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Promotion of Kreweras Words
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Abstract. Kreweras words are words consisting of n A’s, n B’s, and n C’s in which
every prefix has at least as many A’s as B’s and at least as many A’s as C’s. Equiv-
alently, a Kreweras word is a linear extension of the poset V × [n]. Kreweras words
were introduced in 1965 by Kreweras, who gave a remarkable product formula for
their enumeration. Subsequently they became a fundamental example in the theory of
lattice walks in the quarter plane. We study Schützenberger’s promotion operator on
the set of Kreweras words. In particular, we show that 3n applications of promotion on
a Kreweras word merely swaps the B’s and C’s. Doing so, we provide the first answer
to a question of Stanley from 2009, asking for posets with ‘good’ behavior under pro-
motion, other than the four families of shapes classified by Haiman in 1992. We also
uncover a strikingly simple description of Kreweras words in terms of Kuperberg’s
sl3-webs, and Postnikov’s trip permutation associated with any plabic graph. In this
description, Schützenberger’s promotion corresponds to rotation of the web.
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1 Introduction

In 1965, Kreweras [11] considered the following version of a 3-candidate ballot problem:
in how many ways can we order the ballots of an election between three candidates Alice,
Bob, and Charlie, who each receive n votes, so that during the counting Alice never trails
Bob and Alice never trails Charlie – although the relative position of Bob and Charlie may
change during the counting? These ballot orderings correspond to words of length 3n
in the letters A, B, and C, with equally many A’s, B’s, and C’s, for which every prefix
has at least as many A’s as B’s and also at least as many A’s as C’s. We call such words
Kreweras words. Kreweras proved that they are counted by the formula

Kn :=
4n

(n + 1)(2n + 1)

(
3n
n

)
.

For many years Kreweras’s formula seemed like an isolated enumerative curiosity,
although simplified proofs were presented by Niederhausen [13, 14] and Kreweras–
Niederhausen [10] in the 1980s. Gessel [5] gave yet another proof which demonstrated
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that the generating function ∑∞
n=0 Kn xn for this sequence of numbers is algebraic. In-

terest in Kreweras’s result was revived decades later in the context of lattice walk enu-
meration. Kreweras words evidently correspond to walks in Z2 with steps of the form
A = (1, 1), B = (−1, 0), and C = (0,−1) from the origin to itself which always remain in
the nonnegative orthant. Such walks are called Kreweras walks. Bousquet-Mélou [2] gave
another proof of Kreweras’s product formula counting Kreweras walks using the kernel
method from analytic combinatorics. Indeed, the Kreweras walks are nowadays a fun-
damental example in the study of “walks with small step sizes in the quarter plane,” a
program successfully carried out over a number of years in the 2000s by Bousquet-Mélou
and others (see, e.g., [3]). Finally, we note that Bernardi [1] gave a purely combinatorial
proof of the product formula for the number of Kreweras walks via a bijection with
(decorated) cubic maps.

We are interested in a certain cyclic group action on Kreweras words. Let w =
(w1, w2, . . . , w3n) be a Kreweras word of length 3n. The promotion of w, denoted Pro(w),
is obtained from w as follows. Let ι(w) be the smallest index ι ≥ 1 for which the prefix
(w1, w2, . . . , wι) has either the same number of A’s as B’s or the same number of A’s as
C’s. Then

Pro(w) := (w2, w3, . . . , wι(w)−1, A, wι(w)+1, wι(w)+2, . . . , w3n, wι(w)).

It is easy to verify that Pro(w) is also a Kreweras word, and that promotion is an invert-
ible action on the set of Kreweras words.

Example 1.1. Let w = AAB B CACCB. Here we circled the letter wι(w), and hence
Pro(w) = ABACACCBB. We can further compute that the first several iterates of pro-
motion applied to w are

Pro(w) = A B ACACCBB Pro4(w) = AACABB B CC Pro7(w) = A B AACCBCB

Pro2(w) = AACAC C BBB Pro5(w) = A C ABBACCB Pro8(w) = AAACCB C BB

Pro3(w) = A C ACABBBC Pro6(w) = AAB B ACCBC Pro9(w) = AACCBABBC

Note that Pro9(w) is obtained from w by swapping all B’s for C’s and vice-versa.

Our first result predicts the order of promotion on Kreweras words:

Theorem 1.2. Let w be a Kreweras word of length 3n. Then Pro3n(w) is obtained from w by
swapping all B’s for C’s and vice-versa. In particular, Pro6n(w) = w.

Promotion of Kreweras words comes from the theory of partially ordered sets. In
a series of papers from the 60s and 70s, Schützenberger [18, 19, 20] introduced and
developed the theory of a cyclic action called promotion, as well as a closely related invo-
lutive action called evacuation, on the linear extensions of any poset. Let V(n) denote the
Cartesian product of the 3-element “V”-shaped poset and the n-element chain [n].
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Figure 1: Promotion of Dyck words as rotation of noncrossing matchings (top) and
promotion of Kreweras words as rotation of webs (bottom).

Then, as observed by Kreweras–Niederhausen [10], there is a natural bijection between
Kreweras words of length 3n and linear extensions of V(n), which maps promotion of
Kreweras words to Schützenberger’s promotion of linear extensions.

Previously there were only four known (non-trivial) families of posets for which the
order of promotion can be predicted: rectangles, staircases, shifted double staircases and
shifted trapezoids. These were classified by Haiman in the 1990s [6, 7]. In a survey
on promotion and evacuation, Stanley [21, Section 4, Question 3] asked whether there
were any other families of posets for which the order of promotion is given by a simple
formula. Our work shows that V(n) is such an example.

Dyck words of length 2n correspond to linear extensions of [2]× [n], and hence carry
an action of promotion. Figure 1 (top) depicts a well-known bijection between Dyck
words of length 2n and noncrossing matchings of [2n] := {1, 2, . . . , 2n}, and shows how
under this bijection promotion of Dyck words corresponds to rotation of noncrossing
matchings (this was first observed by Dennis White: see [17, Section 8]). This observation
immediately implies that Pro2n(w) = w for w a Dyck word of length 2n.

Our proof of Theorem 1.2 is also essentially based on a diagrammatic representation
of Kreweras words for which promotion corresponds to rotation; see Figure 1 (bottom).
However, these diagrams are not coming from Bernardi’s cubic map bijection. Instead,
they are related to Kuperberg’s webs.

Webs are certain trivalent bipartite planar graphs which Kuperberg [12] introduced in
order to study the invariant theory of Lie algebras. Khovanov and Kuperberg [9] showed
that a particular class of webs (namely, irreducible sl3-webs with 3n white boundary
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vertices) are in bijection with linear extensions of [3] × [n]. Petersen, Pylyavskyy, and
Rhoades [15] (see also Tymoczko [23]) showed that, via the Khovanov-Kuperberg bijec-
tion, rotation of webs corresponds to promotion of linear extensions.

We say that W is a Kreweras web if W is an irreducible sl3-web with all boundary
vertices white and having no internal face with a multiple of four sides. We define a
surjective map w 7→ Ww from Kreweras words to Kreweras webs. This map behaves
well with respect to Schützenberger’s operators:

Theorem 1.3. Let w be a Kreweras word. Then,

WPro(w) = Rot(Ww) and WEvac(w) = Flip(Ww),

where Rot denotes the rotation of a web and Flip its reflection across a diameter.

The map between Kreweras words and Kreweras webs can be made bijective by
keeping track of a certain 3-edge-coloring of the web. We then obtain the following
enumerative corollaries.

Theorem 1.4. We have

∑
W

2κ(W) = Kn =
4n

(n + 1)(2n + 1)

(
3n
n

)
[22, A006335],

where the sum is over all Kreweras webs W with 3n boundary vertices, and κ(W) is the number
of connected components of W . Moreover, the number of connected Kreweras webs W with 3n
boundary vertices is

2n (4n − 3)!
(3n − 1)!n!

[22, A000260].

A curious feature of our work not present in any previous work we are aware of is
the use of trip permutations, in the sense of Postnikov’s theory of plabic graphs [16], to
study webs.

This is an extended abstract based on [8].

Acknowledgements

S.H. thanks Ira Gessel, whose answer to a MathOverflow question of his [4] made him
aware of the paper [10] and the poset V(n), and thus initiated this research.

2 The order of promotion

In this section we indicate how to prove Theorem 1.2. Throughout, w is a Kreweras word
of length 3n. Moreover, we adopt the notational convention −B := C and −C := B.
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Our strategy is to associate to each Kreweras word a permutation, such that promo-
tion of the Kreweras word corresponds to rotation of the permutation.

Definition 2.1. For a permutation σ ∈ Sm, the rotation of σ, denoted Rot(σ), is the (right)
conjugation of σ by the long cycle (1, 2, . . . , m) ∈ Sm; i.e.,

Rot(σ) := (1, 2, . . . , m)−1 ◦ σ ◦ (1, 2, . . . , m).

Rotation of a permutation as defined above can be visualized as the rotation of its func-
tional digraph, placing its vertices on a circle in counterclockwise order.

We first associate a diagram to a Kreweras word, which we will then use to obtain
the desired permutation.

Definition 2.2. An arc is a pair (i, j) of positive integers with i < j. A crossing is a set
{(i, j), (k, ℓ)} of two arcs such that i ≤ k < j < ℓ.

Note that this definition slightly deviates from the usual notion, in that the arcs (i, j)
and (i, ℓ) form a crossing for j < ℓ. However, this modification is only relevant when
considering Kreweras bump diagrams, defined below.

A Kreweras word can be thought of as two overlapping Dyck words, and hence
has two noncrossing matchings naturally associated to it, see below. As we explain
next, the diagram for a Kreweras word is essentially the union of these two noncrossing
matchings.

Definition 2.3. Let ε ∈ {B, C}. We use Mε
w to denote the noncrossing matching of

{i ∈ [3n] : wi ̸= −ε} whose set of openers is {i ∈ [3n] : wi = A} and whose set of closers
is {i ∈ [3n] : wi = ε}.

The Kreweras bump diagram Dw of w is obtained by placing the numbers 1, . . . , 3n in
this order on a line, and drawing a semicircle above the line connecting i and j for each
arc (i, j) ∈ MB

w ∪MC
w. The arc is solid blue if (i, j) ∈ MB

w and dashed crimson (i.e., red)
if (i, j) ∈ MC

w. The arcs are drawn in such a fashion that only pairs of arcs which form a
crossing intersect, and any two arcs intersect at most once.

Example 2.4. As in Example 1.1, let w = AABBCACCB. The two noncrossing matchings
MB

w and MC
w, drawn as arc diagrams, are

MB
w = 1 2 3 4 5 6 7 8 9

A A B B C A C C B
and MC

w = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

The Kreweras bump diagram Dw is obtained by placing these two arc diagrams on top
of one another:
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(a) (b)

Figure 2: The rules of the road when taking a trip in a Kreweras bump diagram:
(a) depicts what happens at an internal crossing, and (b) depicts what happens at a
boundary crossing. Note that the colors of the arcs in the crossing are irrelevant.

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

We now explain how to extract the permutation σw ∈ S3n from Dw.

Definition 2.5. The trip permutation σw ∈ S3n of w is defined as follows. For each i ∈
{1, . . . , 3n}, we define σw(i) by taking a trip in Dw starting at i, as we now describe. If i
is a closer of MB

w ∪MC
w, then we start our trip by walking from i towards i′ along the

unique arc (i′, i) incident to i; if i is an opener of MB
w ∪MC

w, then we start our trip by
walking from i towards i′ along the arc (i, i′) incident to i with the smallest value of i′.
We continue walking until we encounter a crossing. Whenever we encounter a crossing
of arcs, we follow the rules of the road as depicted in Figure 2. Finally, if j is the terminal
vertex of the trip, we set σw(i) := j.

Example 2.6. As in Example 2.4, let w = AABBCACCB. Let us compute σw(1). We
start by walking along the arc (1, 4) from 1 towards 4. We encounter the crossing
{(1, 4), (2, 5)}, and following the first rule we continue towards 4, where we terminate.
Thus, σw(1) = 4. This trip looks pictorially as follows:

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

As a second example, let us compute σw(3). We start by walking along the arc (2, 3)
from 3 towards 2. As we encounter the boundary crossing {(2, 3), (2, 5)} we turn right,
and continue along the arc (2, 5) from 2 towards 5. Then we encounter the crossing
{(1, 4), (2, 5)} and turn left, and continue along the arc (1, 4) from 4 towards 1. At the
boundary crossing {(1, 4), (1, 8)} we turn right, and continue along the arc (1, 8) from
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1 towards 8. Next we encounter the crossing {(1, 8), (6, 9)}, but continue straight along
the arc (1, 8) from 1 towards 8, where we terminate. Thus, σw(3) = 8.

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

We could further compute [σw(1), . . . , σw(9)] = [4, 3, 8, 5, 2, 7, 1, 9, 6].

Proposition 2.7. 1. Definition 2.5 yields a permutation σw ∈ S3n.

2. Let 1 ≤ i ≤ 3n with wi = A. Then wσw(i) ∈ {B, C}.

3. Let 1 ≤ i ≤ 3n with wi ∈ {B, C}. Then either wσw(i) = −wi, or wσw(i) = A and
wσw(σw(i)) = −wi.

4. {i ∈ [3n] : wi = A} = {i ∈ [3n] : σ−1
w (i) > i} and {i ∈ [3n] : wi = B or wi = C} =

{i ∈ [3n] : σ−1
w (i) < i}. In particular, σw has no fixed points.

The permutation σw does not quite determine the Kreweras word w. For example,
if w′ is obtained from w by swapping all B’s for C’s and vice-versa, then clearly we have
σw = σw′ . To determine a Kreweras word uniquely, we define the map εw : {1, . . . , 3n} →
{B, C} by setting

εw(i) :=

{
wσw(i) if wσw(i) ̸= A;
wσw(σw(i)) if wσw(i) = A,

for all 1 ≤ i ≤ 3n. Proposition 2.7 (2) guarantees that εw(i) ∈ {B, C}. As a shorthand we
write εw = [εw(1), . . . , εw(3n)]. By Proposition 2.7 (4), the pair (σw, εw) determines w.

Corollary 2.8. For any Kreweras word w of length 3n, and all 1 ≤ i ≤ 3n, we have

wi =

{
A if σ−1

w (i) > i;
εw(σ−1

w (i)) otherwise.

The key lemma in the proof of our main result says that σw and εw evolve in a simple
way under promotion.

Lemma 2.9. σPro(w) = Rot(σw) and εPro(w) = [εw(2), εw(3), . . . , εw(3n),−εw(1)].

Theorem 1.2 is an immediate consequence of Corollary 2.8 and Lemma 2.9.

Example 2.10. As in Example 2.6, let w = AABBCACCB. We saw above that σw =
[4, 3, 8, 5, 2, 7, 1, 9, 6]. We also have εw = [B, B, C, C, B, C, B, B, C].

As we saw in Example 1.1, Pro(w) = ABACACCBB. Its associated bump diagram is
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DPro(w) = 1 2 3 4 5 6 7 8 9
A B A C A C C B B

From the diagram DPro(w) one could compute that σPro(w) = [2, 7, 4, 1, 6, 9, 8, 5, 3] and
εPro(w) = [B, C, C, B, C, B, B, C, C], in agreement with Lemma 2.9.

3 Webs

We now reinterpret the results from the previous section in the language of webs. We
recall the notion of an sl3-web, which is due to Kuperberg [12]:

Definition 3.1. An sl3-web W is a planar graph, embedded in a disk, with boundary
vertices labeled 1, 2, . . . , m arranged on the rim of the disk in counterclockwise order, and
any number of (unlabeled) internal vertices such that

• W is trivalent: all the boundary vertices have degree one, while all the internal
vertices have degree three;

• W is bipartite: the vertices (both boundary and internal) are colored white and
black, with edges only between oppositely colored vertices.

We call the face of W containing the boundary vertices the outer face, and all other faces
internal. We say that W is irreducible (or non-elliptic) if it has no internal faces with fewer
than 6 sides.

We will now explain how to convert a Kreweras bump diagram of a Kreweras word
into a web by “breaking apart” its crossings.

Construction 1. We obtain a planar graph Ww, embedded into a disk, together with a
3-coloring cw of its edges as follows.

(a) →
(b) →

Figure 3: Breaking apart the crossings in a Kreweras bump diagram to obtain a web.
In (a) we show what happens at an internal crossing, and in (b) we show what happens
at a boundary crossing.
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Figure 4: The rules of the road when taking a trip in a web.

We replace each crossing of two arcs in Dw with a pair of a vertices, one white and
one black, joined by a wavy avocado (i.e. green) edge, as in Figure 3. The white vertex
in this pair is “to the left” of the black vertex, that is, closer to the openers of Dw. We
color all vertices of degree one in the resulting graph, corresponding to the openers
and closers of Dw, white, and keep the labels of these vertices. Finally, the color of the
non-avocado edges of Ww is inherited from Dw.

Example 3.2. Let w = AABBCACCB. In the following table, the Kreweras bump diagram
Dw of w is depicted on the left, the 3-edge-colored web obtained by breaking apart the
crossings of Dw is depicted in the middle and the web Ww obtained by forgetting the
3-edge-coloring and drawing the graph embedded in a disk, is depicted on the right.

1 2 3 4 5 6 7 8 9
A A B B C A C C B

1 2 3 4 5 6 7 8 9

1

2

3

4 5 6

7

8

9

Proposition 3.3. Let w be a Kreweras word and let (Ww, cw) be the 3-edge-colored graph ob-
tained by Construction 1.

Then Ww is an irreducible sl3-web with 3n boundary vertices, all of which are white. More-
over, Ww has no internal face having a multiple of four sides.

The 3-coloring cw of the edges of Ww is proper, i.e., each vertex is incident to at most one edge
in each color class.

Finally, the construction is injective, that is, given (Ww, cw) we can recover w: the boundary
vertices incident to an avocado edge correspond to the A’s in w, those incident to a blue edge
correspond to B’s, and those incident to a crimson edge correspond to C’s.

The web Ww without its 3-edge-coloring is not quite enough to recover w. However,
as we now explain, it gives information equivalent to the permutation σw. In fact, we
can associate a permutation to any sl3-web by taking trips in the web, similar to what
we did in Section 2 for Kreweras bump diagrams.

Definition 3.4. Let W be an sl3-web with m boundary vertices. The trip permutation of
W , denoted tripW ∈ Sm, is obtained as follows. For 1 ≤ i ≤ m we take a trip in W
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starting at i. To do this, we start by walking from boundary vertex i along the unique
edge incident to it. When we come to any internal vertex in W , we continue our trip by
following the rules of the road:

• if the vertex is black, we turn right, i.e., we walk out along the next edge counter-
clockwise from where we came in;

• if the vertex is white, we turn left, i.e., we walk out along the next edge clockwise
from where we came in.

These rules of the road are depicted in Figure 4. We stop our trip when we reach a
boundary vertex. If j is the boundary vertex we reach from the trip starting at i, then we
set tripW (i) := j.

That tripW is a permutation follows from the fact that the rules of the road around
any vertex locally permute the entry and exit points.

Proposition 3.5. σw = tripW .

The notion of trip permutations is due to Postnikov [16], and comes from his theory
of plabic graphs. A plabic (“planar bicolored”) graph is a planar graph, embedded in a
disk, whose internal vertices are colored black or white, and whose boundary vertices
have degree one. There are some differences between plabic graphs and sl3-webs:

• the boundary vertices of a plabic graph are not colored;

• the internal vertices of a plabic graph need not be trivalent;

• the coloring of internal vertices of a plabic graph does not have to be proper, i.e.,
vertices of the same color may be adjacent.

Except for the small technicality about boundary vertices being colored, an sl3-web is a
special case of a plabic graph. Postnikov [16, §13] defined trip permutations for plabic
graphs in exactly the same way as we have done for webs in Definition 3.4 above: turn
right at black vertices and left at white vertices.

If W and W ′ are two sl3-webs with m boundary vertices, and they differ only in
the way their boundary vertices are colored, then tripW = tripW ′ , since the color of
boundary vertices does not enter into the definition of trip permutations in any way.
However, note that the color of any boundary vertex which is adjacent to an internal
vertex has its color determined by the bipartiteness condition. Hence, if W and W ′

differ only in the way their boundary vertices are colored, then W ′ is obtained from W
by swapping the colors of pairs of oppositely colored, adjacent boundary vertices. In
particular, if W has all its boundary vertices the same color, then there is no web that
differs from W ′ only in the way its boundary vertices are colored.

Postnikov’s work implies that for irreducible webs, the situation discussed in the pre-
vious paragraph is the only way that trip permutations can coincide.
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Lemma 3.6. Let W and W ′ be irreducible sl3-webs with m boundary vertices. Suppose that
tripW = tripW ′ . Then W and W ′ differ at most in the way their boundary vertices are colored.
In particular, if all the boundary vertices of W are the same color, then W = W ′.

Lemma 3.6 lets us apply our knowledge about how Pro and Evac affect σw to under-
stand how they affect Ww. We just need to define the corresponding web operations.

Definition 3.7. Let W be an sl3-web with m boundary vertices. The rotation of W , denote
Rot(W), is obtained from W be relabeling its vertices according to the inverse long cycle
(m, m − 1, . . . , 2, 1) ∈ Sm. The flip of W , denoted Flip(W), is obtained from W by
drawing a chord in the disk separating 1 and m, reflecting W across this chord, and then
relabeling its vertices according to the longest element [m, m − 1, . . . , 1] ∈ Sm.

Theorem 3.8. WPro(w) = Rot(Ww) and WEvac(w) = Flip(Ww).

Let us remark that our proof of Theorem 3.8 relies on Theorem 1.2 (or, more precisely,
Lemma 2.9) in an essential way.

We conclude with a characterisation of those webs W which are equal to Ww for
some Kreweras word w.

Theorem 3.9. A Kreweras web is an irreducible sl3-web such that all boundary vertices are
white and there are no internal faces with a multiple of 4 sides.

Let W be an sl3-web. Then there is a Kreweras word w for which W = Ww if and only W
is a Kreweras web. Moreover, if W is a Kreweras web, then the number of Kreweras words w for
which W = Ww is 2κ(W), where κ(W) is the number of connected components of W .

We prove Theorem 3.9 by demonstrating that we can appropriately edge-color any
Kreweras web W .
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