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Abstract. We introduce a g-deformation that generalises in a single framework previ-
ous works on classical and enriched P-partitions. In particular, we build a new family
of power series with a parameter g that interpolates between Gessel’s fundamental
(9 = 0) and Stembridge’s peak quasisymmetric functions (7 = 1) and show that it is
a basis of QSym when g ¢ {—1,1}. Furthermore we build their corresponding mono-
mial bases parametrised with g that cover our previous work on enriched monomials
and the essential quasisymmetric functions of Hoffman.

Résumé. Nous introduisons une g-déformation qui généralise dans un cadre unique
les travaux antérieurs sur les P-partitions classiques et enrichies. En particulier, nous
construisons une famille de séries formelles avec un parametre g qui interpole entre
les fonctions quasisymétriques fondamentales de Gessel (7 = 0) et les fonctions de
pic de Stembridge (7 = 1) et montrons qu’il s’agit d'une base de QSym quand g ¢
{—1,1}. De plus, nous construisons leur bases de mondmes associées paramétrées par
g qui généralisent nos travaux sur les monodes enrichis et les fonctions essentielles de
Hoffman.
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1 Introduction

Introduced by Stanley in [6], P-partitions are order preserving maps from a partially
ordered set P to the set of positive integers with many significant applications in al-
gebraic combinatorics. In particular, they are the building block of Gessel’s ring of
quasisymmetric functions (QSym) in [1]. Replacing positive integers by signed ones,
Stembridge introduces in [8] an enriched version of P-partitions to build the algebra
of peaks, a subalgebra of QSym. The generating functions of classical (enriched) P-
partitions on labelled chains are the fundamental (peak) quasisymmetric functions, an
important basis of QSym (the algebra of peaks) related to the descent (peak) statistic on
permutations. More recently, in [3], we redefine these generating functions on weighted
posets to extend their nice properties to the monomial and enriched monomial bases of
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QSym. However the classical and enriched frameworks remained so far separated. We
merge them into one via a new g-deformation of the generating function for enriched
P-partitions that interpolates between Gessel’s and Stembridge’s works.

1.1 Posets and enriched P-partitions

We recall the main definitions regarding posets and (enriched) P-partitions. The reader
is referred to [1, 7, 8] for further details.

Definition 1 (Labelled posets). Let [n] = {1,2,...,n}. A labelled poset P = ([n], <p) is an
arbitrary partial order <p on the set [n].

Definition 2 (P-partition). Let P = {1,2,3,... } and let P = ([n], <p) be a labelled poset.
A P-partition is a map f: [n] — [P that satisfies the two following conditions:

1. If i <p j, then f(i) < f(j).
2. Ifi<pjandi > j, then f(i) < f(j).

The relations < and > stand for the classical order on IP. Let Lp(P) denote the set of
P-partitions.

Definition 3 (Enriched P-partition). Let P* be the set of positive and negative integers
totally ordered by —1 < 1 < —2 <2 < -3 <3 < ---. We embed PP into P* and let
—IP C P* be the set of all —# for n € P. Given a labelled poset P = ([n], <p), an enriched
P-partition is a map f: [n] — IP* that satisfies the two following conditions:

1. Ifi <pjand i < j, then f(i) < f(j) or f(i) = f(j) € PP.

2. Ifi<pjandi > j, then f(i) < f(j) or f(i) = f(j) € —P.
Further, let Lp+(P) be the set of enriched P-partitions.
Finally recall the weighted variants of posets introduced in [3].

Definition 4 ([3]). A labelled weighted poset is a triple P = ([n], <p, €) where ([n], <p) is a
labelled poset and €: [n] — P is a map (called the weight function).

Each node of a labelled weighted poset is marked with its label and weight (Figure 1).

1.2 Quasisymmetric functions

Consider the set of indeterminates X = {x1,x2, x3,...}, the ring k [[X]] of formal power
series on X where k is a commutative ring, and let Z € {P,IP*}. Given a labelled
weighted poset ([n], <p, €), define its generating function I'z ([n], <p, €) € k[[X]] by

Tz([n], <p,€) = ) I xiﬁ%v (1.1)

feLz([n],<p) 1<i<n
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Figure 1: A 5-vertex labelled weighted poset. Arrows show the covering relations.

where |f(i)| = —f(i) (resp. = f(i)) for f(i) € —P (resp. P). Let S, be the symmetric
group on [n|. Given a composition, i.e. a sequence of positive integers & = (a1, a2, ...,4,)
with 7 entries, and a permutation 7w = 711 ... 7, of S,, we let Py, = ([n], <z, «) be the
labelled weighted poset on the set [1], where the order relation < is such that 7r; < 7T
if and only if i < j and « is the weight function sending the vertex labelled 7; to «; (see
Figure 2). For Z € {IP,IP*}, its generating function UZ, = I'z([n], <z, «) is called the
universal quasisymmetric function ([3]) indexed by 7t and «.

Figure 2: The labelled weighted poset Py .

Definition 5. Let [1"] denote the composition with n entries equal to 1. For each 7 € S,

let L, = Uf; (1] and K, = Uﬁl”]. The power series L, (resp. K;;) are Gessel’s fundamental

(resp. Stembridge’s peak) quasisymmetric functions indexed by the permutation 7.

The power series L, and K, belong to the subalgebra of k [[X]] called the ring of

quasisymmetric functions (QSym), i.e. for any strictly increasing sequence of indices iy <
ip < --- < iy the coefficient of xIl(1 x'zc2 : :-(11 xi.(; e xi.(” .
Furthermore they are related to two major statistics on permutations. Given 7 € Sr;l,
define its descent set Des(rt) = {1 <i <n—1|n(i) > nm(i+ 1)} and its peak set Peak(7r) =
{2<i<n—-1|n(i—1) < 7(i) > m(i+1)}. The peak set of a permutation is peak-lacunar,

i.e. it neither contains 1 nor contains two consecutive integers.

ky, . ..
.- xp” is equal to the coefficient of x

Proposition 1 ([1, 8]). For any permutation 7t € Sy, the fundamental quasisymmetric function
L and the peak quasisymmetric function K, satisfy

_ _ i1,09,.0/0 o )
LT[_ Z xilxiz...xin’ KTL’ — Z 2‘{1 2 H}'xllxlz...xln.
1< <ly; 1< <y,
j€Des(7)=i;<iji1 jePeak(rm)=rij_1<ij1
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As a result L (Ky) depends only on n and Des(7t) (Peak(7r)) and we may use set indices
and write L, pes(ry (Ky peak(r)) instead of Ly (Kz). Furthermore (Ly,1)y>0,1c|n—1) 15 a basis of
QSym (we assume [—1] = [0] = @), and (K, 1)n>0,1 is a basis of a subalgebra of QSym called
the algebra of peaks when I runs over all peak-lacunar subsets of [n — 1] for all integers n.

Eﬁnition 6. Let id, and id,, denote the permutations in S, given by id, =123 ---n and
idp =nn—1---1. Given a composition « = (a1, ...,a,) of n entries, define the monomial
M, ([1]), essential E, ([4]) and enriched monomial 1, ([3, 5]) quasisymmetric functions

—_ P _ X1 4 —_1yr _ 2: S
My = Uy = Y. Xt Ey=Uy ,= Xl xr,
i< <ip i1 <+ <ip
_ IPi _ |{11//Z"}| &1 &n
Na = Uig, 0 = Y, 2 i X,
1<+ <y

Compositions & = (ay,...,a,) such that ay + - - - + a, = s are in bijection with subsets
of [s —1]. For I C [s — 1], we also use the following alternative indexing for monomial,
essential and enriched monomials. References to s in indices are removed for clarity.

— Xi X E; = Xi v X — 2|{i11"'1i5}|x‘ cee X
1 s s s
MI § , i igs I § , i1 isr NI E 1 1

iy << iy << i <<

j€I<:>ijZZJ+1 j€12>ij:l]+1 ]GI:N]:lH,l

Proposition 2. Let s > 0. Let I and ] be a subset and a peak-lacunar subset of [s — 1]. Then,

Ly = Z(_l)W'EU' Ky = Z(_l)‘w’?(vq)uv/ (1.2)
uci ve]

where for V peak-lacunar, we set V—1={v—1jv € V}.

2 A g-deformed generating function for P-partitions

Equation (1.1) and Propositions 1 and 2 exhibit the strong similarities between enriched
and classical P-partitions. As we will see, both are special cases of a more general theory.
Looking at Equation (1.1), one may notice that the generating function does not depend
on the sign of f(i). Let w be the map that sends the element i of a labelled weighted
poset ([n], <p,€) and an enriched P-partition f to the contributing monomial in I'. That
is, w(i, f) = xiﬁgﬂ. As proposed by Stembridge, the value of w does not depend on the
sign of f. We break this assumption and write for an additional parameter g:

w(i,f,q) = x5 i f() €P, (i, f,q) = qx i £(i) € —P.
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Definition 7. Let q € k (the base ring of the power series). The g-generating function for
enriched P-partitions on the weighted poset ([n], <p,€) is

Ll <me)= Y,  [lwGf= Y  TId0%5H, @

feLpx([n],<p)1<i=n feLps ([n],<p) 1<i<n
where [f(i) < 0] = 1if f(i) < 0 and 0 otherwise.

This definition covers the case of Gessel (¢ = 0) with no negative numbers allowed
and the one of Stembridge (7 = 1) where the sign of f is ignored in the generating
function. Define also the g-universal quasisymmetric function

UL, =To([n], <z a). (2.2)

Proposition 3. Let g € k, m € S,y and o = (aq,ap, ..., &) be a composition with n entries.
Then,

U?‘L’,D& — Z qH]GDeS(ﬂ”Z]:l]Jrl}l (q + 1)‘{i11i21"~1in}|x?611 x?‘; Ce x?‘n”' (23)

i1<ip<---<ip;
jePeak(n):Hj,l <ij+1

Proof. Let ([n], <z, ) be the weighted chain poset associated to 7t € S,, and to the com-
position « with n entries. Consider an enriched P-partition f € Lp+([n], <) and an
a € P. All the i € [n] satisfying |f(71;)| = a form an interval [j,k] = {j,j+1,...,k} for
some positive integers j and k. By Definition 3, we have [j, k] NPeak(7r) = @. As a result,
there exists [ such that 77; > - - > m < -+ < . We have f(r1;) = -+ = f(r_1) = —a,
f(myq) == f(m) =aand f(m;) € {—a,a}. The two contributions in x, are

gt o gt o
xa a .

47 447 = (g +1)q' Tx
Note that I — j = {i € Des(7)||f(7;)| = a} to complete the proof. O

The nice formula for the product of two generating functions of chain posets extends
naturally to this g-deformation. Recall the definition of coshuffle from [3]:

Definition 8. Let 7 € S, and ¢ € S;; be two permutations. Let « and B be two com-
positions with n and m entries, respectively. The coshuffle of (7r,a) and (o, §), denoted
(7, 0) w (o, B), is the set of pairs (7, y) where

e T€Syipyisashuffleof randn+o = (n+oy,n+0y,...,n+0y), and

* < is a composition with n 4 m entries, obtained by shuffling the entries of x and
using the same shuffle used to build T from the letters of 7w and n 4 ¢.

Example 1. (132,(2,1,2)) is a coshuffle of (12,(2,2)) and (1, (1)).
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Proposition 4. Let q € k, let 7w and o be two permutations in S, and S, and let & =
(a1,...,0n) and B = (B1,...,Bm) be two compositions with n and m entries. The product
of two g-universal quasisymmetric functions is given by

uﬁ’r,auj,ﬁ = Y. ui.,. (2.4)
(t7)€(ma)w(o,B)

Proof. The proof is similar to [3, Theorem 3]. O

3 Enriched g-monomials

3.1 Definition, relation to g-universal quasisymmetric functions and
product formula

We introduce a new basis of QSym that generalises the essential and enriched monomial
quasisymmetric functions in Definition 6.

Definition 9 (Enriched g-monomials). Let g € k and a be a composition with n entries.
The enriched q-monomial indexed by « is defined as

! =l . (3.1)
As an immediate consequence of Definition 9, one has 17,&0) = E, and 17,9) = Ng-
Proposition 5. With the notation of Definition 9, one has
mgﬂ) = Y (q+ 1)‘{"1"'2"“'1'””xf‘l1 xl'f‘; e xf;”. (3.2)
i1 <ip<--<ip
Proof. This is a direct consequence of Proposition 3. [

Interestingly, one may express general g-universal quasisymmetric functions in terms

of the 17,97). To state this result we need the following definition.

Definition 10. Let « = (a1,...,a,) be a composition with n entries. For any integer
1<i<n—1,weletat denote the following composition with n — 1 entries:
o = (@1, 1, O R, K2, Q).
Furthermore, for any subset I C [n — 1], we set
1y

“¢z:(<...(“¢ik>...>¢i2) ,

where iy,1y,...,1 are the elements of I in increasing order. Finally, if I and | are two
subsets of [n — 1], with ] being peak-lacunar, then we set aHHW = @K where K =
IUJU(J—1).
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Theorem 1. Let 7t € S, be a permutation and a be a composition with n entries. The g-universal
quasisymmetric function U7, , may be expressed as a combination of the enriched q-monomials:

_ 1l,,(q)
u?‘r,lx = Z (_Q)m(q - 1)' |’7,X¢u¢]~ (3.3)
ICDes(m)
JCPeak( )
INj=0

Proof. For any subset V C [n —1],set V = [n — 1]\ V. Then, (2.3) becomes'

q _ K| i esin} (01 82 o n
Ura= ), , Z . g™ (g +1) Xip Xiy X,
KCDes() i1 <ip<---<ip
]'EDES(TE)\K:>Z.]',1§Z’]'<Z']'+1
jeKﬁPeak(n):>ij_1<i]-:ij+1
jeKﬁPeak(n)éij,lgij:in

— Z q|K|(_1)|u|+|]| Z (q+1)|{i1/i2/‘..,in}|x?‘1x42 . .x‘?‘”
11 Ip 1
KCDes() i1 <ip <<y ’
UCDes(m)\K jEUUKNPeak(rr)UKNPeak(7m)\J=i; 1 <ij=ij 1
]gKﬂPeak(n) ].Efél‘]'_lzlljzi]'_;rl
_ K ul+\J i1,40,0/0 X100 «
— Z ql |(_1)| | | | 2 (q+1)|{1 2 H}‘xil xi2 ...xinn.
KCDes(m) ‘ i1 <ip<-<ip
UCDes(m)\K JEUUK\J=ij 1 <ij=ij 4
JCKNPeak(rr) jE€T=ii 1 =ij=iz1

Ifweset [ =UUK\Jand U'=1\U =K\ J, then |U'| = |[K| —|J| and I C Des(m) \ J.
Thus, the above computation becomes

ug.[’a — Z q'u/H—U'(_1)|u/‘+‘1|+|” Z (q + 1)|{ilri21~-'rin}|xa1x?22 . xa”_

il in

u'cl iy <iy<---<iy
ICDes(7) jEI=i; 1<ij=ij 1
]QPeak(r() jE]:>ij_1:ij:i]'+1
INj=0
Summing over U’ yields formula (3.3). O

Corollary 1. Let &« = (aq,...,&n) and p = (B1,..., Bm) be two compositions. Let o B be the
multiset of compositions obtained by shuffling a and . As in [3], given v € aw B, let Sg(y) be
the set of the positions of the entries of B in 7y. Set furthermore Sg(v) —1 = {i —1|i € Sg(7)}.
Then,

! = Y (9= 1) (=) "y, (3.4)
YEaWp;
ICSp(7)
JE(S(M\(Sp(n)-1)\1}
Inj=@

Proof. Corollary 1 is a consequence of Theorem 1, Equation (3.1) and Proposition 4. [

!We understand ij—1 to be 0 whenever j = 1.
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3.2 Relation to the monomial and fundamental bases

We consider the alternative indexing with sets proposed at the end of Section 1.2. Given
a set of positive integers I C [s — 1], the enriched g-monomial may be written as

ﬂ}q) — Z (q + 1)‘{i1/-~-/i5}|xi1 e xis.
i <o <ig
]'GI:N']‘ZZ']'JA

Proposition 6. Let I C [s — 1] be a set of positive integers. One has

7 = Y (q+1) VM. (3.5)
ICJ

Theorem 2. Let q € k be such that q + 1 is invertible. The family of enriched g-monomial

quasisymmetric functions (175(‘71)) S01C]s—1] is a basis of QSym. Furthermore
" /s20,IC |s—
(g+1) vy = Y- (-1) Iy, (3.6)
Jel
Proof. Follows from Equation (3.5) by Mobius inversion. O

We develop further the properties of the enriched g-monomial basis of QSym.

Proposition 7. Let s be a positive integer and 1 C [s — 1]. One may expand the enriched
g-monomials in the fundamental basis as

1 =@g+1) ¥ (1) (=gNIL,. (37)
JC[s—1]

Proof. The expression above is a consequence of Equation (3.5) and the expansion of
monomial quasisymmetric functions in the fundamental basis (see, e.g., [1]). O

Proposition 8. Let s be a positive integer, | C [s — 1] and let q € k. Then,

(q+1)°Ly = ; ]<—1>”<—q>1\”n§‘”. (3.8)
IC|s—1

Equations (3.7) and (3.8) expand the fundamental and enriched g-monomial bases in
terms of one another, and thus suggest a duality relation between the two. Let QSym,
be the vector subspace of QSym containing the homogeneous quasisymmetric functions

of degree s. Define f: QSym_, — QSym, as the k-linear map that sends each L; to 17@

for I C [s — 1]. Then f? is a scaling by (g + 1)**! (that is, 2> = (g + 1)5*1id). Moreover,

fM) = (q+ D) My, forany IC [s—1].
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3.3 Antipode

For an integer s and a subset I C [s — 1], we set s — [ = {s —i|i € I}. The antipode of
QSym (see [2, Chapter 5]) can be defined as the unique k-linear map S : QSym — QSym

that satisfies
I
S(Mp) = (=) Y My
(s—=DH)CJ

1
Proposition 9. Assume that q is invertible in k, and let p = 5 Then, for I C [s — 1],

1 _
s (n™) = (g "y (3.9)
Proof. This can be derived from Equation (3.7). O

4 A g-interpolation between Gessel and Stembridge qua-
sisymmetric functions

4.1 g-fundamental quasisymmetric functions

We introduce a new family of quasisymmetric functions that interpolate between Ges-
sel’s fundamental and Stembridge peak quasisymmetric functions and show that it is a
basis of QSym in all but the Stembridge case.

Definition 11 (g-fundamental quasisymmetric functions). Let 77 be a permutation in S,
and g € k. Define the g-fundamental quasisymmetric function indexed by Des(7t) as

n,Des(7r) 4.1)

1)

Let I be a subset of [n —1]. Set I +1 = {i+1|i € I}, and let Peak(I) =1\ (I +1)\
{1} the peak-lacunar subset obtained from I (so Peak(I) = Peak(r) for every m € S,

satisfying Des(7r) = I). One recovers immediately that for g = 0, Lg = L, 1 is the Gessel

fundamental quasisymmetric function indexed by the set I. For g =1, LS} = K}, peak (1) 18
the Stembridge peak function indexed by the relevant peak-lacunar set. In the sequel we
remove the reference to n in indices when it is clear from context. Proposition 2 admits
a nice generalisation to this g-deformation.

Theorem 3. Let I C [n — 1] and q € k. The g-fundamental quasisymmetric functions may be
expressed in the enriched q-monomial basis as

qu) = ]CZ} (—Q)‘K‘(q - 1)U|77§ZJ)(K—1)UK : (4.2)
KCPeak(I)
JNK=0
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Proof. This a consequence of Equation (3.3). O

Proposition 10. Recall the antipode S of Section 3.3. Let q € k be invertible, and set p = %.
Let IC[n—1],andsetn — 1 ={n—i|i€ I}. Then,

S(ILY) = (—q)"Ly). 43)
Proof. This a consequence of Equations (4.2) and (3.9). O

To know whether (L%)nzo, 1C[n—1) is a basis of QSym for some value of q appears as

a natural question. For example, for n = 3, we can invert Equation (4.2) as follows:

e 1y =LY
o (a-Dyfy =L - 1))

(@) _ (@=1* () (q) (9) (@) .
(9 — 1)’7{2} = (q(il)z)ﬂ(L{Z} - LQ? )+ (q—lq)2+q(L{q,2} N L{’i}),

o 1)  _ 1 (@ _ 7@ _ ;@) (9)
1ty = e (L L8 — L + 1Y)
We see that except for the case of Stembridge g = 1 (and the degenerate case g4 = —1),

(Lg’?l) > 1 seems to be a basis of QSym. We state one of our main theorems:

Theorem 4. Let k be the set R of real numbers. The family of q-fundamental quasisymmetric
functions (L%)nzo,lg[n—l} is a basis of QSym for q ¢ {—1,1}.

Remark 1. We set k = R for the sake of simplicity. For a more general field, (Lfﬂ)n, 1C[n—1]
is a basis if and only if g ¢ {p|o* = 1 for some integer k > 0}.

4.2 Proof of Theorem 4

To prove Theorem 4 we characterise the transition matrix between the g-fundamental and
enriched g-monomial quasisymmetric functions and show it is invertible for g # —1, 1.

Definition 12. Let B, be the transition matrix between (qu)) 1cin—1) and (n}q)) < [n—1]
with coefficients given by Equation (4.2). Columns and rows are indexed by subsets I of
[n — 1] sorted in reverse lexicographic order. A subset I is before subset | if and only if
the word obtained by writing the elements of I in decreasing order is before the word
obtained from ]| for the lexicographic order.
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Example 2. For n = 4, let us show the transition matrix By between (LY’)) 1cj3) and
(4)

(17}‘7)) 1 The entry at row index I and column index ]| is the coefficient in 1 of

qu) in Equation (4.2).

o {13 {2} {21} {3} {31} {32} {321}
® [1 0 0 0 0 0 0 0
1y |1 g-1 o0 0 0 0 0 0
2y |1 0 g-1 —q 0 0 0 0
By= {2,1} |1 g—1 g—1 (g—1)%> 0 0 0 0
By |1 o o 0 g-1 0 —q 0
{31} |1 g-1 0 0 gq-1 (@-1)* —q —qg-1)
{32y |1 0 g-1 —g g-1 0 (g—-1)* —gq(qg—1)
{821} |1 -1 g—1 (q=1)% q-1 (g—-1)* (g—-1)* (9-1)°

Using Definition 12 and Equation (4.2), one can deduce the following lemmas.
Lemma 1. The matrix By, is block triangular. To be more specific:
For each k € [n], let Ay denote the transition matrix from (L§q))1gn_1]l max(I)=k—1 0

(U}q))]g[n—n, max(J)=k—1 (Where max & := 0); this actually does not depend on n. Note that A
is a 28°2 x 25"2matrix if k > 2, whereas Ay is a 1 x 1-matrix. We have

Ay 0 0 ... 0
*x A, 0 0
BTZ: * A3 O
* % x .0

x % % x Ay

Lemma 2. The matrices (By), and (A,),, satisfy the following recurrence relations (for n > 1
and n > 2, respectively):

B, — (Bn—l 0 ) A = ((q_l)Bn2 —an,z )
" B,1 An)’ " (g—1)By—2 (q—1)A,_1)"

Thanks to Lemmas 1 and 2, we are ready to state and show the main proposition of
this section and prove Theorem 4.

Proposition 11. The matrix By, is invertible for q # 1.

Proof. For any square matrix M, let |[M| denote its determinant. We want to show that
for all n, |B,| # 0 or equivalently that |A,| # 0. To this end we compute for any rational
functions in g, « and B:

@A + BBui1| = (( = D)+ B)[Bual|[((9 = Da+ B)Ay1 +qaBy 2| (44)
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Equation (4.4) exhibits a recurrence relation on the determinants that we solve by defin-
ing the sequence of coefficients:

G)=0) G)=C3 0 62)-07" 9 ()

We have:
&n—2
A, B " )
’( ? 1) (,Bn—2>‘

But A, = (g — 1), B; = (1) and one may compute that (left to the reader):

|Ap| = [ﬁ\Bn_z_il (-1 1) (gl)

1

where for integer p, [p]; is the g-number, [pl; = 1+ q+¢*>+---+gP~1. Define the
q-factorial [pg! = [1]4 - [2]4 - - - [p]q- We find

n—2
|An| = (=1)"0D72[n) T 1B
i=1

Then, notice that [n] 4! is 0 if and only if 4 = 1 and n > 1 (when g runs over real
numbers). Finish the proof with a simple recurrence argument on |B;|. O
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