra were determined in [23]. This
invited the investigation of arbitrary deformed nestohedra. We thus include here a short
description of the relevant results from [23], to which we oppose the situation of general
nestohedra. We intend to highlight the complexity of the case of general nestohedra
compared to the case of graph associahedra.

Details and proofs omitted in this extended abstract can be found in [24, 25].

2 Deformation cones of polytopes

Let P ⊆ Rd be a polytope with normal fan F . We consider the deformation cone DC(P)
formed by all polytopes whose normal fans coarsen F (alternative definitions were re-
called in the introduction). Note that DC(P) is a closed convex cone (dilations and
Minkowski sums preserve deformations) and contains a lineality subspace of dimen-
sion d (translations preserve deformations). Its interior, called the type cone of F by
P. McMullen [19], consists of all polytopes whose normal fan is F . Taking into account
the lineality, we say that the deformation cone is simplicial when its quotient modulo
translations is simplicial, and we call rays of DC(P) the rays of its quotient modulo
translations. They are spanned by the Minkowski indecomposable deformations of P

of dimension at least 1 (note that 0-dimensional deformations account for the space of
translations).

There are several linearly isomorphic presentations of the deformation cone [19, 21,
28]. The following convenient formulation [26, Proposition 3] is adapted from the clas-
sical wall-crossing inequalities [8, Lemma 2.1]. To deal with non-simple polytopes as well,
it uses a simplicial refinement of the normal fan. If the refinement contains additional
rays, then the type cone is embedded in a higher dimensional space, but these addi-
tional coordinates can just be projected out. We say that a fan F is supported on the set
of vectors S if every cone of F is spanned by a subset of S.

Proposition 2.1. Let P ⊆ Rd be a polytope whose normal fan F is refined by the simpli-
cial fan G supported on S. Then the deformation cone DC(P) of P is the set of polytopes{

x ∈ Rd
∣∣ ⟨ s | x ⟩ ≤ hs for all s ∈ S

}
for all h in the cone of RS defined by

(i) the equalities ∑s∈R∪R′ αR,R′(s) hs = 0 for any adjacent maximal cones R≥0R and R≥0R′

of G belonging to the same maximal cone of F ,
(ii) the inequalities ∑s∈R∪R′ αR,R′(s) hs ≥ 0 for any adjacent maximal cones R≥0R and R≥0R′

of G belonging to distinct maximal cones of F ,
where ∑s∈R∪R′ αR,R′(s) s = 0 is the unique linear dependence with αR,R′(r) + αR,R′(r′) = 2
among the rays of two adjacent maximal cones R≥0R and R≥0R′ of F with R∖{r} = R′∖{r′}.
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3 Deformation cones of graphical zonotopes

Graphical zonotopes. Let G := (V, E) be a graph with vertex set V and edge set E.
Let (ev)v∈V denote the canonical basis of RV . The graphical arrangement AG is the ar-
rangement of the hyperplanes

{
x ∈ RV

∣∣ xu = xv
}

for all edges {u, v} ∈ E. The graph-
ical fan GG is the fan whose cones are all the possible intersections of one of the sets{

x ∈ RV
∣∣ xu= xv

}
,
{

x ∈ RV
∣∣ xu≥ xv

}
, or

{
x ∈ RV

∣∣ xu≤ xv
}

for each edge {u, v} ∈ E.
The graphical zonotope ZG is the Minkowski sum ZG := ∑(u,v)∈E[eu, ev] of the line seg-
ments [eu, ev] ⊆ RV for all edges {u, v} ∈ E. The normal fan of ZG is GG. Note that the
lineality space of GG is the subspace KG of RV spanned by the characteristic vectors of
the connected components of G, and that ZG lies in a subspace orthogonal to KG.

An ordered partition (µ, ω) of G consists of a partition µ of V where each part in-
duces a connected subgraph of G, together with an acyclic orientation ω of the quotient
graph G/µ. It corresponds to the cone Cµ,ω of GG defined by the inequalities xu ≤ xv for
all u, v ∈ V such that there is a directed path in ω from the part containing u to the part
containing v (hence, xu = xv if u, v are in the same part of µ). In particular:

• The maximal cones of GG are in bijection with the acyclic orientations of G.
• The minimal cones of GG (i.e. the rays of GG/KG) are in bijection with the bicon-

nected subsets of G, i.e. non-empty connected subsets of V whose complements in
their connected components are also non-empty and connected.

• The rays of GG/KG that belong to the cone Cµ,ω of an ordered partition (µ, ω) of G
are the biconnected sets of G that contracted by µ give rise to an upper set of ω.

When G is the complete graph Kn, the graphical fan is the braid fan Bn and the graphical
zonotope is the permutahedron. In Bn, the faces correspond to ordered partitions of [n],
the rays to all proper subsets of [n], and the maximal cones to all permutations of [n].

Common simplicial refinement. It is worth noting that most graphical zonotopes are
not simple (they are simple only for chordful graphs, where every cycle induces a clique
[28, Proposition 5.2]). To describe the deformation cones of non-simple graphical zono-
topes, we thus use a simplicial refinement common to all graphical fans. This refin-
ing fan is obtained from the braid fan BV by cutting each region into two simplices
as follows. Associate to any subset U ⊆ V the vector ιU := ∑u∈U eu − ∑v/∈U ev and
consider the fan B̂V whose maximal cells are C∅

σ := cone {ιU | U ⊊ V upper set of σ}
and CV

σ := cone {ιU | ∅ ̸= U ⊆ V upper set of σ} for every total order σ of V. The fan B̂V
is an essential complete simplicial fan in RV supported on the 2|V| vectors ιU for U ⊆ V.
It has two types of pairs of adjacent maximal cones:

• the pairs {C∅
σ ,CV

σ } for any σ, which yields the linear dependence ι∅ + ιV = 0,
• the pairs {CX

σ ,CX
σ′} for any X ∈ {∅, V} and any total orders σ=PuvS and σ′=PvuS

that differ in the inversion of two consecutive elements. The two rays that are
not shared by CX

σ and CX
σ′ are ιS∪{u} and ιS∪{v}, and the unique linear relation

supported on the rays of CX
σ ∪ CX

σ′ is given by ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.
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Moreover, the fan B̂V refines any graphical fan GG: for any acyclic orientation ω of G, any
total order σ on V and any X ∈ {∅, V}, we have CX

σ ⊆ Cω if and only if σ is a linear ex-
tension of ω. Applying Proposition 2.1, we obtain the following description of DC(ZG).

Corollary 3.1. The deformation cone DC(ZG) of the graphical zonotope ZG is the set of polytopes{
x ∈ RV

∣∣ ∑u∈U xu − ∑v/∈U xv ≤ hU for all U ⊆ V
}

for all h in the cone of R2V
defined by the

following (possibly redundant) description:
• h∅ = −hV ,
• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each {u, v} /∈ E and S ⊆ V ∖ {u, v},
• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ V ∖ {u, v}.

Irredundant description. The description of the deformation cone of Corollary 3.1 is
highly redundant, both in the equations describing its linear span and in the inequalities
describing its facets. Choosing a basis for the equations and discarding the irredundant
inequalities, we obtain the following description, whose proof is the purpose of [25]. We
denote by N(v) := {u ∈ V | {u, v} ∈ E} the neighbors of a vertex v in G.

Theorem 3.2. The deformation cone DC(ZG) of the graphical zonotope ZG is the set of polytopes{
x ∈ RV

∣∣ ∑u∈U xu − ∑v/∈U xv ≤ hU for all U ⊆ V
}

for all h in the cone of R2V
defined by the

following irredundant facet description:
• h∅ = −hV ,
• hS∖{u} + hS∖{v} = hS + hS∖{u,v} for each ∅ ̸= S ⊆ V and any1 {u, v} ∈ (S

2)∖ E,
• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ N(u) ∩ N(v).

Example 3.3. When G is complete, DC(ZG) is a permutahedron and we recover the sub-
modular cone given by the irredundant inequalities hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for
each {u, v} ⊆ S ⊂ V. (The usual presentation imposes h∅ = 0, but both presentations
are clearly equivalent up to translation).

Corollary 3.4.2 The faces △K := conv {ev | v ∈ K} of the standard simplex △V corresponding
to the non-empty induced cliques K of G form a linear basis of the space spanned by DC(ZG).

Corollary 3.5. The dimension of DC(ZG) is the number of induced cliques in G, the dimension
of the lineality space of DC(ZG) is |V|, and the number of facets of DC(ZG) is the number of
triplets (u, v, S) with {u, v} ∈ E and S ⊆ N(u) ∩ N(v).

Example 3.6. If G = KV is complete, DC(ZKV ) has dimension 2|V| − 1 and (|V|
2 )2|V|−2

facets. If G is triangle-free, DC(ZG) has dimension |V|+ |E| and |E| facets.

Corollary 3.7. The deformation cone DC(ZG) is simplicial (modulo its lineality) if and only if
G is triangle-free. In that case, every deformation of ZG is a zonotope, which is the graphical
zonotope of a subgraph of G up to rescaling of the generators.

1For any non-clique S, only one missing edge is choosen (e.g. the lexicographically smallest).
2This fact was proved independently by Raman Sanyal and Josephine Yu (personnal communication).
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4 Deformation cones of nestohedra

Graph associahedra. We recall the description of [23] for graph associahedra as a pro-
totype for nestohedra. For coherence with Section 3, we consider graph associahedra
and nestohedra embedded in the ambient space RV instead of their affine spans.

Let G := (V, E) be a graph. A tube of G is subset of V which induces a connected
subgraph of G. Let TG denote the set of tubes of G. The ⊆-maximal tubes of G are its
connected components κ(G). Let κ(G) := {∅} ∪ κ(G). Two tubes t, t′ of G are compatible
if they are nested (i.e. t ⊆ t′ or t′ ⊆ t), or disjoint and non-adjacent (i.e. t ∪ t′ is not a tube
of G). A tubing on G is a set T of pairwise compatible tubes of G containing κ(G).

Define gU := ∑u∈U eu for ∅ ̸= U ⊆ V and g∅ := − ∑v∈V ev. The nested fan NG
is the fan with a cone generated by {gt | t ∈ T} for each tubing T of G. Note that
NG is the direct sum of a simplicial fan with the space spanned by gt for t ∈ κ(G).
We obtain a simplicial refinement by spliting each maximal cone into |κ(G)| simplicial
cones, in a similar way as in Section 3. The graph associahedron AG is the Minkowski
sum AG := ∑t∈TG∖{∅} △t, see [5, 27]. The normal fan of AG is NG. The next statement
describes the adjacent maximal cones of NG and their linear dependences.

Proposition 4.1. Let t, t′ be two tubes of G.
(i) There exist two maximal tubings T, T′ on G with T ∖ {t} = T′ ∖ {t′} if and only if t′ has

a unique neighbor v in t ∖ t′ and t has a unique neighbor v′ in t′ ∖ t.
(ii) For any maximal tubings T, T′ on G with T ∖ {t} = T′ ∖ {t′}, both T and T′ contain the

tube t ∪ t′ and the connected components κ(t ∩ t′) of t ∩ t′.
(iii) For any maximal tubings T, T′ on G with T∖ {t} = T′∖ {t′}, the unique (up to rescaling)

linear dependence among {gt | t ∈ (T ∪ T′)∖ κ(G)} is gt + gt′ = gt∪t′ + ∑s∈κ(t∩t′) gs.

From Propositions 2.1 and 4.1, we derive a redundant description of the deforma-
tion cone DC(AG), with one inequality for each pair of exchangeable tubes. Deleting
redundant inequalities, we obtain the following description.

Theorem 4.2. The deformation cone DC(AG) of the graph associahedron AG is the set of
polytopes

{
x ∈ RV

∣∣ −∑v∈V xv ≤ h∅ and ∑v∈t xv ≤ ht for all t ∈ TG ∖ {∅}
}

for all h in the
cone of RTG defined by the following irredundant description:

• ∑K∈κ(G) hK = 0 (where κ(G) contains all connected components of G and ∅),
• ht + ht′ ≥ ht∪t′ + ∑s∈κ(t∩t′) hs for any tubes t, t′ of G such that t ∖ {v} = t′ ∖ {v′} for

some neighbor v of t′ in t ∖ t′ and some neighbor v′ of t in t′ ∖ t.

Example 4.3. When G is complete, AG is the permutahedron and the facets of DC(AG)
are hU∖{v} + hU∖{v′} ≥ hU + hU∖{v,v′} for {v, v′} ⊆ U ⊆ V. When G is a path, AG is the
associahedron and the facets of DC(AG) are h[i,j−1] + h[i+1,j] ≥ h[i,j] + h[i+1,j−1] for i < j.

Corollary 4.4. The deformation cone DC(AG) has ∑s∈TG
(nd(s)

2 ) facets, where nd(s) denotes
the number of non-disconnecting vertices of s.

Corollary 4.5. The deformation cone DC(AG) is simplicial if and only if G is a union of paths.
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Nestohedra. A building set B on V is a set of subsets of V such that
• if B, B′ ∈ B and B ∩ B′ ̸= ∅, then B ∪ B′ ∈ B, and
• B contains ∅ and all singletons {v} for v ∈ V.

Let κ(B) denote the connected components of B (i.e. the ⊆-maximal elements of B), let
κ(G) := {∅} ∪ κ(G), and let ε(B) denote the elementary blocks of B (i.e. the blocks B ∈ B
such that |B| > 1, and B = B′ ∪ B′′ implies B′ ∩ B′′ = ∅ for any B′, B′′ ∈ B ∖ {B}). For
example, κ(B◦) = {123456, 789} and ε(B◦) = {14, 25, 123, 456, 789} for the building set
B◦ := {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 123, 456, 789, 1234, 1235, 1456, 2456, 12345, 12456, 123456}
on [9] (we abuse notation and write 123 for {1, 2, 3}). See Figure 1 (left).

Given a building set B, a B-nested set N is a subset of B such that
• for any B, B′ ∈ N , either B ⊆ B′ or B′ ⊆ B or B ∩ B′ = ∅,
• for any k ≥ 2 pairwise disjoint B1, . . . , Bk ∈ N , the union B1 ∪ · · · ∪ Bk is not in B,
• N contains κ(B).

For instance, the two maximal B◦-nested sets N◦ := {3, 4, 5, 7, 8, 14, 789, 12345, 123456}
and N ′

◦ := {3, 4, 5, 7, 8, 25, 789, 12345, 123456} are represented in Figure 1 (middle).
Define gU := ∑u∈U eu for ∅ ̸= U ⊆ V and g∅ := − ∑v∈V ev. The nested fan NB is the

fan with a cone generated by {gB | B ∈ N} for each B-nested set N . As before, NB is the
direct sum of a simplicial fan with a linear space, and we obtain a simplicial refinement
by triangulating the lineality, which is spanned by gB for B ∈ κ(B). The nestohedron NB
is the Minkowski sum NB := ∑B∈B∖{∅} △B, see [14, 27, 33]. The normal fan of NB is NB.

Example 4.6. For a graph G, the tubes of G form a building set BG, the tubings of G are
the BG-nested sets, and the graph associahedron AG is the nestohedron NBG .

Exchange frames and exchange relations. We now describe the adjacent maximal cones
of the nested fan NB and their linear dependences to derive a first redundant description
of DC(NB) by Proposition 2.1. We start with a simple observation, see Figure 1 (right).

Proposition 4.7. If N and N ′ are two maximal B-nested sets with N ∖ {B} = N ∖ {B′}, then
{C ∈ N | B ⊊ C} and {C′ ∈ N ′ | B′ ⊊ C′} coincide and admit a unique ⊆-minimal element P.
We say that P is the parent and that (B, B′, P) is the frame of the exchange between N and N ′.

1 2 3

654

987

1 2 3

654

987

1 2 3

654

987

1 2 3

654

987

Figure 1: The elementary blocks of a building set B◦ (left), the two adjacent maximal
B◦-nested sets N◦ and N ′

◦ (middle), and the corresponding exchange frame (right).
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Our next statement is the analogue of Proposition 4.1. Even if the linear dependences
of (iii) were studied in [33], the characterization of (i) for the exchangeable blocks was
surprisingly missing in the literature to the best of our knowledge. Note that, in contrast
to the graphical case, the linear dependence of (iii) does not only depend on the two
exchanged blocks, but also on the exchange frame.

Proposition 4.8. Let B, B′ ∈ B be two blocks of B.
(i) There exist two maximal B-nested sets N ,N ′ with N ∖ {B} = N ′ ∖ {B′} if and only if

there exist a block P ∈ B, and some vertices v ∈ B ∖ B′ and v′ ∈ B′ ∖ B such that
• B ⊊ P and B′ ⊊ P, and
• v′ ∈ C for any C ⊆ P such that B ∩ C ̸= ∅ but C ̸⊆ B, while v ∈ C′ for any C′ ⊆ P

such that B′ ∩ C′ ̸= ∅ but C′ ̸⊆ B′.
(ii) For two maximal B-nested sets N and N ′ with N ∖ {B} = N ′ ∖ {B′} and parent P, all

connected components of κ(B ∩ B′) and of κ
(

P ∖ (B ∪ B′)) belong to N ∩N ′.
(iii) For two maximal B-nested sets N and N ′ with N ∖ {B} = N ′ ∖ {B′} and parent P, the

unique (up to rescaling) linear dependence among {gt | t ∈ (N ∪N ′)∖ κ(B)} is

gB + gB′ + ∑
K∈κ(P∖(B∪B′))

gK = gP + ∑
K∈κ(B∩B′)

gK.

In particular, the linear dependence only depends on the exchange frame (B, B′, P).

From Propositions 2.1 and 4.8, we directly derive the following redundant description
of the deformation cone DC(NB), with one inequality for each exchange frame.

Corollary 4.9. The deformation cone DC(NB) of the nestohedron NB is the set of polytopes{
x ∈ RV

∣∣ −∑v∈V xv ≤ h∅ and ∑v∈B xv ≤ hB for all B ∈ B∖ {∅}
}

for all h in the cone
of RB defined by the following (possibly redundant) description:

• ∑K∈κ(B) hK = 0 (where κ(B) contains all connected components of B and ∅),
• hB + hB′ + ∑K∈κ(P∖(B∪B′)) hK ≥ hP + ∑K∈κ(B∩B′) hK for any exchange frame (B, B′, P).

Irredundant description. We now need to characterize the facet defining inequalities
among the inequalities of Corollary 4.9. This is the main difficulty of [24]. We denote
by µ(P) the ⊆-maximal blocks of B strictly contained in a block P ∈ B.

Proposition 4.10. (B, B′, P) is an exchange frame for any P ∈ B and any B ̸= B′ in µ(P).

Proposition 4.11. The exchange frames corresponding to facet defining inequalities of DC(NB)
in Corollary 4.9 are precisely the exchange frames of Proposition 4.10.

This enables us to delete all inequalities of Corollary 4.9 which do not correspond
to exchange frames of Proposition 4.10. However, it may happen that some different
exchange frames of Proposition 4.10 still lead to the same inequality. This problem is
controled by the following statement.
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Proposition 4.12. For an elementary block P ∈ ε(B), all exchange frames (B, B′, P) for B ̸= B′

in µ(P) lead to the same linear dependence ∑B∈µ(P) gB = gP. Conversely, if (B1, B′
1, P) and

(B2, B′
2, P) are two distinct exchange frames with B1, B2, B′

1, B′
2 ∈ µ(P) and the same linear

dependence, then P is elementary.

Finally, we obtain an irredundant description of DC(NB) extending Theorem 4.2.

Theorem 4.13. The deformation cone DC(NB) of the nestohedron NB is the set of polytopes{
x ∈ RV

∣∣ −∑v∈V xv ≤ h∅ and ∑v∈B xv ≤ hB for all B ∈ B∖ {∅}
}

for all h in the cone
of RB defined by the following irredundant description:

• ∑K∈κ(B) hK = 0 (where κ(B) contains all connected components of B and ∅),
• ∑B∈µ(P) hB ≥ hP for any elementary block P of B,
• hB + hB′ + ∑K∈κ(P∖(B∪B′)) hK ≥ hP + ∑K∈κ(B∩B′) hK for any block P of B neither single-

ton nor elementary, and any two blocks B ̸= B′ in µ(P).

Corollary 4.14. The faces △B := conv {ev | v ∈ B} of the standard simplex △V corresponding
to the non-empty blocks B of B form a linear basis of the vector space spanned by DC(NB).

Corollary 4.15. The number of facets of the deformation cone DC(NB) is |ε(B)|+ ∑P (
µ(P)

2 )
where the sum runs over all blocks P of B which are neither empty, nor singletons, nor elementary.

Corollary 4.16. The deformation cone DC(NB) is simplicial if and only if all blocks of B with
at least three distinct maximal strict subblocks are elementary.

Example 4.17. An interval building set is a building set on [n] := {1, . . . , n} whose blocks
are intervals. There are two relevant examples of nestohedra of interval building sets:

• the classical associahedron of [18] for the building set with all intervals of [n],
• the Pitman-Stanley polytope of [32] for the building set with all singletons {i} and

all intervals [i] for i ∈ [n].
It is not difficult to derive from Corollary 4.16 that the deformation cone DC(NB) is
simplicial for any interval building set B.

5 Deformation cones of hypergraphic polytopes

Hypergraphic polytopes. A hypergraph on the set V is a collection H of subsets of V
such that |U| ≥ 2 for each U ∈ H. The hypergraphic polytope PH is the Minkowski
sum PH := ∑U∈H △U of the faces △U := conv {eu | u ∈ U} of the standard simplex △V
corresponding to its elements [1]. The faces of PH are in correspondence with the acyclic
orientations of H [4]. Its normal fan is the hypergraphic fan HH whose cones are all
possible intersections of faces of the cones Cu(U) :=

{
x ∈ RV

∣∣ xv ≤ xu for v ∈ U
}

for
u ∈ U ∈ H.

Example 5.1. All graphical zonotopes, graph associahedra, and nestohedra are hyper-
graphic polytopes.
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Redundant description. We now give a redundant description of the deformation
cone DC(PH) using the simplicial refinement of the hypergraphic fan HH given by
the fan B̂V of Section 3. Note that the cones {CX

σ ,CX
σ′} for σ = PuvS, σ′ = PvuS,

and X ∈ {∅, V} belong in the same cell of HH if and only if they lie in the same
cell of the normal fan of △U for all U ∈ H, that is, if there is no U ∈ H such that
{u, v} ⊆ U ⊆ P∪{u, v}. Proposition 2.1 thus gives the following description of DC(PH).

Corollary 5.2. The deformation cone DC(PH) of the hypergraphic polytope PH is the set of
polytopes

{
x ∈ RV

∣∣ ∑u∈U xu − ∑v/∈U xv ≤ hU for all U ⊆ V
}

for all h in the cone of R2V

defined by the following (possibly redundant) description:
• h∅ = −hV ,
• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each S ⊆ V and each {u, v} ⊆ V ∖ S such that

U /∈ H for any {u, v} ⊆ U ⊆ V ∖ S,
• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ⊆ U ∈ H and S ⊆ V ∖U.

Again, the description of Corollary 5.2 is highly redundant, both in the equations
describing its linear span and in the inequalities describing its facets. To obtain irredun-
dant descriptions, we benefited from a precise understanding of the combinatorics of the
acyclic orientations of graphs in Theorem 3.2 and of the nested complex in Theorem 4.13.

Dimension and linear basis. While we have not found the irredundant facet descrip-
tion of DC(PH) yet, we do have independent equations for its linear span. To conclude,
we determine the dimension, independent equations, and a linear basis for the linear
span of the deformation cone DC(PH) generalizing Corollaries 3.4 and 4.14. We say
that K ⊆ V is an induced clique of H if for every u, v ∈ K there is some U ∈ H with
{u, v} ⊆ U ⊆ K.

Theorem 5.3. The linear span of the deformation cone DC(PH) of the hypergraphic polytope PH
is given by the following independent equations:

• h∅ = −hV ,
• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each ∅ ̸= S ⊆ V such that V ∖ S does not induce a

clique and any3 u, v ∈ V ∖ S such that U /∈ H for any {u, v} ⊆ U ⊆ V ∖ S.

F. Ardila, C. Benedetti and J. Doker proved in [2] that the faces of the standard
simplex form a basis of the space of deformed permutahedra. This basis is actually
compatible with the hypergraph polytopes in the following sense.

Corollary 5.4. The faces △K of the standard simplex △V corresponding to the non-empty in-
duced cliques K of H form a linear basis of the vector space spanned by DC(PH).

Corollary 5.5. The dimension of the deformation cone DC(PH) is the number of non-empty
induced cliques K of H.

3Only one such pair {u, v} for each non-clique is chosen; for example, the lexicographically smallest.
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