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Abstract. A now-classical cyclic extension of the descent set of a permutation has
been introduced by Klyachko and Cellini. Following a recent axiomatic approach to
this notion, it is natural to ask which sets of permutations admit such a (not necessarily
classical) extension. The main result of this paper is a complete answer in the case of
conjugacy classes of permutations. It is shown that the conjugacy class of cycle type
λ has such an extension if and only if λ is not of the form (rs) for some square-free r.
The proof involves a detailed study of hook constituents in higher Lie characters.
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1 Introduction

Permutations, as well as standard Young tableaux, are equipped with a well-established
notion of descent set. A cyclic extension of this concept was introduced in the study of
Lie algebras [13] and descent algebras [5]. Surprising connections of the cyclic descent
notion to a variety of mathematical areas were found later.

The descent set of a permutation π = [π1, . . . , πn] in the symmetric group Sn on n
letters is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1],

where [m] := {1, 2, . . . , m}. Cellini [5] introduced a natural notion of cyclic descent set:

CDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n],
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with the convention πn+1 := π1. The more restricted notion of cyclic descent number
had been used previously by Klyachko [13]. This cyclic descent set was further studied
by Dilks, Petersen and Stembridge [7] and others.

There exists an established notion of descent set for standard Young tableaux (SYT),

Des(T) := {1 ≤ i ≤ n − 1 : i + 1 appears in a lower row of T than i},

but it has no obvious cyclic analogue. In a breakthrough work, Rhoades [19] defined
a notion of cyclic descent set for standard Young tableaux of rectangular shape. The
properties common to Cellini’s definition (for permutations) and Rhoades’ construction
(for SYT) appeared in other combinatorial settings as well [17, 16, 9]. This led to an
abstract definition [3], as follows.

Definition 1.1. [3] Let T be a finite set, equipped with a map (called descent map)
Des : T −→ 2[n−1]. Let sh : 2[n] −→ 2[n] be the mapping on subsets of [n] induced by
the cyclic shift i 7→ i + 1 (mod n) of elements i ∈ [n]. A cyclic extension of Des is a pair
(cDes, p), where cDes : T −→ 2[n] is a map and p : T −→ T is a bijection, satisfying the
following axioms: for all T in T ,

(extension) cDes(T) ∩ [n − 1] = Des(T),
(equivariance) cDes(p(T)) = sh(cDes(T)),

(non-Escher) ∅ ⊊ cDes(T) ⊊ [n].

The term “non-Escher” refers to M. C. Escher’s drawing “Ascending and Descend-
ing”, which illustrates the impossibility of the cases CDes(π) = ∅ and CDes(π) = [n]
for permutations π ∈ Sn.

For connections of cyclic descents to Kazhdan–Lusztig theory see [19]; for topological
aspects and connections to the Steinberg torus see [7]; for twisted Schützenberger pro-
motion see [19, 12]; for cyclic quasi-symmetric functions and Schur-positivity see [1]; for
Postnikov’s toric Schur functions see [3]. The goal of this paper is to determine which
conjugacy classes of the symmetric group carry a cyclic descent extension.

Cellini’s cyclic descent set, denoted CDes, is a special case of a cyclic descent exten-
sion, denoted in general cDes, as attested by the following observation.

Observation 1.2. Let Des and CDes denote the classical descent set and Cellini’s cyclic descent
set on permutations, respectively. Let p : Sn → Sn be the rotation

[π1, π2, . . . , πn−1, πn]
p7−→ [πn, π1, π2, . . . , πn−1].

Then the pair (CDes, p) is a cyclic descent extension of Des on Sn in the sense of Definition 1.1.

Unlike the full symmetric group, for many conjugacy classes, Cellini’s definition does
not provide a cyclic extension.
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Example 1.3. Consider the conjugacy class of 4-cycles in S4,

C(4) = {2341, 2413, 3142, 3421, 4123, 4312}.

Cellini’s cyclic descent sets are

{3}, {2, 4}, {1, 3}, {2, 3}, {1}, {1, 2},

respectively; this family is not closed under cyclic rotation. On the other hand, redefining
the cyclic descent sets to be

cDes(2341) = {3, 4}, cDes(2413) = {2, 4}, cDes(3142) = {1, 3},

cDes(3421) = {2, 3}, cDes(4123) = {1, 4}, cDes(4312) = {1, 2}

and defining the map p by

2341 → 4123 → 4312 → 3421 → 2341

and
3142 → 2413 → 3142,

the pair (cDes, p) does determine a cyclic extension of Des on this conjugacy class.

The goal of this paper is to show that most conjugacy classes in Sn carry a cyclic
descent extension. In fact, we obtain a full characterization.

Recall that an integer is square-free if no prime square divides it; in particular, 1 is
square-free. Our main result is

Theorem 1.4. Let λ be a partition of n, and let Cλ ⊆ Sn be the corresponding conjugacy class.
The descent map Des on Cλ has a cyclic extension (cDes, p) if and only if λ is not of the form
(rs) for some square-free r.

The proof of Theorem 1.4 is non-constructive and involves a detailed study of the
hook constituents in higher Lie characters. In the rest of this extended abstract we
describe the proof method. For a detailed full version see [2].
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2 Higher Lie characters

For a partition λ of n, let Cλ be the conjugacy class consisting of all the permutations in
Sn of cycle type λ, and let χλ denote the irreducible Sn-character corresponding to λ. Let
Zλ be the centralizer of a permutation in Cλ (defined up to conjugacy). If ki denotes the
number of parts of λ equal to i, then Zλ is isomorphic to the direct product ×n

i=1Zi ≀ Ski .
Here and in the rest of the paper Zi denotes the cyclic group of order i.

For each i, let ωi be the linear character on Zi ≀ Ski indexed by the i-tuple of partitions
(∅, (ki), ∅, . . . , ∅). In other words, letting ζ be a primitive irreducible character on the
cyclic group Zi, extend it to the wreath product Zi ≀ Ski so that it is homogeneous on the
base subgroup Z

ki
i and trivial on the wreathing subgroup Ski . Denote this extension by

ωi. Now let

ωλ :=
n⊗

i=1

ωi,

a linear character on Zλ. Define the corresponding higher Lie character to be the induced
character

ψλ := ωλ ↑Sn
Zλ

.

The study of higher Lie characters can be traced back to Schur [22]. An old problem
of Thrall [27] is to provide an explicit combinatorial interpretation of the multiplicities of
the irreducible characters in the higher Lie character, see also [23, Exercise 7.89(i)]. Only
partial results are known: the case λ = (n) was solved by Kraśkiewicz and Weyman [14];
Désarménien and Wachs [6] resolved a coarser version of Thrall’s problem for the sum
of higher Lie characters over all derangements, see also [18]. The best result so far
is Schocker’s expansion [21, Theorem 3.1], which however involves signs and rational
coefficients. For recent discussions see, e.g., [4, 26].

A remarkable theorem of Gessel and Reutenauer [11, Theorem 2.1] applies higher
Lie characters to describe the fiber sizes of the descent set map on conjugacy classes. It
follows that higher Lie characters can be used to prove the existence of cyclic descent
extensions as explained below.

3 The hook-multiplicity generating function

Recall the standard notation sλ for the Schur function indexed by a partition λ, and Fn,D
for the fundamental quasi-symmetric function indexed by a subset D ⊆ [n − 1]

Fn,D(x) := ∑
i1≤i2≤...≤in

ij<ij+1 if j∈D

xi1 xi2 · · · xin .
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A symmetric function is called Schur-positive if all the coefficients in its expansion in
the basis of Schur functions are non-negative. A subset A ⊆ Sn is Schur-positive if the
associated quasi-symmetric function

Q(A) := ∑
a∈A

Fn,Des(a),

is symmetric and Schur-positive.
For an integer 0 ≤ k < n and a Schur-positive subset A ⊆ Sn denote

mk,A := ⟨Q(A), s(n−k,1k)⟩,

where s(n−k,1k) is the Schur function indexed by the hook partition (n − k, 1k).
First we prove the following key lemma, which provides an algebraic criterion for the

existence of a cyclic descent extension.

Lemma 3.1. A Schur-positive set A ⊆ Sn has a cyclic descent extension if and only if the
following two conditions hold:

(divisibility) the polynomial ∑n−1
k=0 mk,Axk is divisible by 1 + x;

(non-negativity) the quotient has non-negative coefficients.

By the Gessel-Reutenauer theorem, for every conjugacy class Cλ the quasi-symmetric
function Q(Cλ) is the Frobenius image of the higher Lie character ψλ, thus Cλ is Schur-
positive.

For a partition λ ⊢ n denote

mk,λ := mk,Cλ
= ⟨Q(Cλ), s(n−k,1k)⟩ = ⟨ψλ, χ(n−k,1k)⟩ (0 ≤ k ≤ n − 1)

and

Mλ(x) :=
n−1

∑
k=0

mk,λxk,

the hook-multiplicity generating function of the higher Lie character ψλ.
In order to prove Theorem 1.4, we will show first that for conjugacy classes of cycle

type λ, the hook-multiplicity generating function Mλ(x) is divisible by 1 + x if and only
if λ ̸= (rs) for any square-free integer r. Then we will show that the coefficients of the
quotient Mλ(x)/(1 + x) are non-negative, whenever λ ̸= (rs) for any square-free r.

4 Divisibility of the hook generating function

Proposition 4.1. The hook-multiplicity generating function of the higher Lie character ψλ

Mλ(x) :=
n−1

∑
k=0

mk,λxk

is divisible by 1 + x if and only if λ ̸= (rs) for any square-free integer r.
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This divisibility condition is proved using an explicit evaluation of the higher Lie
character on n-cycles. By the Murnaghan–Nakayama rule [20, Lemma 4.10.3],

Lemma 4.2. For every Sn-character ϕ, the hook-multiplicity generating function

Mϕ(x) :=
n−1

∑
k=0

⟨ϕ, χ(n−k,1k)⟩xk

is divisible by 1 + x if and only if the value of ϕ on an n-cycle is zero: ϕ(n) = 0.

Letting ϕ = ψµ, the higher Lie character indexed by the partition µ, reduces Proposi-
tion 4.1 to the following character evaluation.

Recall the Möbius function µ(d), which is equal to the sum of the primitive d-th roots
of 1. If d has a prime square divisor then µ(d) = 0; otherwise, d is a product of k distinct
primes and µ(d) = (−1)k. The following lemma is equivalent to a combinatorial identity
due to Garsia, see Proposition 8.1 below. A direct algebraic proof is given in [2].

Lemma 4.3. For λ ⊢ n

ψλ
(n) =

{
µ(r), if λ = (rs);
0, otherwise ,

(4.1)

where µ(r) is the Möbius function.

Proof of Proposition 4.1. By Lemma 4.2, 1 + x divides the hook-multiplicity generating
function of the higher Lie character ψλ if and only if ψλ

(n) = 0. Lemma 4.3 completes the
proof.

In the following sections we will prove the non-negativity of the coefficients of the
quotient Mλ(x)

1+x for partitions λ which are not equal to (rs) for any square-free r.

5 Non-negativity: the case of more than one cycle length

Consider, first, the case of conjugacy classes with more than one cycle length. This is the
easiest case to handle. In that case, we apply a factorization of the associated higher Lie
character ψλ to prove

Lemma 5.1. Let λ = (rs) ⊔ µ be a partition of n, where n > rs and µ is a partition of n − rs
with no part equal to r. Then

Mλ(x)
1 + x

= M(rs)(x)Mµ(x). (5.1)

and its coefficients are thus non-negative.

The core of the proof of Theorem 1.4 is the case λ = (rs).
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6 Non-negativity: the n-cycle case

6.1 A variant of the Witt transform

The greatest common divisor of two integers i, j is denoted by (i, j). Recall the Möbius
function µ(d). We shall use here r instead of n, with an eye to the sequel.

Proposition 6.1. For every 0 ≤ j ≤ r

⟨ψ(r), χ(1j)⊕(r−j)⟩ = ∑
d|(r,j)

µ(d)(−1)j+j/d

r

(
r/d
j/d

)
(0 ≤ j ≤ r). (6.1)

Remark 6.2. Proposition 6.1 is not new, see Section 8 below. Also, it is a special case of
Proposition 7.1 below at s = 1.

Denote
f j := ⟨ψ(r), χ(1j)⊕(r−j)⟩ (0 ≤ j ≤ r) (6.2)

and
F(x) = f0 + f1x + f2x2 + · · · fr−1xr−1 + frxr.

It is easy to see that f0 = m0,(r), fr = mr−1,(r) and

f j = mj−1,(r) + mj,(r) (1 ≤ j ≤ r − 1),

so that F(x) = (1 + x)M(r)(x). Also, by Proposition 6.1,

F(x) = ∑
j

xj ∑
d|(r,j)

µ(d)(−1)
j(d+1)

d

r

(
r/d
j/d

)
= ∑

d|r

µ(d)
r

r/d

∑
k=0

(−1)k(d+1)
(

r/d
k

)
xkd

= ∑
d|r

µ(d)
r

(1 − (−x)d)r/d.

(6.3)

Recall from [15] that the r-th Witt transform of a polynomial p(x) is defined by

W (r)
p (x) =

1
r ∑

d|r
µ(d)p(xd)r/d.

In our case put p(x) = 1 − x to get F(x) = W (r)
p (−x). The proofs of Theorem 4 and

Lemma 1 of [15] could have been used to prove that the coefficients of F(x) are non-
negative integers. However, this property of fi also follows from its interpretation as an
inner product of two characters.

We want to prove that the polynomial M(r)(x)/(1 + x) = F(x)/(1 + x)2 has non-
negative coefficients.
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6.2 Unimodality

A sequence a0, . . . , an of real numbers is called unimodal if there exists an index 0 ≤ i0 ≤ n
such that the sequence is weakly increasing (ai ≤ ai+1) for i < i0 and weakly decreasing
(ai ≥ ai+1) for i ≥ i0.

Observation 6.3. Let a(x) = a0 + a1x + . . . + anxn be a polynomial with real, non-negative
and unimodal coefficients. Assume that 1 + x divides a(x), and let b(x) := a(x)/(1 + x). Then
the coefficients of b(x) are non-negative.

The explicit description of the coefficients of (1 + x)M(n)(x) given in Proposition 6.1,
combined with Equation (6.3), is applied to prove the following.

Proposition 6.4. For every positive integer n the sequence m0,(n), m1,(n), . . . , mn−1,(n) is uni-
modal.

For a detailed proof, see [2].
By Lemmas 4.1 and 4.2, if n is not square-free then 1 + x divides M(n)(x).

Proposition 6.5. If n is not square-free then the coefficients of M(n)(x)/(1 + x) are non-
negative.

Proof. Combine Proposition 6.4 with Observation 6.3.

7 Non-negativity: the case of cycle type (rs)

In this section we consider the case µ = (rs). We fix r, while s and hence n = rs vary.
As in the previous section, instead of the hook-multiplicities mk,s = ⟨ψ(rs), χ(n−k,1k)⟩,

it will be easier to work with their consecutive sums ek = ek,s := mk,s + mk−1,s, which
also have an inner product interpretation. For given i, r and s, let

Pr,s(i) := {γ = (γ1, . . . , γs) |
s

∑
ℓ=1

γℓ = i, r ≥ γ1 ≥ γ2 ≥ · · · ≥ γs ≥ 0} (7.1)

denote the set of all partitions of i into at most s parts, each of size at most r. Denote the
multiplicity of j in γ ∈ Pr,s(i) by k j(γ) := |{1 ≤ ℓ ≤ s | γℓ = j}|.
The main result of this section is the following extension of Proposition 6.1 to s ≥ 1.

Proposition 7.1. For every s ≥ 1 and i ≥ 0 we have

ei = ⟨ψ(rs), χ(1i)⊕(n−i)⟩ = ∑
γ∈Pr,s(i)

∏
j≥0

(−1)(j+1)kj(γ)

(
(−1)j+1 f j

k j(γ)

)

= ∑
k0,...,kr≥0

∑j kj=s
∑j jkj=i

r

∏
j=0

(−1)(j+1)kj

(
(−1)j+1 f j

k j

)
.



Higher Lie Characters and Cyclic Descents on Conjugacy Classes 9

Figure 1: γ = (5, 3, 3, 2, 0) in P6,5(13). The multiplicities of the parts are k1(γ) = 0,
k2(γ) = 1, k3(γ) = 2, k4(γ) = 0, k5(γ) = 1, and k6(γ) = 0.

In particular, for s = 1 we have ei = fi.

We derive a formal power series product form of Proposition 7.1.

Corollary 7.2. Let E(x, y) = Er(x, y) denote the formal power series in which the coefficient of
xiys is ei,s = ⟨ψ(rs), χ(1i)⊕(n−i)⟩. Then

E(x, y) =
r

∏
j=0

(1 − (−x)jy)(−1)j+1 f j . (7.2)

For a fixed positive integer r, we consider the formal power series Mr(x, y) :=

∑i,s m(r)
i,s xiys, where m(r)

i,s := ⟨ψ(rs), χ(rs−i,1i)⟩.

Theorem 7.3. If r is not square-free then the polynomial

Mr(x, y)
1 + x

has non-negative integer coefficients.

Proof. Recall the notation F(x) := ∑
j

f jxj. We may write F(x) = (1 + x)2 ∑i gixi, where,

by Proposition 6.5, the coefficients gi = ∑i≤j(−1)i−jmj are non-negative.
Equation (7.2) can be rewritten in terms of the gi’s.

E(x, y) = ∏
i≥0

(
(1 − (−x)iy)(1 − (−x)i+2y)

(1 − (−x)i+1y)2

)(−1)i+1gi

. (7.3)

It suffices to show that all the factors in (7.3) are of the form 1 + (1 + x)2p(x, y), with
p(x, y) a power series with non-negative coefficients. This can be achieved by separate
arguments for even and odd indices i.

Now we are ready to prove the main theorem.

Proof of Theorem 1.4. Combine Lemma 3.1 with Proposition 4.1, Lemma 5.1 and Theo-
rem 7.3.
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8 Final remarks and open problems

Recall the major index of a permutation π ∈ Sn, maj(π) := ∑
i∈Des(π)

i. Let ζ be a primitive

n-th root of unity. The following identity was proved by Garsia [10, Equation 5.8].

∑
π∈Cλ

ζmaj(π) =

{
µ(r) if λ = (rs),
0 otherwise,

(for all λ ⊢ n), (8.1)

where µ(r) is the Möbius function. A purely combinatorial proof was given in [28] by
Wachs. By [24, Lemma 3.4], we have the following result.

Proposition 8.1. For every partition λ ⊢ n, ψλ
(n) = ∑

π∈Cλ

ζmaj(π).

Corollary 8.2. Equation (4.1) is equivalent to Equation (8.1).

Proposition 6.1 is equivalent to the following equation

|{π ∈ C(n) : Des(π) = [j]}| = 1
n ∑

d|n
µ(d)(−1)j−[

j
d ]

(
n − 1
j − 1

)
(0 ≤ j < n),

which is an immediate consequence of [8, Theorem 3.1]. An older proof was pre-
sented to us by Sheila Sundaram, deducing Proposition 6.1 from [25, Lemma 2.7]. By
the Kraśkiewicz–Weyman Theorem [10, Theorem 8.4],

Proposition 8.3. For every 0 ≤ k ≤ n, the multiplicity mk = ⟨ψ(n), χ(n−k,1k)⟩ is equal to the
cardinality of the set

{1 ≤ a1 < a2 < · · · < ak ≤ n − 1 |
k

∑
i=1

ai ≡ 1 (mod n)}.

Corollary 8.4. Proposition 6.1 is equivalent to the following identity: For every 0 ≤ k ≤ n,

|{1 ≤ a1 < a2 < · · · < ak ≤ n |
k

∑
i=1

ai ≡ 1 (mod n)}| = ∑
d|(n,k)

µ(d)(−1)k+k/d

n

(
n/d
k/d

)
.

It remains a challenge to find such a direct link between Schocker’s general descrip-
tion of the multiplicity and our version in Proposition 7.1.

Our proof of Theorem 1.4 is not constructive.

Problem 8.5. Find an explicit combinatorial description of a cyclic descent extension on conju-
gacy classes of cycle type λ, not equal to (rs) for any square-free r.

By Proposition 6.4, the hook-multiplicity sequence m0,(n), . . . , mn−1,(n) is unimodal.

Conjecture 8.6. For every partition λ ⊢ n, the hook-multiplicity sequence (m0,λ, . . . , mn−1,λ)
is unimodal.
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