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Abstract. For a group G, we asymptotically quantify the maximum number of length-n
words over an arbitrary n-letter subset of G. If G is finitely generated and residually
finite, then either this function is exponentially bounded, which happens if and only if G
is virtually abelian, or else it is bounded from below by

(
e−

1
4 + o(1)

)
nn; the latter bound

cannot be improved, namely, it is attained for the Heisenberg group. For higher-step free
nilpotent groups, the asymptotic behavior becomes (1− o(1))nn. As a key ingredient in
the proof, we calculate the number of pair histograms of functions f : [n]→ [n] and the
probability that a random function f : [n]→ [n] can be uniquely determined by its pair
histogram. A geometric interpretation of group laws of the Heisenberg group by means
of closed paths attached to words in the free group and their projected oriented polygons
is given.

Keywords: random functions, growth of groups, nilpotent group, group laws, proba-
bilistic group theory

1 Introduction
Let G be a finitely generated infinite group. The most important large-scale geometric
measurement associated with G is its growth rate with respect to a fixed finite (symmetric)
generating subset S:

γG,S(n) = #
n⋃
i=1

Si,

namely the volume of n-balls in the associated Cayley graph. Nilpotent groups have poly-
nomial growth rate, and conversely, Gromov’s celebrated theorem [5] ensures that a finitely
generated group with polynomial growth rate is virtually nilpotent. De la Harpe [6] in-
troduced the notion of uniform polynomial growth. A group G is said to have a uniform
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polynomial growth if there exist functions A,B : N→N such that for any subset S ⊂ G of
cardinality k we have

|Sn| ≤ A(k)nB(k).
This fits into the framework of the following natural measurement of a (not necessarily
finitely generated) group G:

γmax
G (k,n) = sup

S⊂G, |S|≤k
|Sn|.

Bożejko [1] proved that nilpotent groups have uniform polynomial growth. By a result of
Mann [7], if G has uniform polynomial growth then there exist functions f , g such that every
m-generated subgroup of G admits a nilpotent subgroup of nilpotency class ≤ f(m) and
index ≤ g(m). This can be thought of as a uniform version of Gromov’s theorem.

For a group not of uniform polynomial growth, it turns out that (at least for residually
finite groups) γmax

G (k,n) tends to be close to the maximum possible value, kn. Semple and
Shalev [8, 9] called a group G for which γmax

G (n) := γmax
G (n,n) < nn (for some, and hence

all sufficiently large n) collapsing. A group is collapsing if and only if γmax
G (k,n) < kn for

some k,n.
Any virtually nilpotent group is collapsing, and Semple and Shalev proved the opposite

for finitely generated residually finite groups [8]; this was further developed in [9]. In a
slightly broader context, recall that a group law of a given group G is a non-trivial word in
the free group (on an arbitrary number of generators) vanishing for any substitution from G,
and a positive group law is a group law of the form u = v where u, v are positive elements1 in
the free group. Finitely generated residually finite groups, as well as solvable groups which
satisfy a positive law are virtually nilpotent [2]. Then [8] fits into the following implication
diagram:

Virtually nilpotent Positive law Collapsing Group law

+ f.g. residually finite ([8])

The question of whether every collapsing group (not necessarily residually finite) satisfies a
positive group law is open [9, Question 1, page 61].

1.1 Quantifying growth of unbounded subsets in groups
Let G be a finitely generated group. Suppose that G is collapsing, namely, γmax

G (n) < nn

for n� 1. Then how does γmax
G (n) grow compared to nn? By the Semple-Shalev theorem,

this question reduces from residually finite groups to virtually nilpotent groups. Our main
result is the following dichotomy for γmax

G (n):
1That is, involve no inverses of the generators; for instance, xy = yx is a positive law, but [w,x][y, z] =

[y, z][w,x] cannot be written as a positive law.
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Theorem 1.1. Let G be a finitely generated residually finite group. Then either:

• γmax
G (n) is exponentially bounded, which happens if and only if G is virtually abelian;

or

• γmax
G (n) ≥

(
e−

1
4 + o(1)

)
nn.

The second assertion cannot be improved, namely, it becomes an equality for the integral
Heisenberg group.

We denote byNd,n the n-generated free nilpotent group of class d. Recall that the integral
Heisenberg group is:

H3(Z) =


 1 a c

0 1 b

0 0 1

 : a, b, c ∈ Z

 ∼= N2,2

henceforth denoted H.
It turns out that the 2-step nilpotent case is somewhat singular:

Theorem 1.2. Let N be a finitely generated free nilpotent group of class c > 2. Then:

γmax
N (n) = (1− o(1))nn.

1.2 Statistics of random functions
An interesting interpretation of γmax

G (n) is related to enumerative combinatorics. This in-
terpretation is the key ingredient in our proof of Theorems 1.1 and 1.2.

Fix f : [n] → [n], thought of as a length-n word over the alphabet [n] = {1, . . . ,n}
(whose elements are thought of as ‘letters’), that is,

f(1) · · · f(n).

We call these n-fold functions. Fix a, b ∈ [n]. We denote:

mf
a = #f−1(a),

mf
a,b = #{1 ≤ i < j ≤ n | f(i) = a, f(j) = b}.

Notice that for a 6= b, we have mf
a,b = mf

am
f
b −m

f
b,a, and therefore the data (mf

a)a∈[n] and
(mf

a,b)a,b∈[n] is equivalent to the data (mf
a)a∈[n] and (mf

a,b)a,b∈[n]: a<b.
We call the data (mf

a)a∈[n] the letter histogram of f , and the data consisting of both
(mf

a)a∈[n] and (mf
a,b)a,b∈[n] the pair histogram of f . Denote the set of all pair histograms of

n-fold functions by Pn.
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A useful observation is that for a free 2-step nilpotent group N , the quantity γmax
N (n)

is equal to the number of distinct pair histograms of functions f : [n] → [n]; for nilpotent
groups of higher class we encounter a modification of that count.

The following is well-known:

Proposition 1.3. Let H be the integral Heisenberg group. Then for all n ≥ 1:

γmax
H (n) = #Pn.

Moreover, the same equality holds for any free 2-step nilpotent group.

The following might be of independent interest from a purely combinatorial point of view:

Theorem 1.4. The number of pair histograms of functions f : [n]→ [n] is
(
e−

1
4 + o(1)

)
nn.

To this end, we calculate the distribution of the number of functions f : [n]→ [n] sharing
the same pair histogram with a random function, and achieve the following result along the
way:

Theorem 1.5. The probability that a random function f : [n]→ [n] is uniquely determined
by its pair histogram converges to e− 1

2 as n→∞.

(It is well-known that a permutation is uniquely determined by its pair histogram, which
is equivalent to its inversion set; however, the set of all permutations on n letters constitutes
of an exponentially small portion of the set of functions f : [n]→ [n].)

2 Elementary properties of growth of unbounded sub-
sets

2.1 Elementary properties
We begin with some elementary properties of γmax

G (k,n) which will be freely utilized in the
rest of the paper.
Remark 2.1. For any group G:

• γmax
G (k,n) is monotone non-decreasing in each entry;

• γmax
G (k,n) ≤ kn;

• If either H ≤ G or H is a homomorphic image of G then γmax
H (k,n) ≤ γmax

G (k,n).

Proposition 2.2. Let G be a group containing a non-commutative free subsemigroup. Then:

γmax
G (k,n) = kn

for every k,n. In particular, γmax
G (n) = nn.
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Remark 2.3. Having γmax
G (k,n) = kn for all k,n (equivalently, being non-collapsing) does

not imply the existence of a noncommutative free subsemigroup. However, we have the
following combinatorics-free characterization of collapsing groups. Recall that two groups
are elementarily equivalent if they share exactly the same first-order sentences. We can
show that a group G is non-collapsing if and only if it is elementarily equivalent to a group
containing a noncommutative free subsemigroup.

It turns out that finite index extensions do not significantly affect the growth.
Proposition 2.4. Let G be a finitely generated infinite group. If H ≤ G is a finite index
subgroup then there exist some C1,C2 ∈N such that:

γmax
G (k,n) ≤ C1 · γmax

H (C2k,n).

2.2 Abelian groups
Proposition 2.5. Let G be a finitely generated free abelian group. Then:

γmax
G (k,n) =

(
n+ k− 1
k− 1

)
=

(
n+ k− 1

n

)

for every k,n. In particular, γmax
G (n)1/n n→∞−−−→ 4.

As a consequence:
Corollary 2.6. Let G be an infinite, finitely generated, virtually abelian group. Then
γmax
G (n) grows exponentially.
In this case, the quantity γG(k,n) can be interpreted as the number of possible displace-

ments of n balls in k bins. This is valid in any abelian group with infinite exponent.
For a positive integer c, define bc(k,n) to be the number of possible displacements of n

balls in k bins, such that each bin contains less than c balls (bounded capacity).
Proposition 2.7. Let G be an infinite abelian group of finite exponent and let e be the
minimum number such that eG is a finite group (the ‘essential’ exponent). Then:

γmax
G (k,n) = Θ

 ∑
0≤r≤n, r≡n(mod e)

be(k, r)


It follows that the exponents lim supn→∞ γmax

G (n)1/n are determined by the essential
exponent e. They form an increasing sequence, starting from 3 and accumulating to 4.

Using the notion of rewritable groups (see [4]) it can be shown that an exponential (and
in fact, even much higher) behavior of γmax

G (n) is equivalent in the finitely generate case to
being virtually abelian:
Proposition 2.8. Let G be an infinite group. Then either γmax

G (n) ≥ n! or γmax
G (n) grows

exponentially. If G is finitely generated, the latter case is equivalent to G being virtually
abelian.
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3 Partitions and word reconstruction

3.1 Partitions
In order to count distinct pair histograms of n-fold functions, we investigate how much
information on a function can be recovered from its pair histogram.

Definition 3.1. For two n-fold functions f , g : [n] → [n] we write f ∼ g if they share the
same pair histograms, that is: mf

a = mg
a, m

f
a,b = mg

a,b for all a, b ∈ [n].

Notation 3.2. If I = [i, j] ⊆ [n] is an interval and f : [n] → [n], we denote by mf |I
a , mf |I

a,b

the letter and pair histograms (respectively) of f |I : I → [n]. That is, mf |I
a counts the number

of occurrences of a within f(I) = f(i) · · · f(j) and mf |I
a,b counts the number of occurrences

of the pattern ? a ? b ? within f(i) · · · f(j).

Suppose we are given an n-fold function f . If g ∼ f then f , g share the same unique
letters, namely letters a for which since mf

a = 1. In this case, we say that f−1(a) is a unique
index. Unique letters even appear in the same displacement in both f , g:

Lemma 3.3. If f ∼ g and a is a unique letter in f (and hence in g) then f−1(a) = g−1(a).

Proof. We have
f−1(a) =

∑
b 6=a

mf
b,a + 1 =

∑
b 6=a

mg
b,a + 1 = g−1(a).

Definition 3.4. A partition ∆ of [n] is a collection of disjoint intervals I1 = [1,n1], . . . , Ik =
[nk−1 + 1,n] such that:

[n] =
k⋃
j=1

Ij .

A partition is called reconstructing for f if whenever g ∼ f , we have that f(Ij) = g(Ij)
as multisets, for all j. In other words, a partition reconstructs f if the pair histogram of f
determines the letter histogram of g|Ij

, for every j (given that g ∼ f).

Note that the trivial partition ∆ = {[n]} is reconstructing, as the pair histogram contains
the letter histogram. On the other hand, if the partition ∆ = {{1}, . . . , {n}} is reconstructing
for f , then g = f for all g ∼ f .

Lemma 3.5. If a1 = f(i1), . . . , ak = f(ik) are the unique letters of f then:

∆u = {[1, i1 − 1], {i1}, [i1 + 1, i2 − 1], ..., {ik}, [ik + 1,n]}

is a reconstructing partition of f .
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We can further dissect ∆u into a finer partition, which is still reconstructing for f . Note
that we only know the letter histogram of g|I , rather than its pair histogram. Therefore a
naive approach of recursive refinement of each interval would not result in a reconstructing
partition. To circumvent that we need the following.

Definition 3.6. Let ∆ be a reconstructing partition of f . We say that a letter a ∈ [n]
appearing in an interval I, that is a ∈ f(I), has unique neighbors (in the interval I) if a is
unique in I (mf |I

a = 1 and therefore mg|I
a = 1 for every g ∼ f , since ∆ is reconstructing),

and for every interval J 6= I such that a ∈ f(J), we have f(I) ∩ f(J) = {a}.

Lemma 3.7. Given a partition ∆ = {I1 = [1,n1], . . . , Ik = [nk−1 + 1,n]}, which is recon-
structing for f , and a letter a = f(i) with unique neighbors in an interval i ∈ Ij ∈ ∆, the
following refinement of ∆:

∆′ = {I1, . . . , Ij−1, Ij,L = [nj−1 + 1, . . . , i− 1], {i}, Ij,R = [i+ 1,nj+1 − 1], Ij+1, . . . , Ik}

is reconstructing for f .

We refine ∆u (from lemma 3.3) iteratively using lemma 3.7, until we remain with a
reconstructing partition with respect to which no letter has unique neighbors in any interval.
Call such a partition a terminal partition. Given f , fix a terminal partition Λ. To conclude:

Proposition 3.8. For every interval J ∈ Λ and every letter a ∈ f(J) appearing in J only
once (that is, mf |J

a = 1), there exists another letter b ∈ f(J) with which it appears in another
interval J 6= J ′ ∈ Λ (that is mf |J′

a ,mf |J′
b > 0).

3.2 Bounding intervals in the terminal partition
For any n-fold function, let Λ be a terminal partition, as in Proposition 3.8. From now on we
pick an n-fold function f chosen uniformly at random (each function f : [n]→ [n] is chosen
with probability 1

nn ). Define two sequences of events:

An = {Every interval of Λ is of length ≤ 10 lnn},
Bn = {Every interval of Λ is of length ≤ 2}.

Our goal is to show that Pr(Bn) converges to 1, but this needs to be done in two steps. First,
we show that ‘long’ intervals occur in the terminal partition with negligible probability. This
is achieved by a careful analysis of the correlations of the indicators of appearances of each
letter within a restricted interval, utilizing a Chernoff-type bound (essentially a slightly
weakened version of a theorem of Imapgliazzo and Kabanets).

Lemma 3.9. We have
Pr(An) n→∞−−−→ 1.
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On the other hand, logarithmically bounded intervals have almost full images:

Lemma 3.10. With probability tending to 1, for any ` ≤ d10 lnne and for any length-`
interval I ⊆ [n] the set f(I) contains at least `− 1 letters.

These observations are key ingredients in proving the following fundamental proposition,
ensuring that only very small intervals occur in the terminal partition with non-negligible
probability:

Proposition 3.11. We have
Pr(Bn) n→∞−−−→ 1.

The proof of this result is very technical and combinatorially involved, but we now roughly
sketch the general strategy. Recall that in the terminal partition, any pair of letters in each
interval share at least one additional interval in which they both appear. By Lemma 3.10,
the existence of long intervals in the terminal partition would yield ‘too many’ coinciding
appearances of pairs within additional intervals. This is where Lemma 3.9 gets into the
picture: it ensures that the probability that pairs of letters appear together in more than
one interval is sufficiently low.

4 The number of pair histograms

4.1 Quantifying the number of pair histograms
We proved that with probability tending to 1 the maximal interval is of length at most 2,
which we henceforth assume. We now clarify how this affects the probability that an n-fold
function f can be fully reconstructed out of its pair histogram. Let us call such functions
recoverable (equivalently, those are the functions for which {{1}, . . . , {n}} is a reconstructing
partition).

Fix a length-2 interval [i, i+ 1] ∈ Λ, say, f(i)f(i+ 1) = ab. Then there exists another
length-2 interval f(j)f(j + 1) = ab or f(j)f(j + 1) = ba, by Proposition 3.8. We have
|i− j| ≥ 2 since intervals in Λ are disjoint. It can be shown that length-2 intervals split,
with probability tending to 1, into disjoint pairs of length-2 intervals, which we call bi-pairs.
Bi-pairs are either compatible, namely, the two intervals are the same, or else incompatible.
In the following example, consider

12345612754.

The bi-pair 12345612754 is compatible, whereas 12345612754 is incompatible. A switch of
a bi-pair is the function obtained by interchanging the length-2 intervals of the bi-pair, e.g.,
switching the incompatible bi-pair above we get:

12345612754 12354612745.
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Lemma 4.1.

1. Incompatible bi-pairs belong to any reconstructing partition, and thus functions with
incompatible bi-pairs are not recoverable.

2. Suppose that a reconstructing partition Λ consisting only of singletons and disjoint bi-
pairs has two intervals [i, i+ 1], [j, j+ 1] such that f(i)f(i + 1), f(j)f(j + 1) form
a compatible bi-pair. Then Λ can be refined to a reconstructing partition Λ′ containing
{i}, {i+ 1}, {j}, {j + 1} as intervals.

Thus, among functions whose terminal partition consists of intervals of length at most
two, the underlying function is recoverable if and only if all bi-pairs are compatible. We have
the following.

Lemma 4.2. The distribution of the number of incompatible bi-pairs in a random function
converges to Poisson distribution with mean λ = 1

2 .

We are now able to compute the amount of n-fold functions which can be completely
recovered out of their pair histograms:

Theorem 4.3 (Theorem 1.5). The probability that a random function f : [n] → [n] is
uniquely determined by its pair histogram converges to e− 1

2 .

Moreover, we can calculate the number of distinct pair histograms:

Theorem 4.4 (Theorem 1.4). We have

#Pn =
(
e−

1
4 + o(1)

)
nn.

The constant e− 1
4 arises as E

(
2−X

)
where X ∼ Poi

(
1
2

)
.

5 Growth of unbounded subsets of nilpotent groups
Building on the previous section, we deduce the following from Proposition 1.3 and Theo-
rem 1.4:

Corollary 5.1. We have
γmax
H (n) =

(
e−

1
4 + o(1)

)
nn.

Using an algebraic analysis of nilpotent groups, it can be shown that any finitely generated
nilpotent group is either virtually abelian, or admits a chain of subgroups and homomorphic
images which ends with the Heisenberg group. This gives a proof of Theorem 1.1.
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A natural question now is how typical this behavior of γmax
G (n) is for other finitely

generated nilpotent groups. It turns out to be very atypical. To analyze growth of unbounded
subsets in the 2-generated free 3-nilpotent group N3,2, we carefully refine the notion of pair
histogram, with the additional data:

mf
a,{b,c} = #{i < j < k : f(i) = a, f(j) = �, f(k) = ♣, {�,♣} = {b, c}}.

We show that the growth of subsets in N3,2 is controlled by this modification of pair
histograms. We then apply the analysis of reconstructing partitions to quantify the number
of such ‘finer’ histograms.

Proposition 5.2. We have

(1− o(1))nn ≤ γmax
N3,2(n) � nn.

Any free nilpotent groups of class > 2 homomorphically maps onto N3,2. Thus, any free
nilpotent group of class > 2 has ‘almost maximal’ growth function, as Theorem 1.2 asserts.

6 Geometric interpretation of group laws
Consider an element in the free group w = xε1i1 · · ·x

εn
in ∈ Fd, where i1, . . . , in ∈ [d] and

ε1, . . . , εn ∈ {±1}. Then w determines a directed path in Rd = SpanR{e1, . . . , ed}, given
by a concatenation of unit vectors:

0→ ε1ei1 → ε1ei1 + ε2ei2 → · · · →
n∑
j=1

εjeij .

Denote this path by γ(w).
Remark 6.1. A word w ∈ Fd is a group law for any abelian group if and only if it is a product
of commutators, if and only if γ(w) is a closed path.

Next, how can one geometrically characterize products of iterated commutators? Let
πi,j : Rd → R2 denote the standard projection onto the plane SpanR{ei, ej}. If w is indeed
a product of iterated commutators then it is in particular a product of commutators, so γ(w),
and hence all of its projections πi,j (γ(w)), are closed paths. Therefore each πi,j (γ(w)) can
be written as ∂Mi,j for an oriented polygon Mi,j ⊂ SpanR{ei, ej}. For instance, the word
w = abccaaba−1c−1b−1b−1a−1a−1c−1 yields the following γ(w) and its projections to the
three principal planes:

We have

Theorem 6.2. Let w ∈ Fd. Then w is a product of iterated commutators if and only if γ(w)
is a closed path and the signed area bounded by the projection πa,b (γ(w)) is zero for every
a, b.
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Figure 1: The path γ(abccaaba−1c−1b−1b−1a−1a−1c−1) and its projections onto the
three planes.

Figure 2: The area bounded by γ(w) for w = w = [b3, [ba2ba, ab3a2b2]].

For instance, the iterated commutator w = [b3, [ba2ba, ab3a2b2]] yields the following
γ(w) ⊂ R2, inscribing a region (that is, Ma,b) of zero area:

Thus, Theorem 1.1 can be restated as counting equivalence classes of paths of length
n in the positive octant of Zn, where we identify two paths if walking along the first and
then returning along the second (appropriately concatenated) gives a closed path whose
projections to any plane Span{ei, ej} ⊂ Rn have zero signed area. We note that this notion
of area also appears naturally in the context of (Carnot–Carathéodory) geometry of the real
Heisenberg group. For more on the relation between the word metric and the sub-Finsler
metric on the Heisenberg group, see [3].
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