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Cyclic Actions in Parking Spaces
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Abstract. We describe a cyclic action of order q− 1 on the classical space of generalized
parking functions for Weyl groups W when q is prime, as well as a similar action when
q is a power of a prime on an isomorphic “semi-classical” parking space. We show that
these actions agree with the action described by Armstrong, Reiner, and Rhoades in
their parking conjectures. Along the way, we also conjecture minimal rings in which
Weyl group elements have a parametrized Smith normal form.
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1 Introduction

Classically, a parking function is a sequence (a1, . . . , an) of integers 1 ≤ ai ≤ n such
that (a′1, . . . , a′n) is the same sequence in increasing order, then a′i ≤ i. They were first
enumerated by Konheim and Weiss [8]. Shortly after their introduction, Pollack (via
Riordan [11]) gave a different but particularly elegant proof of their enumeration. This
proofs shows that the natural inclusion of parking functions into (Z/(n+ 1)Z)n becomes
an Sn-equivariant bijection after passing to the quotient by the all-ones vector, that is,
(Z/(n + 1)Z)n/〈(1, . . . , 1)〉.

This quotient from Pollak’s argument is isomorphic to Q/(n+ 1)Q for the root lattice
Q of type An−1, and so it is sensible to consider the “finite torus” Q/bQ for any root
systems Φ and integer b. When W = Sn and b is coprime to n, the natural analogue of
Pollack’s bijection converts these objects into the so-called “rational-parking functions”
of Armstrong, Loehr, and Warrington [1]. In this extended abstract we will primarily be
concerned with the action of W on this set: because the Weyl group W preserves the root
lattice Q, we know that C[Q/bQ] is a permutation representation of W.

1.1 Semi-classical Parking Spaces

Sommers [13, Proposition 3.9] defines and integer b to be very good for a Weyl group W
if it satisfies certain coprimality conditions (defined uniformly), which for irreducible W
are equivalent to:
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• b is coprime to the Coxeter number h, if W has type A, E, F, or G; or

• b is odd, if W has type B (or C) or D.

He also showed that in this case, the character of C[Q/bQ] has a simple formula:
χC[Q/bQ](w) = bdimC ker(1−w). Our first main result shows the coprimality conditions on
b appear to be more important, in some sense, than how it is used in the construction:

Theorem 1. Let Q be a root lattice for an irreducible Weyl group W, b be an integer very good
for W, and A be any finite abelian group of order b. Then C[Q⊗ A], as a W-representation, is
independent of the choice A. Concretely,

χC[Q⊗A](w) = bdimC ker(1−w).

The character formula is equivalent to the independence statement because Q ⊗
(Z/bZ) ∼= Q/bQ, and hence this theorem generalizes Sommers’. In light of it, we
will call any C[Q⊗ A], for an abelian group A of order b, a semi-classical parking space
with parameter b. Although all such constructions are isomorphic as W-representations,
there are advantages to choosing particular A in certain circumstances, as we will see
below.

1.2 Graded Parking Spaces

The isomorphism class of the classical parking space makes appearances in other con-
structions as well. Perhaps the first of these is that Haiman [6, Proposition 2.5.3] proved
the existence of a graded Sn-representation with graded character

χb(w; t) =
det(1− tbw)

det(1− tw)

if and only if b is coprime to n. Note that n is the Coxeter number of Sn and hence
this means that b is very good for Sn. Such a representation is a graded version of the
classical parking space in the sense that χb(w; 1) = bdimC ker(1−w).

Since then, many other constructions have been noted. The b = h + 1 setting has
a very extensive history, but we briefly mention Postnikov’s work [10, Remark 2] on
nonnesting parking functions, as well as the paper of Armstrong, Reiner, and Rhoades [2]
defining the noncrossing and “algebraic” parking spaces. In very good generality, de-
velopments came largely from the theory of rational Cherednik algebras, e.g. Gordon [5]
and Berest, Etingof, and Ginzburg [3].

Finally, in a yet-unpublished paper [7], Ito and Okada prove a remarkable classifica-
tion theorem that unifies these observations. They begin with the following definitions:
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Definition 1. Let W be a complex reflection group. A graded parking space for W with
parameter b is a graded representation with graded character

χb(w; t) =
det(1− tbw)

det(1− tw)
.

Similarly, the parking space for W with parameter b is a representation with character
χb(w; 1); that is, w 7→ bdimC ker(1−w).

The (graded) parking space is clearly unique for each W and b when it exists, in the
sense that (graded) representations are determined by their (graded) characters. Exis-
tence, however, is nontrivial; the χb in the definition of a graded parking space is always
a class function, but not always the character of an actual representation. The content of
the aforementioned paper by Ito and Okada is to give a complete classification of those
b which are parameters for (graded) parking spaces, for all complex reflection groups.
Their description is type-dependent, but coincides with Sommers’ for Weyl groups:

Theorem 2 (Ito–Okada [7]). If W is an irreducible Weyl group, then a (graded) parking space
with parameter b exists if and only if b is very good for W.

Unfortunately, Ito and Okada’s proof does not provide any hints as to a natural
construction: they proceed by explicitly expanding χb as a weighted sum of characters
of irreducible representations, and check whether the coefficients in the sum are positive
integers. However, there does exist a framework for finding parking spaces “in the
wild,” essentially proposed by Haiman, with proof completed by Rouquier [12]:

Theorem 3. Let W be an irreducible complex reflection group with irreducible reflection repre-
sentation V, and let x = (x1, . . . , xr) be a basis for V∗. For every very good integer b, there exist
elements θ1, . . . , θr ∈ SbV∗ (that is, polynomials in C[x] of degree b) such that

• (θ1, . . . , θr) is a homogeneous sequence of parameters for SV∗; that is, the quotient
SV∗/〈θ1, . . . , θr〉 is finite-dimensional, and

• the linear map θ• : V∗ → SbV∗ defined by xi 7→ θi, is W-equivariant; that is to say,
w · θi = θ•(w · xi).

Moreover, the quotient Parkb(W) := SV∗/〈θ1, . . . , θr〉 is a graded parking space.

Although this is a rather involved definition, it is worth noting that in some cases the
relevant homogeneous sequence of parameters can be quite simple.
Example 1. Recall that the Weyl group of type Br acts on Cr (and (Cr)∗) by signed per-
mutation matrices, and hence it acts on C[x] by accordingly permuting coordinates and
swapping signs. Now let b be an odd integer, and write θi = xb

i for all 1 ≤ i ≤ r. On
one hand C[x]/〈θ1, . . . , θr〉 is evidently an rb-dimensional vector space. On the other, if w
sends xi to ±xj then w · (θi) = w(xb

i ) = (±xj)
b = ±xb

j , which is indeed θ•(w · xi). Notice
the last equality requires b to be odd.
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1.3 Cyclic Actions

We prescribe an action of the cyclic group C (with generator c) of order b− 1 on Parkb(W)
in a manner following Armstrong, Reiner, and Rhoades [2]. Let ζ be a primitive (b− 1)th

root of unity, and let C act by cd : xa 7→ ζ |a|dxa. In particular, this is a scalar multiplication
on each graded component, and so clearly it commutes with the action of W.

That paper also describes an equivalent combinatorial action on the noncrossing
parking space, but leaves open the problem of finding an appropriate combinatorial
action on a different parking space that they call the nonnesting parking space (see, for
instance, their Problem 11.4) which is canonically isomorphic to C[Q/bQ]. Etingof [4]
conjectured a partial solution: when b = p is prime, the finite torus Q/bQ is in fact a vec-
tor space over Fp, and so we may consider the action of C ∼= F×p via scalar multiplication
in the vector space: cd : α 7→ cdα.

We may be tempted to extend this to powers of primes, but unfortunately if q = pe

then Q/qQ is not a vector space over Fq. One naïve fix is to modify the classical parking
space to enforce this vector space structure.

Definition 2. Let W be an irreducible Weyl group and q be a prime power q = pe which
is very good for W. Then we write Park∼q (W) := Q⊗Fq.

When q = p, this definition agrees with the classical parking space, and in general
it has the same W-representation structure by Theorem 1. But by swapping the abelian
group from Z/qZ to Fq, we now may naturally define an action of the cyclic group C of
order q− 1: match a generator of C to one of F×q and then perform scalar multiplication
on the right tensor factor. After making this adjustment, we find that there is indeed an
isomorphism of (W × C)-representations.

Theorem 4. Let W be an irreducible Weyl group, q be a primal power q = pe which is very good
for W, and C be the cyclic group of order q− 1. Then as (W × C)-representations,

Parkq(W) ∼= Park∼q (W).

We prove both Theorem 1 and Theorem 4 by an explicit type-dependent character
computation. The proofs are rather similar, and will be treated together whenever pos-
sible; it seems to us that there should be some common generalization.

2 Linear-Algebraic Reductions

Let A be a finite abelian group of order b and suppose that Z = 〈z〉 is a cyclic group
acting Z-linearly on A. Observe that the actions of W and Z commute on Q⊗ A, because
they act on the left and right tensor factors, respectively. Thus C[Q⊗ A] is a permutation
(W × Z)-representation; we denote its character by χ̃A.
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Since it is a permutation representation, the character simply counts fixpoints, which
we write as

χ̃(wzd) = |{α ∈ Q⊗ A : wα = z−dα}|.
These fixpoints form a subgroup of Q⊗ A, written explicitly as kerQ⊗A(z−d − w). We
would like these subgroups to have their orders be “appropriate” powers of b. More
precisely if we may embed Z ≤ C with z = ck for some k (that is, if k|Z| ≡ 0 mod b− 1),
then we may consider both Parkb(W) and C[Q⊗ A] as (W × Z)-representations, and we
see that they are isomorphic if and only if

| kerQ⊗A(zd − w)| = bdimC ker(ζd−w)

for all integers d and all w ∈ W. By this line of reasoning, we reduce the main theorems
to the following lemmata.

On one hand, for any A we may take Z to be the trivial group. The following is then
a slight algebraic strengthening of Theorem 1:

Lemma 1. Let Q be a root lattice for an irreducible Weyl group W, and b be very good for W.
Then for any abelian group A of order b and any w ∈W,

kerQ⊗A(1− w) ∼= AdimC ker(1−w)

as abelian groups, where we have written 1 as shorthand for id⊗ id, and w for w⊗ id.

On the other, let us restrict to A = Fq, where q = pe is a prime power that is very
good for W. (In particular, this means that p is also very good for W.) In this case there
is a natural choice for Z, namely F×q . Since |Z| = b− 1 in this case, we write Z = C.

Let ζd be a primitive (q− 1)th root of unity. Because the generator c ∈ C acts on the
degree-d polynomials as multiplication by ζd, the ungraded (W × C)-character evalua-
tions of wcd simply substitute t = ζd in χ(w; t). Thus, if w has eigenvalues λ1, λ2, . . . , λr
then

χ(wcd) = lim
t→ζd

det(1− tqw)

det(1− tw)
=

r

∏
j=1

(
lim
t→ζd

1− tqλj

1− tλj

)
.

Each eigenvalue contributes 1 to the product except for λj 6= ζ−d, which collectively
contribute qκ. Since w is diagonalizable over C, we have κ = dimC ker(ζ−d − w).

Finally, Q⊗ Fq is a vector space over Fq and kerQ⊗Fq(c− w) is a subspace. Thus it
suffices only to say that its dimension is equal to that of ker(ζ−d−w), and so Theorem 4
is equivalent to this lemma:

Lemma 2. Let Q be a root lattice for an irreducible Weyl group W, and suppose that q = pe is a
prime power which is very good for W. Then for any w ∈W and any integer d, we have

dimC ker(ζd − w) = dimFq kerQ⊗Fq(c
d − w)

where ζ is a primitive (q− 1)th root of unity, and c is a generator of F×q .
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Roughly speaking, these lemmata state that the dimensions of the eigenspaces for
w over C agree with the “dimensions” for corresponding “eigenspaces” over Q ⊗ A.
However, even in the finite field case this is not precisely true, since in general w will
not be diagonalizable over Fq (whereas it is over C). Lemma 2 succeeds despite this fact
because it does not detect all C-eigenspaces, only those for the (q− 1)th roots of unity.

2.1 A Speculative Generalization

Carlos Arreche suggested the following arithmetic interpretation of Theorem 4. Rather
than “forcing” the Fq-vector space structure, it may be found in the following way. Let
Q̃ be the Z[ζ]-span of the root basis rather than just the Z-span; that is, Q̃ = Q⊗Z Z[ζ].
The extension Z ⊆ Z[ζ] is unramified at the prime p; that is, p = pZ[ζ] is a prime ideal.
Because of this, Z[ζ]/p ∼= Fq and therefore we may construct Q⊗Fq as Q̃/pQ̃.

Noticing that Q̃ is not a lattice, but instead a “Z[ζ]-lattice,” we propose the following
extension. Recall that given a number field F with ring of integers O, an O-lattice L is
a finitely generated O-submodule of the vector space Fr for some r, such that L⊗Z F

is all of Fr. This is an intriguing reformulation because every complex reflection group
can be defined over a number field (easy to see since there are only finitely many matrix
entries in W), and the content of Lemma 2 is that we do not gain any eigenvectors when
thinking of w ∈ Matr×r(O/p).

Question 1. Let F be a number field, O be its ring of integers, and W be an reflection group
defined over F. For which O-lattices L and which prime ideals p do we have, for all integers d
and all w ∈W,

dimC ker(ζd − w) = dimO/p kerL/pL(cd − w)?

(As usual, ζ is a primitive (q− 1)th root of unity, and c is a generator of (O/p)× ∼= F×q .)

3 Techniques

3.1 Almost-Diagonalizability

An essential difficulty in the lemmata is that w is not generally diagonalizable over Fq,
even when q is very good for W, as the following example displays.

Example 2. Let w be the simple transposition (1 2) ∈ S3; then w acts on the type A root
lattice Q = spanZ(e1 − e2, e2 − e3) ⊆ Z3 by the matrix[

−1 1
0 1

]
.
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Over F2e , for any e, this matrix is a Jordan block and is not diagonalizable. (Note that
this does not contradict Lemma 2 since the actual eigenspace for 1 = c0 over F2e is
one-dimensional, same as for 1 = ζ0 over C.)

Because of this, it is not sufficient to work with the characteristic polynomials of Weyl
group elements, we have to work with the eigenspaces of Weyl group elements directly.
However, when W is held fixed, this problem disappears for most q.

Lemma 3. Let F be a field and π the unique ring map Z→ F. Let w ∈ GLr(Z) be any element
of finite order m such that π(m) ∈ F×. Then any β ∈ F has dimF(β− w) vanishing unless
β has finite order ` dividing m, in which case dimF(β− w) is the multiplicity of the irreducible
cyclotomic polynomial Φ`(t) as a factor of det(t− w) ∈ Z[t].

This implies that for all p except possibly the finitely many dividing m, Weyl group
elements are “as diagonalizable as possible” over Fq; that is, their eigenspaces coincide
with their generalized eigenspaces. In particular, this reduces the proof of Lemma 2 to a
finite check, which we use to handle the exceptional types.

3.2 RC-Equivalence

The main tool used in these proofs is a sort of “partial” calculation of the Smith normal
form for certain matrices. To be more precise, we introduce the following definition.

Definition 3. For any commutative ring R and any matrices X, Y ∈ Matr×r(R), let us
say that X and Y are RC-equivalent (over R) if there exist matrices U ∈ GLr(R) and
V ∈ GLr(R) such that Y = UXV.

The “RC” in this definition stands for row/column, as justified by part 1 of the
following proposition.

Proposition 1. Let R be a commutative ring and X, Y ∈ Matr×r(R).

1. If there is a sequence of invertible row and column operations that transform X into Y, then
X and Y are RC-equivalent over R.

2. For an R-module M, let Matr×r(R) act on Mr by matrix (left-)multiplication (i.e. make
the identification Mr ∼= Rr ⊗R M). Then if X and Y are RC-equivalent matrices over R,
we have kerMr(X) ∼= kerMr(Y) as R-modules.

Recall that when R is a PID, there is a (mostly) canonical choice of representative for
RC-equivalence classes:

Theorem 5. Let X ∈ Matr×r(R) be a matrix with entries in a principal ideal domain R. Then X
is RC-equivalent to a diagonal matrix D = diag(d1, . . . , dr) such that di|di+1 for each 1 ≤ i < r.
Moreover, the matrix D is unique up to multiplication of each di by a unit of R.
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We may consider such forms over any commutative ring R. That is, say that a matrix
X ∈ Matr×r(R) has a Smith normal form (over R) if it is RC-equivalent to a diagonal
matrix D = diag(d1, . . . , dr) such that di|di+1. In this way, the classical Theorem 5 says
that every matrix over a PID has a Smith normal form. Moreover we say that the matrix
equation X = UDV, with D as before and U, V ∈ GLn(R), is a Smith factorization of X
(over R). Note that Smith factorizations are not unique, even up to units; the uniqueness
statement of the theorem only applies to the diagonal part D.

3.3 A Conjecture on Smith Normal Forms

It is a small class of matrices M ∈ Matr×r(R) such that tI − M has a Smith normal
form in R[t] (see, e.g., [9, Proposition 8.9]). In general, Weyl group elements need not
be among them. For instance, if W is the Weyl group of type B2, and w ∈ W(B2) is the

signed permutation with matrix
[

1 0
0 −1

]
, it is easy to check that tI − w has no Smith

normal form over Z[t] by computing cokernels at t = 1.
On the other hand, they appear to be “close” in the following sense. Every t − w

has a Smith normal form over Q[t], and so we may blame such failures on “necessary
denominators” appearing in every Smith factorization. But computer calculations with
r ≤ 10 suggest that there are not so many of these.

Conjecture 1. Let Q be a root lattice for an irreducible Weyl group with Coxeter number h.
Define

h′ =


1 if W is of type A,
2 if W is of type B, C, or D,
h if W is of exceptional type (E, F, or G).

Then t− w has a Smith normal form over Z[ 1
g , t] if and only if g is divisible by h′, in the sense

that this is true when w is identified with an integer matrix describing its action on Q in some
basis (e.g. the root basis).

In particular t−w has a Smith normal form over Z[ 1
h , t] for all exceptional types, and

for the classical types, the conjecture holds for w with at most 2 cycles. However, the con-
jecture is perhaps somewhat surprising because h′ has a natural interpretation for almost
all types: the integers coprime to h′ are those which are very good for W. Mysteriously,
though, in type A it seems that we do not have any necessary denominators at all. It
is not clear whether this numerical invariant has a more conceptual, type-independent
definition.
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4 A Uniform Inequality

Our proofs proceed in a largely case-by-case fashion, computing the characters of the
representations, but it is worth noting that the equality in Lemma 2 can be replaced by
an inequality in a rather general setting.

Proposition 2. Let q = pe be a prime power. For any r × r matrix w ∈ Matr×r(Z), any
α ∈ C× with finite order ` dividing q− 1, and any β ∈ F×q also with order `:

dimC ker(α− w) ≤ dimFq ker(β− π(w)),

where π is the unique ring map Z→ Fq, namely reduction mod p.

Outline of proof. Since ζ is a primitive (q − 1)th root of unity, α is a power of ζ. So we
would like to compute a Smith factorization of α− w over Z[ζ] and then apply π to see
that the diagonal elements divisible by p vanish.

Executing this plan rigorously requires a number of technicalities the beginning of
the proof. The most fundamental problem is that Z[ζ] need not be a PID, so it is not
clear that α− w should even have a Smith normal form. However, going all the way to
Q(ζ), we lose the ability to apply π. We can thread this needle by localizing Z away
from p, but there is one last technical hiccup, which is resolved by completing to the
p-adic integers Zp.

As an extended comment, we note that Proposition 2 together with the classification
of Ito and Okada shows that Lemma 2 in some sense characterizes the primes (or prime
powers) which are very good.

Corollary 1. Let W be a Weyl group, p be any prime number, and suppose that q = pe is a
prime power. Then for any w ∈W and any integer d, we have

dimC ker(ζd − w) ≤ dimFq ker(cd − w)

where ζ is a primitive (q − 1)th root of unity, and c is a generator of F×q . Moreover, equality
holds for all w ∈W and all integers d if and only if q (equivalently, p) is very good for W.

Proof (conditional on Lemma 2). The inequality comes directly from Proposition 2. If q is
very good for W, equality is precisely the statement of Lemma 2. Conversely, if q is
not very good for W, then it does not satisfy condition (iii) of Ito and Okada’s Theorem
1.4 [7], and thus w 7→

[
det(1−tqw)
det(1−tw)

]
t=1

cannot be the character of a permutation representa-

tion of W. As argued in Section 2, we have χ(w) = qdimC ker(1−w). But C[Q⊗Fq] is mani-
festly a permutation representation of W for any prime power q. Therefore, the inequal-
ity is strict for some w ∈W, since qdimC ker(1−w) = χ(w) 6= χ′(w) = qdimFq ker(1−w).
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5 Proofs of Lemmata

5.1 Type A

Recall the root lattice of type Ar is Q := {(v0, . . . , vr) ∈ Rr+1 : ∑r
i=0 vi = 0}. The Weyl

groups are W(Ar) = Sr+1, and so the conjugacy classes of Weyl group elements are
determined by the corresponding cycle types. Also, we recall that an integer b is very
good for W(Ar) = Sr+1 if and only if it is coprime to h = r + 1.

Proposition 3. Let V be the irreducible reflection representation of Sr+1, and let the element
w ∈ Sr+1 have cycle type λ = (λ1, . . . , λk). Then tI − w is RC-equivalent over Z[t] to the
block-diagonal matrix diag(Ir−1−k, Λ(t)) where Λ(t) is the k× k matrix

Λ(t) =


[λ1]t [λ2]t [λ3]t · · · [λk]t

0 tλ2 − 1 0 0
0 0 tλ3 − 1 0

0 0 0 tλk − 1

 .

where [m]t = 1 + t + · · ·+ tm−1.

We omit the proof of this proposition, which is a technical computation with row and
column operations. However, we use it to prove that both lemmata hold for type A.

Corollary 2. Lemma 1 and Lemma 2 both hold for W = W(Ar).

For Lemma Lemma 1 we apply Proposition 3 and evaluate at t = 1. All entries of
Λ(t) except those in the first row are zero, and by iterating the Euclidean algorithm we
find that I −w is RC-equivalent to diag(Ir−k, gcd(λ), 0, . . . , 0), where we write gcd(λ) as
shorthand for gcd(λ1, . . . , λk). Clearly, gcd(λ) must divide h = r + 1 = ∑ λi, and thus
any number coprime to h is also coprime to gcd(λ).

Therefore, multiplication by gcd(λ) is an invertible operator on A, since the order of
A is very good for W (that is, coprime to h). We conclude that

kerQ⊗A(1− w) ∼= kerAr(I − w) ∼= kerAr diag(Ir−k, gcd(λ), 0k−1) ∼= Ak−1

as abelian groups, with the middle isomorphism following from Proposition 1(2). Fi-
nally, Lemma 1 follows by tensoring instead with C to find dimC ker(1− w) = k− 1 as
well.

For Lemma 2, we first tensor with any field F to observe that tI −w is RC-equivalent
to diag(Ir−1−k, Λ(t)) over F[t]. We now evaluate t at any non-unity element of the field
t0 6= 1 (which is dealt with above), so that t0 − 1 is invertible. Thus by performing the
row operations Rr−k+1 7→ (t0 − 1)Rr−k+1 followed by Rr−k+1 7→ Rr−k+1 − Rr−k+i for
2 ≤ i ≤ k, we conclude that t0 I − w is RC-equivalent to diag(tλ1

0 − 1, . . . , tλk
0 − 1) over F.
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We thus see that the F-nullity of w is precisely the number of λi such that tλi
0 = 1.

Thus what remains to be shown is that for any very good prime power q and any integer
d, the number of i such that cdλi ≡ 1 in Fq is equal to the number of i such that ζdλi = 1.
The condition in either case is equivalent to dλi being divisible by q − 1, and so the
eigenspaces have equal dimension, as desired.

5.2 Other Types

We omit complete proofs in types Br, Cr, and Dr, as the ideas are similar, but we do write
down the partial Smith computation. Any Weyl group element w in these types acts on
the respective root lattice Q by a signed permutation matrix. Ignoring the signs, the
underlying permutation has a cycle type λ = (λ1, . . . , λk) which we call the cycle type
of w. Putting the signs back, let εi = 1 for cycles with an even number of sign changes,
and εi = −1 otherwise; we call the tuple (ε1λ1, . . . , εkλk) the signed cycle type of w.

Proposition 4. Let V be the irreducible reflection representation of W(X) for X = Br, Cr, or Dr
and w ∈ W(X) be a signed permutation matrix with signed cycle type λ = (ε1λ1, . . . , εkλk).
Then tI−w is RC-equivalent over Z[t] to the diagonal matrix diag(Ir−k, tλ1 − ε1, . . . , tλk − εk).

We conclude by dealing with the exceptional types. For Lemma 1 this is a simple
matter. We need to compute fixpoints, and so we evaluate at tI − w at t = 1 as in type
A. We used gap3 to compute a Smith factorization I − w = UDV over Z, and saw that
the nonzero diagonal entries of D are integers whose action on A (by multiplication) is
an invertible operator, which completes the proof for the exceptional types.

For Lemma 2 we recall that Lemma 3 implies that we need to check the equality of
eigenspace dimensions for only finitely many p. More precisely, for each w ∈ W, we
need only check the list of primes that divide its order m.

This is still an infinite calculation because there are many finite fields of characteristic
p, but here again Lemma 3 is useful. Since we need only check the β whose order divides
m, and there are only m of these Fp, it suffices to perform the check at the minimal power
q = pe in which all of them appear; that is, for which m divides q− 1. Again, a simple
gap3 script verifies the lemma in these cases, completing the proof for the exceptional
types.
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