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Abstract. The derangement-counting sequence satisfies strong p-adic regularity prop-
erties. We prove that these p-adic properties generalize to various other derangement-
like sequences. To fit these observations into a unified framework, we show the exis-
tence of a p-adic analogue of the incomplete gamma function.
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1 Introduction

A derangement on a finite set is a permutation with no fixed points. The number of
derangements on n elements is

d(n) =
n

∑
k=0

(−1)k
(

n
k

)
(n − k)!, (1.1)

which follows from inclusion-exclusion. The first few values of the derangement-count-
ing sequence d(n) are given in Table 1.

n 0 1 2 3 4 5 6 7 8 9
d(n) 1 0 1 2 9 44 265 1854 14833 133496

Table 1: Number of derangements.

Can we use the values of d(n) on nonnegative integers n ∈ N to extrapolate a func-
tion d(x) on some larger domain of inputs? For example, what value can be reasonably
assigned to d(1/3) or to d(−1)?

One route to answering this question is via the following observation.

Observation 1. The function f (n) = (−1)nd(n) is congruence preserving in the sense that

a ≡ b (mod m) implies f (a) ≡ f (b) (mod m) (1.2)

for any nonnegative integers a, b, m.
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This observation was noted by Wright [15, Theorem 1] and Barsky [2, Proposition
5]. In the language of p-adic analysis, Observaton 1 implies that (−1)nd(n) is p-adically
continuous for every prime p. (Moreover, it is Lipschitz continuous with Lipschitz con-
stant 1.) Since N is dense in Zp, it follows that there is a unique continuous extension
f (x) = (−1)xd(x) defined on Zp, interpolating values of f on N. This p-adic extension
can be used to define d(−1) ∈ Zp for any p, and (−1)1/3d(1/3) ∈ Zp for any p ̸= 3.

We now describe another “classical” example of looking at a combinatorial sequence
under a p-adic lens. An arrangement on a finite set [n] is a choice of subset A ⊂ [n] and
a choice of permutation on A. The number of arrangements on [n] is

a(n) =
n

∑
k=0

(
n
k

)
k!. (1.3)

n 0 1 2 3 4 5 6 7 8 9
a(n) 1 2 5 16 65 326 1957 13700 109601 986410

Table 2: Number of arrangements.

Observation 2. The function a(n) is congruence preserving in the sense of (1.2).

This observation was noted by Hall [7, Corollary 2], who also made note of the floor
function identity a(n) = ⌊e n!⌋ when n ≥ 1. In [7] Hall investigates general properties of
the set of all congruence preserving functions N → Z, and calls such functions pseudo-
polynomials; it contains the polynomials Z[x] as a strict subset.

In this article, which is an extended abstract for [12], we describe several new ex-
tensions of this phenomenon, where a combinatorially-defined sequence satisfies strong
p-adic regularity. These extensions are described in Sections 1.1 and 1.2. In Section 1.3,
we describe how to construct a continuous, two-variable p-adic function which is a nat-
ural analogue to the incomplete gamma function.

1.1 r-cyclic derangements and arrangements

Let Cr denote the cyclic group of order r. The wreath product Cr ≀ Sn can be realized
as the subgroup of GLn(C) generated by the permutation matrices and the diagonal
matrices of (multiplicative) order r; it is a finite group of order rnn!.

The action of the symmetric group Sn on the finite set [n] generalizes to a natural
action of Cr ≀ Sn on the set [r]× [n]. In the matrix representation described above, the set
[r]× [n] can be identified with the orbit of the unit coordinate vectors in Cn. We say an
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element of Cr ≀ Sn is an r-cyclic derangement if its action on [r]× [n] has no fixed points.
For example, the 2-cyclic derangements for n = 2 correspond to the matrices(

−1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 −1
−1 0

)
.

The study of such generalized derangements was initiated by Faliharimalala–Zeng [4,
Equation (2.7)] and Assaf [1, Theorem 2.1], who gave the following expression for the
number of r-cyclic derangements:

d(n, r) =
n

∑
k=0

(−1)k
(

n
k

)
rn−k(n − k)!. (1.4)

(For an interesting q-analogue extension of (1.4), see [5, Equation (2.5)].)
We similarly define an r-cyclic arrangement on [r]× [n] as a choice of subset A ⊂ [n]

and an element of Cr ≀ S|A|. The number of r-cyclic arrangements on [r]× [n] is

a(n, r) =
n

∑
k=0

(
n
k

)
rkk!. (1.5)

The p-adic regularity of derangements and arrangements extend to d(n, r) and a(n, r),
for each choice of r.

Theorem 3. Let p be a prime.

1. For any positive integer r, the function n 7→ (−1)nd(n, r) is p-adically continuous.

2. For any positive integer r, the function n 7→ a(n, r) is p-adically continuous.

For convenience, the two cases of Theorem 3 may be combined into a single one:
when r is replaced with a negative integer −r in the expression (1.5), we obtain

a(n,−r) :=
n

∑
k=0

(
n
k

)
(−r)kk! = (−1)nd(n, r).

We also note that the upper limit in the sum (1.5) may be extended to infinity without
changing the value a(n, r) = ∑∞

k=0 (
n
k)r

kk!, since the terms with k > n all vanish. We will
return to the expression a(n, r) in Section 1.3.

1.2 Cycle restricted permutations

A derangement is a permutation whose cycle type has no length-1 cycles. More gener-
ally, we may be interested in the class of permutations whose cycle type is restricted to
having lengths in a given set. For any set of positive integers L, let

dL(n) = #(permutations in Sn with cycle lengths in L). (1.6)
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We call such permutations counted by dL(n) the cycle restricted permutations of L. Thus
the usual derangement numbers satisfy d(n) = dL(n) for L = {2, 3, 4, . . .}, and counting
all permutations we have n! = dL(n) for L = N+.

Theorem 4. Let L be a set of positive integers, and let dL(n) be defined by (1.6). Let p denote a
prime. For p ≥ 3:

1. dL(n) is p-adically continuous if and only if 1 ∈ L and p ̸∈ L.

2. (−1)ndL(n) is p-adically continuous if and only if 1 ̸∈ L and p ∈ L.

In the case p = 2: (−1)n is 2-adically continuous, and

3. dL(n) is 2-adically continuous if and only if 1 ∈ L and 2 ̸∈ L, or 1 ̸∈ L and 2 ∈ L.

For example, let {3i} := {1, 3, 9, 27, . . .} denote the set of powers of 3; the initial
values of d{3i}(n) are shown in Table 3. The function n 7→ d{3i}(n) can be p-adically
interpolated by a continuous function on Zp if and only if p ̸= 3.

n 0 1 2 3 4 5 6 7 8 9
d{3i}(n) 1 1 1 3 9 21 81 351 1233 46089

Table 3: Number of {3i}-cycle restricted permutations.

An essential step to proving Theorem 4 is the following formal power series identity.

Proposition 5. Let dL(n) be defined by (1.6). Then the exponential generating function of dL(n)
factors as

∑
n≥0

dL(n)
Xn

n!
= ∏

r∈L
exp

(
Xr

r

)
.

The proof is a convenient application of combinatorial species (see [11, §1] for a
quick introduction or [3] for a comprehensive treatment). To connect Proposition 5 to
Theorem 4, we apply Mahler’s criterion for p-adic continuity as described in Section 2.

1.3 A p-adic incomplete gamma function

Just as the values of the gamma function at positive integers count permutations, the
values of the incomplete gamma function essentially count r-cyclic arrangements and
derangements on [r]× [n] (see Section 1.1). The p-adic regularity of Theorem 3 can be
strengthened to p-adic continuity in both variables of a(n, r) jointly, and this leads to a
construction for a p-adic incomplete gamma function.
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Recall that the (upper) incomplete gamma function Γ(s, z) is defined for s, z ∈ R,
z > 0, by the integral

Γ(s, z) =
∫ ∞

z
ts exp(−t)

dt
t

. (1.7)

(The function Γ(s, z) may be extended to s, z ∈ C by analytic continuation.) In analogy
with the classical formula Γ(n + 1) = n! we may verify that

Γ(n + 1, 1/r) = a(n, r)r−ne−1/r (1.8)

for (n, r) ∈ N × Z \ {0}, where a(n, r) is given by (1.5). Recall that a(n, r) counts r-cyclic
arrangements if r > 0, resp. (−r)-cyclic derangements if r < 0.

Equation (1.8) shows that the p-adic continuity of the incomplete gamma function
essentially reduces to the p-adic continuity of a(n, r). Theorem 3 may be strengthened
to observe that a(n, r) is jointly continuous in both arguments p-adically. As a techni-
cality to deal with the transcendental factor e−1/r in (1.8), we need to choose a field
homomorphism τp : Q(e) → Qp. For this choice we let τp(1/e) = ∑k≥0 pk/k!.

Theorem 6. There exists a unique continuous function Γp : Zp × (1 + pZp) → Zp satisfying

Γp(n, 1/r) = τpΓ(n, 1/r)

for any positive integers n and r satisfying r ≡ 1 (mod p). Explicitly, for any s ∈ Zp and
z ∈ 1 + pZp we have

Γp(s, z) = expp(pz)zs−1
∞

∑
k=0

(
s − 1

k

)
z−kk!, (1.9)

where expp(x) = ∑k≥0 xk/k! is the p-adic exponential function on Zp.

We hope that the p-adic incomplete gamma function constructed in Theorem 6 may
have interesting applications in number theory. See Section 3 for related discussion.

2 p-adic continuity

In this section we briefly recall some results from p-adic analysis. For more background
we refer to [13, 14]. For an introduction to p-adic numbers, see [8].

Given a function f : N → Q, the basic question of p-adic interpolation is whether f
extends to a continuous function f̃ : Zp → Qp. This question is generally approached
using Mahler expansions and finite differences.
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2.1 Mahler expansion

For a nonnegative integer k, let (x
k) ∈ Q[x] denote the polynomial(

x
k

)
=

x(x − 1) · · · (x − k + 1)
k!

.

The polynomials {(x
k) : k = 0, 1, 2, . . .} form a basis of Q[x] as a Q-vector space.

Definition 7. A Mahler series is an expression of the form ∑k≥0 ck(
x
k) where ck ∈ Q. A

function f admits a Mahler expansion if there are constants ck such that

f (x) = ∑
k≥0

ck

(
x
k

)
= c0 + c1

(
x
1

)
+ c2

(
x
2

)
+ · · ·

for all x in the domain of f . The constants ck are the Mahler coefficients of f .

It is helpful to think of Mahler expansions as a “discrete analogue” to Taylor ex-
pansions in calculus. A function on the domain Z or Zp may fail to admit a Mahler
expansion, but a function on N always has a Mahler expansion. Finding a Mahler ex-
pansion for a function f : N → Q means to solve for ck in the system of equations

f (n) =
n

∑
k=0

(
n
k

)
ck for n = 0, 1, 2, . . . . (2.1)

The constant coefficient is simply c0 = f (0), and the other coefficients can be found
using finite differences. The finite difference operator ∆ is defined by

∆ f (x) = f (x + 1)− f (x).

Applied to the polynomial (x
k), we have the familiar combinatorial identity ∆(x

k) =

(x+1
k ) − (x

k) = ( x
k−1). Taking iterated finite differences, we have ∆i(n

k) = ( n
k−i) if i ≤ k

and 0 otherwise. Assuming that f (x) = ∑k≥0 ck(
x
k), we have

∆i f (x) = ∑
k≥i

ck

(
x

k − i

)
= ci + ci+1

(
x
1

)
+ ci+2

(
x
2

)
+ · · ·

hence

cn = ∆n f (0) = ∑
k
(−1)k

(
n
k

)
f (n − k) for n = 0, 1, 2, . . . (2.2)

yields a solution to (2.1). To summarize, we have shown that an arbitrary function
f : N → Q has Mahler coefficients given by (2.2)

The question of which f : N → Q admit a continuous extension to Zp → Qp was
conveniently answered by Mahler, using Mahler coefficients. Let | · |p : Zp → R denote
the p-adic absolute value.



Derangements and the p-Adic Incomplete Gamma Function 7

Theorem 8 (Mahler [9, Lemma 1, Theorem 1]). Suppose f : N → Q is a function with
Mahler coefficients ck. Then f extends to a continuous function f̃ : Zp → Qp if and only if
|ck|p → 0 as k → ∞.

For example, the function f (n) = 3n has Mahler coefficients

cn =
n

∑
k=0

(−1)k
(

n
k

)
3n−k = (3 − 1)n = 2n.

By Mahler’s theorem, 3x extends continuously to x ∈ Zp if and only if |2n|p → 0 as
n → ∞, which occurs if and only if p = 2. A similar argument shows that (−1)x extends
continuously to x ∈ Zp if and only if p = 2.

2.2 Exponential generating functions

The relation between a function’s values f (n) =: an and its Mahler coefficients cn has a
convenient expression using exponential generating functions (EGFs). The exponential
generating function of a sequence (an) is the formal power series

∞

∑
n=0

an
Xn

n!
∈ Q[[X]].

Proposition 9. Consider two sequences (an) and (cn) of rational numbers, with associated EGFs

A(X) = ∑
n≥0

an
Xn

n!
, C(X) = ∑

n≥0
cn

Xn

n!
.

Then the following are equivalent:

1. (cn) are the Mahler coefficients of the function f (n) = an;

2. an = ∑n
k=0 (

n
k)ck;

3. cn = ∑n
k=0(−1)n−k(n

k)ak;

4. A(X) = exp(X)C(X), where exp(X) = ∑n≥0
Xn

n! .

2.3 Analyzing cycle restricted permutations

To deduce Theorem 4 from Proposition 5, we need to combine the following statements.
Recall that for a set L of cycle lengths, the counts of cycle restricted permutations dL(n)
satisfy the generating function identity

∑
n≥0

dL(n)
Xn

n!
= ∏

r∈L
exp

(
Xr

r

)
.
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Thus we focus our attention on individual factors exp
(

Xr

r

)
for r ∈ N+, or for slightly

more generality their integer powers exp
(

mXr

r

)
for m ∈ Z.

Proposition 10. Let r be a positive integer and m ∈ Z. Consider the formal power series

∑
n≥0

cn
Xn

n!
:= exp

(
mXr

r

)
.

1. If r = 1 or p, then |cn|p → 0 as n → ∞ if and only if p divides m.

2. If r ̸= 1 or p, then |cn|p → 0 as n → ∞.

We then address the case of an infinite product of factors of this type.

Proposition 11. Let m1, m2, . . . ∈ Z, and consider the formal power series in Qp[[X]] defined
by the infinite product

∑
n≥0

cn
Xn

n!
:=

∞

∏
r=1

exp
(

mrXr

r

)
. (2.3)

Then the EGF coefficients cn satisfy |cn|p → 0 as n → ∞ if and only if m1 ≡ mp (mod p).

We leave the details of the proof in [12] for the interested reader.

3 Parallel story: factorials and the gamma function

The factorial n! counts the number of permutations on a finite set of n elements. The
first few values are shown in Table 4.

n 0 1 2 3 4 5 6 7 8 9
n! 1 1 2 6 24 120 720 5040 40320 362880

Table 4: Number of permutations.

The question of whether the values n! can be interpolated over R (or C) is classical,
going back to Euler and Gauss. The gamma function Γ(s) is defined for positive real s
by the integral

Γ(s) =
∫ ∞

0
ts exp(−t)

dt
t

, (3.1)

and satisfies Γ(n + 1) = n!. (Compare to (1.7) earlier.) The function Γ(s) can be extended
by analytic continuation to a meromorphic function on s ∈ C.
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The question of whether n! can be interpolated p-adically is more recent. It is straight-
forward to compute the Mahler coefficients of the factorial function

n! = 1 + 1
(

n
2

)
+ 2

(
n
3

)
+ 9

(
n
4

)
+ 44

(
n
5

)
+ · · · ; (3.2)

these coefficients in fact coincide with the derangement numbers d(n) (cf. Table 1). The
p-adic absolute value |d(n)|p does not decay as n → ∞ for any prime p, so the function
n 7→ n! is not p-adically continuous by Mahler’s theorem.

Morita [10] discovered that it is possible to p-adically interpolate a “factorial-like”
function, after making the following tweaks:

ΓMor
p (n + 1) = (−1)n+1 ∏

1≤k≤n
p ̸ | k

k. (3.3)

Namely, an alternating sign is introduced, and integer multiples of p are left out of
the product. The formula (3.3) defines a p-adic continuous function ΓMor

p : Zp → Zp.
Morita’s p-adic analogue of the gamma function was found to satisfy various nice arith-
metic formulas, see, e.g., Gross–Koblitz [6].

Since the gamma function in the classical (Archimedean) case is reached by taking a
limit in one argument of the incomplete gamma function, namely Γ(s) = limz→0 Γ(s, z),
it is natural to expect a nice relation between Morita’s p-adic gamma function (or perhaps
another p-adic gamma function analogue) and the p-adic incomplete gamma function
constructed in Section 1.3. Such a relation is currently beyond our understanding. We
hope to explore this in future work.
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