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Abstract. In their study of infinite flag varieties, Lam, Lee, and Shimozono (2021)
introduced bumpless pipe dreams in a new combinatorial formula for double Schu-
bert polynomials. These polynomials are the T × T-equivariant cohomology classes
of matrix Schubert varieties and of their flat degenerations. We give diagonal term
orders with respect to which bumpless pipe dreams index the irreducible components
of diagonal Gröbner degenerations of matrix Schubert varieties, counted with scheme-
theoretic multiplicity.

This indexing was conjectured by Hamaker, Pechenik, and Weigandt (2022). We also
give a generalization to equidimensional unions of matrix Schubert varieties. This
result establishes that bumpless pipe dreams are dual to and as geometrically natural
as classical pipe dreams, for which an analogous anti-diagonal theory was developed
by Knutson and Miller (2005).

Keywords: bumpless pipe dreams, Gröbner bases, Gröbner degenerations, matrix
Schubert varieties, alternating sign matrix varieties

Introduction: The complete flag variety F (Cn) = B−\GL(Cn) is the quotient of the
general linear group by the Borel subgroup B− of lower triangular matrices. There is
a natural action of the Borel subgroup of upper triangular matrices B+ on F (Cn) by
matrix multiplication. The orbits Ωw of this action, called Schubert cells, are indexed by
permutations w in the symmetric group Sn. The closures Xw = Ωw of these orbits are
called Schubert varieties. Schubert varieties emerged in the study of the enumerative
geometry problems posed by Schubert and his contemporaries.

Each Schubert variety gives rise to a Schubert class σw in the integral cohomology
ring H∗(F (Cn)). Indeed, these Schubert classes form a Z-linear basis for H∗(F (Cn)).
Borel [4] showed that H∗(F (Cn)) is isomorphic to Z[x1, . . . , xn]/ISn , where ISn is the
ideal generated by the nonconstant elementary symmetric polynomials. Geometric proper-
ties of F (Cn) are readily expressed in terms of Schubert classes. For instance, the co-
efficients cw

u,v in the product σu · σv = ∑w∈Sn cw
u,vσw are nonnegative integers; cw

u,v counts
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points in the intersection of three Schubert varieties that depend on u, v, and w generi-
cally translated by elements of GL(Cn). Something that for decades hindered the study of
Z[x1, . . . , xn]/ISn was that there was no known choice of desirable coset representatives.

Motivated by earlier work of Bernšteı̆n, Gel’fand, and Gel’fand as well as Demazure,
Lascoux and Schützenberger [21] proposed one such choice: the Schubert polynomials
Sw(x). Schubert polynomials have many desirable combinatorial properties. Impor-
tantly, if u, v ∈ Sn, then, for N sufficiently large with respect to n, the coefficients in the
product Su(x)Sv(x) = ∑w∈SN

cw
u,vSw(x) agree with those arising from the multiplica-

tion of the corresponding Schubert classes in F (CN). Moreover, Schubert polynomials
expand positively in the monomial basis, allowing for numerous combinatorial interpre-
tations for these coefficients. Of particular importance are the pipe dream formula of [2,
3, 7, 8] and a recent formula due to Lam, Lee, and Shimozono [19] in terms of bumpless
pipe dreams, which they introduced in their study of back stable Schubert calculus.

Bumpless pipe dreams had also appeared earlier in a different form in work related
to study of the six-vertex model. In this context, they are called osculating lattice paths
(see, e.g., [1]). In an unpublished preprint, Lascoux [20] used the six-vertex model to
give a formula for Grothendieck polynomials, which can be used to recover the formula
of [19] for Schubert polynomials (see [26]). By interpreting bumpless pipe dreams as
planar histories for permutations, Lam, Lee, and Shimozono gave a formula for double
Schubert polynomials that is analogous to (but distinct from) the traditional pipe dream
formula. Double Schubert polynomials represent classes of Schubert varieties in the
Borel-equivariant cohomology of F (Cn). Lam, Lee, and Shimozono’s innovation has
inspired a great deal of further exploration of the combinatorics of Schubert polynomials.

Despite the combinatorial desirability of Schubert polynomials, there was for many
years skepticism over whether they were really the right choice. It was profoundly
unclear whether Schubert polynomials reflected any of the geometric content of Schubert
varieties. Progress on this front came by way of understanding torus-equivariant classes
of matrix Schubert varieties.

The torus T of diagonal matrices acts on Mat(Cn) by matrix multiplication on the
right, and so we can study the ring H∗

T(Mat(Cn)) ∼= Z[x1, . . . , xn] of T-equivariant co-
homology. There is a projection map π : GL(Cn) → F (Cn) = B−\GL(Cn) and an in-
clusion map ι : GL(Cn) → Mat(Cn) taking elements of the general linear group into
the space of n × n matrices. The matrix Schubert variety of w, introduced by Ful-
ton [9], is Xw = ι(π−1(Xw)), which is an orbit closure for the natural B− × B+ ac-
tion on Mat(Cn). Because Xw is stable under the action of T, it gives rise to a class
[Xw]T ∈ H∗

T(Mat(Cn)). Furthermore, this class is a polynomial representative for the
Schubert class σw in H∗(F (Cn)). Remarkably, [Xw]T = Sw(x), i.e., the coset representa-
tive for σw that was singled out by Lascoux and Schützenberger is the same one identified
by the theory of T-equivariant cohomology (see [9], [6, Theorem 4.2], [14, Theorem A]).
In this sense, Schubert polynomials are canonical representatives for Schubert classes.
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Analogously, double Schubert polynomials represent classes of matrix Schubert vari-
eties in H∗

T×T(Mat(Cn)), and so double Schubert polynomials are identified as natural
representatives for Schubert classes in H∗

B+
(F (Cn)).

Furthermore, Knutson and Miller [14] were able to use Gröbner geometry to explain
the appearance of the traditional pipe dream formula for Schubert polynomials. Fixing
an anti-diagonal term order σ on the coordinate ring of Mat(Cn), one can degenerate
Xw to inσ(Xw) (the scheme defined by the σ-initial ideal of the defining ideal of Xw),
which Knutson and Miller showed to be a union of coordinate subspaces indexed by
pipe dreams.

In this way, the pipe dream formula is a canonical choice of expression for Schubert
polynomials, but only insofar as anti-diagonal term orders would be considered canoni-
cal term orders. Perhaps the most natural term order is lexicographic order on reading
order, which is diagonal. Indeed, several years after [14], Knutson, Miller, and Yong [16]
studied an arbitrary diagonal term order σ, but their results were restricted to the special
case of vexillary matrix Schubert varieties. They showed that, in this case, the irreducible
components of inσ(Xw) are indexed by flagged tableaux (or, equivalently, diagonal pipe
dreams). One challenge of the diagonal degenerations of Xw is that they are not always
reduced. For this reason, the complete story of the diagonal degenerations must include
a count on the irreducible components with multiplicity. Outside of the vexillary setting,
there was no combinatorial candidate to index components of inσ(Xw).

Recently, Hamaker, Pechenik, and Weigandt [10] extended [16] to a wider class of
matrix Schubert varieties. They showed that in this larger special case the irreducible
components of inσ(Xw) are indexed by the bumpless pipe dreams of [19]. The main
theorem of the present work was previously conjectured by Hamaker, Pechenik, and
Weigandt ([10, Conjecture 1.2]).

Main Theorem. There exist diagonal term orders with respect to which the irreducible compo-
nents, counted with multiplicity, of the initial scheme in(Xw) of the matrix Schubert variety Xw
naturally correspond to the bumpless pipe dreams for the permutation w.

In fact, we prove a more general statement for arbitrary unions of matrix Schubert
varieties of a fixed dimension (see Theorem 20). Hamaker, Pechenik, and Weigandt’s
conjecture remains open for arbitrary diagonal term orders. Our theorem holds over
an arbitrary field κ. When κ = C, one recovers T-equivariant classes from the multi-
degrees of [11, 24]. Indeed, when S is a multigraded polynomial ring over C and I is
a multihomogenous ideal, then the multidegree of S/I is the class of Spec(S/I) in the
T-equivariant Chow ring of Spec(S) (see [15, Proposition 1.19]).

In order to prove Theorem 20, we give an algebro-geometric recurrence on unions of
matrix Schubert varieties which mirrors both the recurrence of Lascoux and Schützen-
berger’s transition equations and also a corresponding transition on bumpless pipe
dreams (Lemma 7 and [26, Section 5]). This situation is (projectively) dual to that of [13],
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which involves co-transition, pipe dreams, and unions of matrix Schubert varieties.
Background and preliminaries: Throughout this paper, we will take κ to be an

arbitrary field. Let N = {0, 1, 2, . . .} and Z+ = {1, 2, 3 . . .}. Given m, n ∈ Z+, let
[n] = {1, 2, . . . , n} and [m, n] = {i ∈ Z+ : m ≤ i ≤ n}. The symmetric group Sn is the
group of permutations of n letters. We often represent permutations in one-line notation.
It will sometimes also be convenient to represent permutations as permutation matrices.
We identify the permutation w ∈ Sn with the matrix that has 1’s in positions (i, w(i)) for
all i ∈ [n] and 0’s in all other positions. The transposition ti,j is the 2-cycle (ij), and we
write si for the simple reflection (i i + 1). We use ℓ(w) = #{(i, j) : i < j and w(i) > w(j)}
to denote the Coxeter length of w ∈ Sn.

The (strong) Bruhat order on Sn is the transitive closure of covering relations of the
form w < wti,j if ℓ(w)+ 1 = ℓ(wti,j). There is another characterization of Bruhat order we
will use: Define the rank function of w to be rkw(a, b) = #{(i, j) ∈ [a]× [b] : w(i) = j}.
Then w ≤ v if and only if rkw(i, j) ≥ rkv(i, j) for all i, j ∈ [n].

Given w ∈ Sn, the Rothe diagram of w is D(w) = {(i, j) : i, j ∈ [n], w(i) > j, and
w−1(j) > i}. The Coxeter length of w satisfies ℓ(w) = #D(w). The essential set of w
is Ess(w) = {(i, j) ∈ D(w) : (i + 1, j), (i, j + 1) ̸∈ D(w)}, i.e., the maximally southeast
corners of the connected components of D(w). A permutation π ∈ Sn is bigrassmannian
if #Ess(π) = 1. A bigrassmannian permutation is uniquely determined by the position
of its essential cell and the value of its rank function at this position.

Alternating sign matrices: An alternating sign matrix (ASM) is a square matrix
with entries in {−1, 0, 1} so that the entries in each row (and column) sum to 1 and the
nonzero entries in each row (and column) alternate in sign. An ASM with no negative
entries is a permutation matrix. Write ASM(n) for the set of n × n ASMs.

The corner sum function of A = (Ai,j) ∈ ASM(n) is defined by

rkA(a, b) =
a

∑
i=1

b

∑
j=1

Ai,j for (a, b) ∈ [n]× [n].

It will also be useful to define rkA(i, j) = 0 whenever i = 0 or j = 0. If A ∈ Sn, then rkA
agrees with the definition of the rank function of a permutation. We may also use rkA
to denote the corner sum matrix of A, the n × n matrix whose (i, j)th entry is rkA(i, j):
that is, rkA = ((rkA)i,j) = (rkA(i, j)). When A ∈ Sn, the corner sum matrix is commonly
called the rank matrix of A.

Corner sum functions induce a lattice structure on ASM(n) defined by A ≥ B if and
only if rkA(i, j) ≤ rkB(i, j) for all i, j ∈ [n]. Restricting to permutations recovers the
(strong) Bruhat order on Sn; indeed, the ASM poset is the smallest lattice with this
property [22, Lemme 5.4]. One computes the join (least upper bound) A ∨ B by taking
entry-wise minima of rkA and rkB and the meet (greatest lower bound) A ∧ B by taking
entry-wise maxima of rkA and rkB. The bigrassmannian permutations are the join-
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irreducibles of the lattice of ASMs. To compare a bigrassmannian with an ASM, it is
enough to compare a single value of their corresponding corner sum functions.

Let Perm(A) = {w ∈ Sn : w ≥ A, and, if w ≥ v ≥ A for some v ∈ Sn, then w = v}.
We define deg(A) = min{ℓ(w) : w ∈ Perm(A)}. If ℓ(w) = deg(A) for all w ∈ Perm(A),
then we say that A is equidimensional.

Given a matrix M, let M[i],[j] be the submatrix of M consisting of the first i rows and j
columns. Given A ∈ ASM(n), we define the ASM variety of A to be XA = {M ∈ Mat(n) :
rk(M[i],[j]) ≤ rkA(i, j) for all i, j ∈ [n]}. When w ∈ Sn, we say Xw is a matrix Schubert
variety. For background on matrix Schubert varieties, see [9, 23].

Fix an n × n generic matrix Z = (zi,j), and let R = κ[z1,1, . . . , zn,n]. We write Ik(Z[i],[j])
for the ideal of R generated by the k-minors in Z[i],[j]. As a convention, if i = 0 or j = 0,
then define Ik(Z[i],[j]) = (0). The ASM ideal of A is IA = ∑n

i,j=1 IrkA(i,j)+1(Z[i],[j]).
We call the union of the rkA(i, j) + 1-minors in Z[i].[j], as i and j range from 1 to n, the

natural generators of IA. If w ∈ Sn, Iw is also called a Schubert determinantal ideal.

Proposition 1 ([9, Proposition 3.3]). If w ∈ Sn, then Iw is prime and htIw = ℓ(w).

By [9, Lemma 3.10], a Schubert determinantal ideal can be generated by a (usually
proper) subset of its natural generators: Iw = ∑(i,j)∈Ess(w) Irkw(i,j)+1(Z[i],[j]). We call these
generators the Fulton generators. There is a generalization of the Fulton generators for
ASM ideals (see [25, Lemma 5.9]).

Given a simplicial complex ∆ on vertex set [n], we define the Stanley–Reisner ideal
I∆ ⊆ κ[z1, . . . , zn] of ∆ to be I∆ = (∏i∈U zi : U ⊆ [n], U /∈ ∆). This map ∆ 7→ I∆ is a
bijection from simplicial complexes on [n] to squarefree monomial ideals of κ[z1, . . . , zn].
Let ∆(I) denote the simplicial complex associated to a squarefree monomial ideal I. For
a subset F ⊆ [n], observe that the prime ideal P = (zi : i /∈ F) is a minimal prime of I if
and only if F is a facet of ∆(I). For background, we refer the reader to [23, Chapter 1].

For general background on term orders, initial ideals, and Gröbner bases, we refer
the reader to [5, Chapter 15]. For a term order σ on the polynomial ring R and an ideal
I of R, we will use inσ(I) to denote the initial ideal of I with respect to σ. We say that a
term order is diagonal (respectively, anti-diagonal) if the lead term of the determinant
of a generic matrix is the product of the entries along the main diagonal (respectively,
along the anti-diagonal).

Lemma 2. Let A ∈ ASM(n), and fix an anti-diagonal term order σ on κ[z1,1, . . . , zn,n]. Then
the following hold: (i) If w1, . . . , wr ∈ Sn such that A = ∨{w1, . . . , wr}, then ∑r

i=1 inσ(Iwi) =
inσ(IA) =

⋂
u∈Perm(A) inσ(Iu). (ii) If w1, . . . , wr ∈ Sn such that A = ∨{w1, . . . , wr}, then

IA = ∑r
i=1 Iwi . (iii) IA is radical. (iv) IA has the irredundant prime decomposition IA =⋂

w∈Perm(A) Iw. (v) htIA = deg(A). (vi) A is equidimensional if and only if Spec(R/IA) is
equidimensional.

Hilbert functions and multidegrees: Fix a Zd-grading on the finitely generated
κ-algebra S, and fix a finitely generated, Zd-graded S-module M. For t = (t1, . . . , td)
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and a = (a1, . . . , ad), let ta = ta1
1 · · · tad

d and ⟨a, t⟩ = a1t1 + · · ·+ adtd. Let Ma denote the
ath graded piece of M. If dimκ-vect(Ma) < ∞ for all a ∈ Zd, we define the multigraded
Hilbert series of M, denoted Hilb(M; t), as Hilb(M; t) = ∑a dimκ-vect(Ma) · ta. Note that
Hilb(M; t) is an element of the formal Laurent series ring Z((t1, . . . , td)). We refer the
reader to [23, Chapter 8] for general background on multigraded Hilbert series.

We will often want to consider Hilbert series of finitely generated modules over poly-
nomial rings, especially polynomial rings equipped with term orders. We now restrict
to that case. Let S = κ[z1, . . . , zn], and assume that the degrees deg(zi) = (a1, . . . , ad)
of the algebra generators of S all lie in a single open half-space of Zd. This assump-
tion guarantees that, for each finitely generated S-module M, dimκ-vect(Ma) < ∞ for
all a ∈ Zd. Recall that if S is equipped with a term order σ and I is an ideal of S,
then Hilb(S/I; t) = Hilb(S/inσ(I); t). If M is any finitely generated, Zd-graded S-
module, then there is a unique polynomial K(M; t) ∈ Z[t1, . . . , td] so that Hilb(M; t) =
(K(M; t))/(∏n

i=1(1− tdeg(zi))). We call this polynomial K(M; t) the K-polynomial of M.
The multidegree C(M; t) consists of the lowest degree terms of K(M; 1 − t). For further
background, see [14].

Bumpless pipe dreams and transition equations: A bumpless pipe dream (BPD) is
a tiling of the n × n grid with the pictures in (⋆) so that (1) there are n total pipes, (2)
pipes start at the bottom edge of the grid and end at the right edge, and (3) pairwise,
pipes cross at most one time.

(⋆)

Given a BPD B, label its pipes 1, . . . , n from left to right according to their starting
columns. We obtain a permutation wB by defining wB(i) to be the label of the pipe that
terminates in row i. Let BPD(w) be the set of BPDs of w ∈ Sn.

The diagram of B is the set D(B) = {(i, j) : there is a blank tile in row i and column
j of B}. We associate to B the weight wt(B) = ∏(i,j)∈D(P)(xi − yj). The Rothe BPD for

w is the (unique) BPD that has tiles in cell (i, w(i)) for all i ∈ [n] and has no tiles.
Notice that if B is the Rothe BPD for w, then D(w) = D(B).

Fix a BPD B. Suppose the tile in cell (i, j) is a downward elbow . Take (a, b) ∈ D(B)
with i < a and j < b. Suppose further that the only or tile in the region [i, a]× [j, b]
occurs in cell (i, j). Then we can take the pipe passing through (i, j) and bend it within
the rectangle so that there are downward elbows in cells (i, b) and (a, j) and an
upward elbow in cell (a, b). This move is called a droop move. Applying a droop
move to B ∈ BPD(w) produces another element of BPD(w). Furthermore, BPD(w) is
connected by such moves:

Proposition 3 ([19, Proposition 5.3]). Every B ∈ BPD(w) can be reached from the Rothe BPD
for w by a sequence of droop moves.
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Schubert polynomials are traditionally defined using divided difference operators.
The content of [19, Theorem 5.13] is that those definitions are equivalent to the definitions
we give here. The double Schubert polynomial of w ∈ Sn is the sum Sw(x, y) =

∑B∈BPD(w) wt(B). We also at times consider the single Schubert polynomial Sw(x) =

∑B∈BPD(w) wtx(B), where wtx(B) = ∏(i,j)∈D(B) xi. Notice Sw(x) = Sw(x, 0).
Write Sw(1) for the result of substituting xi 7→ 1 for all i ∈ [n] in Sw(x). From

the BPD definition of Sw(x) given above, it is immediate that Sw(1) = #BPD(w). For
the remainder of this abstract, we take R = κ[z1,1, . . . , zn,n]. We will be interested in
two gradings on R. The first is the Zn grading that assigns generators the degrees
deg(zi,j) = ei, the ith standard basis vector. The second is the Z2n grading for which
deg(zi,j) = ei − en+j. Let x = (x1, . . . , xn) and y = (y1, . . . , yn). When writing Hilbert
functions with respect to the Zn grading, we will have t = x and, when with respect to
the Z2n grading, t = (x, y).

Theorem 4 ([6, 14]). If Iw is the Schubert determinantal ideal of w ∈ Sn, then, with respect to the
Zn and Z2n gradings on R given above, C(R/Iw; x) = Sw(x) and C(R/Iw; x, y) = Sw(x, y).

Transition equations: Let w ∈ Sn. Pick a lower outside corner (a, b) of D(w). Set v =
wta,w−1(b). Observe that D(w) = D(v) ∪ {(a, b)} and, in particular, that ℓ(w) = ℓ(v) + 1.

Notation 5. Let ϕ(w, za,b) = {i ∈ [a − 1] : vti,a > v and ℓ(vti,a) = ℓ(v) + 1 = ℓ(w)}. Write
Φ(w, za,b) = {vti,a : i ∈ ϕ(w, za,b)}.

Theorem 6 ([18, Proposition 4.1]). Keeping the above notation, Sw(x, y) = (xa − yb) ·
Sv(x, y) + ∑u∈Φ(w,za,b)

Su(x, y).

If one takes the BPD formula of [19] as a definition for Schubert polynomials, The-
orem 6 may be proved by appealing to the combinatorics of BPDs. Indeed, there is a
bijective explanation.1 Alternatively, one may define Schubert polynomials using tran-
sition equations and then recover the BPD formula as a consequence. The following
combinatorial lemma shows the two definitions are equivalent.

Lemma 7. Let Iw be a Schubert determinantal ideal and (a, b) a lower outside corner of D(w).
Let v = wta,w−1(b). There is a bijection ψ : BPD(w) → BPD(v) ∪ ⋃

u∈Φ(w,y) BPD(u) that
respects the diagrams of the bumpless pipe dreams. Specifically, if ψ(B) ∈ BPD(v), then D(B) =
D(ψ(B)) ⊔ {(a, b)}. Otherwise, D(B) = D(ψ(B)).

Bumpless pipe dreams and geometric vertex decomposition: Geometric vertex de-
composition, which was introduced by Knutson, Miller, and Yong [16] in the study of
vexillary matrix Schubert varieties, will be one of our main tools for understanding
Schubert determinantal ideals in the context of BPDs.

1See also [17] for a diagrammatic interpretation of transition.
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Fix one of the algebra generators za,b of R, and set y = za,b. For a polynomial f =

∑m
i=0 αiyi ∈ R with each αi ∈ κ[z1,1, . . . , ŷ, . . . , zn,n] and αm ̸= 0, define the initial y-form

of f to be iny( f ) = αmym. Given an ideal I, define iny(I) to be the ideal generated by
the initial y-forms of I; that is, iny(I) = (iny( f ) : f ∈ I). We say that a term order σ

on R is y-compatible if it satisfies inσ( f ) = inσ(iny( f )) for every f ∈ R. Notice that
whenever a term order σ is y-compatible, inσ(I) = inσ(iny(I)).

Definition 8 ([16, Section 2.1]). Suppose that I is an ideal of a polynomial ring that is
equipped with the y-compatible term order σ and that I has a Gröbner basis of the form
G = {yq1 + r1, . . . , yqk + rk, h1, . . . , hℓ} where y does not divide any qi, ri, or hi. We
define the ideals Cy,I = (q1, . . . , qk, h1, . . . , hℓ) and Ny,I = (h1, . . . , hℓ). Then iny(I) =
Cy,I ∩ (Ny,I + (y)), and this decomposition is called a geometric vertex decomposition
of I with respect to y.

Lemma 9. Fix w ∈ Sn and take (a, b) to be a lower outside corner of D(w) corresponding to the
variable y = za,b of R. Write the Fulton generators of Iw as {yq1 + r1, . . . , yqk + rk, h1, . . . , hℓ},
where y does not divide any qi, ri, or hj. If N = (h1, . . . , hℓ), then N is the Schubert determinan-
tal ideal Iv for v = wta,w−1(b).

Corollary 10. Fix w ∈ Sn with some lower outside corner (a, b) of D(w) corresponding to
the variable y = za,b of R, and assume rkw(a, b) ≥ 1. Write v = wta,w−1(b), and let π be
the bigrassmannian permutation so that Ess(π) = {(a − 1, b − 1)} and rkπ(a − 1, b − 1) =
rkw(a, b)− 1. Then Cy,Iw = Iv + Iπ = Iv∨π and iny(Iw) = Iv∨π ∩ (Iv + (y)).

We now give a combinatorial lemma that will allow us to use Corollary 10 to identify
the associated primes of Cy,Iw .

Proposition 11. Fix w ∈ Sn with some lower outside corner (a, b) of D(w) corresponding
to the variable y = za,b of R, and assume rkw(a, b) ≥ 1. Set v = wta,w−1(b), and let π be
the bigrassmannian permutation so that Ess(π) = {(a − 1, b − 1)} and rkπ(a − 1, b − 1) =
rkw(a, b)− 1. Then Perm(v ∨ π) = Φ(w, y) and deg(v ∨ π) = ℓ(w).

In light of Proposition 11, we may interpret the transition equations using ASMs:

Corollary 12. Fix a lower outside corner (a, b) of D(w). Suppose rkw(a, b) ≥ 1 and let u be
the bigrassmannian permutation so that Ess(π) = {(a − 1, b − 1)} and rkπ(a − 1, b − 1) =
rkw(a, b)− 1. Let v = wta,w−1(b). Then

Sw(x, y) = (xa − yb) ·Sv(x, y) + ∑
u∈Perm(v∨π)

Su(x, y).

Proposition 13. Fix w ∈ Sn. Let (a, b) be a lower outside corner of D(w) corresponding to the
variable y = za,b of R and iny(Iw) = Cy,Iw ∩ (Ny,Iw +(y)) be the geometric vertex decomposition
of Iw at y. Then Cy,Iw =

⋂
u∈Φ(w,y) Iu, and Ny,Iw = Iv where v = wta,w−1(b).
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The main result: For the remainder of this abstract, let σ be the lexicographic
order on the ordering of the variables zij > zi′ j′ if i > i′ or if i = i′ and j > j′ unless
otherwise stated. We will use min(I) to denote the set of minimal primes of the ideal
I and ℓ(M) to denote the length of a finite length module M. When working over an
algebraically closed field F , ℓ(M) is the F -vector space dimension of M. Suppose P is a
minimal prime of I, in which case Spec(R/P) is an irreducible component of Spec(R/I).
Recall that the multiplicity of Spec(R/P) along Spec(R/I) is defined to be the length
ℓ(RP/IRP) (equivalently, ℓ((R/I)P)) and is denoted multP(R/I).

We will use geometric vertex decomposition to develop a recurrence on unions of
matrix Schubert varieties that mirrors the recurrence on bumpless pipe dreams discussed
earlier. Our tool for tracking multiplicities will be multidegrees.

Lemma 14. Let σ be any term order on R. Let w1, . . . , wr for some r ≥ 1 be distinct permutations
of the same Coxeter length, and set J =

⋂
i∈[r] Iwi . Let min(inσ(J)) = {P1, . . . , Pm}. Then

e(R/J) = ∑m
i=1 multPi(inσ(J)) = ∑r

i=1 #BPD(wi).

Lemma 15. Fix w1, . . . , wr ∈ Sn, and set J =
⋂

i∈[r] Iwi for some r ≥ 1. Fix a maximally
southeast cell (a, b) among elements of

⋃
i∈[r] D(wi), with (a, b) corresponding to the variable

y = za,b of R. Then Ny,J =
⋂

i∈[r] Ny,Iwi
.

Notation 16. Let w1, . . . , wr ∈ Sn be distinct permutations of Coxeter length h and
J =

⋂
i∈[r] Iwi . Suppose that (a, b) is a maximally southeast cell among elements of⋃

i∈[r] D(wi) and that y = za,b is involved in some Fulton generator of Iwi for i ∈ [q] but
not for i ∈ [q + 1, r] for some q ∈ [r]. Set Nht

y,J =
⋂

i∈[q] Ny,wi . By Lemma 9, the Ny,wi with
i ∈ [q] have height htJ − 1 = htNy,J while the Ny,wi = Iwi with i ∈ [q + 1, r] have height
htJ. Hence, Nht

y,J is the intersection of the minimal primes of Ny,J realizing its height.

Lemma 17. Fix w1, . . . , wr ∈ Sn all of Coxeter length h, and set J =
⋂

i∈[r] Iwi for some r ≥ 1.
Fix a maximally southeast cell (a, b) among elements of

⋃
i∈[r] D(wi), with (a, b) corresponding

to the variable y = za,b of R. Then the minimal primes of iny(J) = Cy,J ∩ (Ny,J + (y)) that
do not contain y are exactly minimal primes of Cy,J , and those that do contain y are exactly the
minimal primes of Nht

y,J + (y). Moreover,

∑
P∈min(iny(J))

y/∈P

multP (R/iny(J)) · e(R/P) =
r

∑
i=1

# {B ∈ BPD(wi) : (a, b) /∈ D(B)}

and

∑
P∈min(iny(J))

y∈P

multP (R/iny(J)) · e(R/P) =
r

∑
i=1

# {B ∈ BPD(wi) : (a, b) ∈ D(B)} .



10 P. Klein and A. Weigandt

Having completely understood Ny,J and, by induction, inσ(Nht
y,J), our next goal is to

show that each irreducible component of Spec(R/Cy,J) appears with multiplicity gov-
erned by the BPD(wi) as a step towards understanding multiplicity of each irreducible
component of Spec(R/inσ(Cy,J)).

Following [16], for w ∈ Sn, we will call a lower outside corner (a, b) of D(w) an
accessible cell if rkw(a, b) ≥ 1. For w1, . . . , wr ∈ Sn, call (a, b) the maximal accessible
cell of {w1, . . . , wr} if (1) (a, b) is an accessible cell of some wi, (2) if (a′, b′) is an accessible
cell of some wi, then a′ ≤ a, and (3) if (a′, b′) is an accessible cell of some wi satisfying
a′ = a, then b′ ≤ b.

Lemma 18. Fix distinct permutations w1, . . . , wr, r ≥ 1, all of Coxeter length h. Suppose
{w1, . . . , wr} has maximal accessible cell (a, b) corresponding to the variable y = za,b and that
y is involved in the Fulton generators of Iw1 , . . . , Iwq but not of Iwq+1 , . . . , Iwr . Suppose further
that (a, b) is a lower outside corner of every D(wi) in which it appears. Set J =

⋂
i∈[r] Iwi , with

geometric vertex decomposition iny(J) = Cy,J ∩ (Ny,J + (y)). Then the minimal primes of Cy,J
are A = {Iu : u ∈ Φ(wi, y), i ∈ [q]} ∪ {Iwi : i ∈ [q + 1, r]}. Moreover, for each Iw ∈ A,

multIw(R/iny(J)) =

{
#{i ∈ [q] : w ∈ Φ(wi, y)} if Iw ̸= Iwi for any i ∈ [q + 1, r]
#{i ∈ [q] : w ∈ Φ(wi, y)}+ 1 if Iw = Iwi for some i ∈ [q + 1, r].

The following lemma facilitates an inductive argument in our main theorem by al-
lowing us to track multiplicities along primary components and, by replacing Cy,J by its
radical, to return to the case of a union of matrix Schubert varieties.

Lemma 19. Taking the standard grading on R, let J be a homogeneous ideal defining an equidi-
mensional scheme with min(J) = {P1, . . . , Pr}. Let σ be any term order. If, for all P ∈
min(inσ(J)),

multP (R/inσ(J)) =
r

∑
i=1

multP (R/inσ(Pi)),

then

multP (R/inσ(J)) =
r

∑
i=1

multPi(R/J) · multP (R/inσ(Pi)).

We now give our main result. The case r = 1 is the situation asked about by [10,
Conjecture 1.2].

Theorem 20. Fix distinct permutations w1, . . . , wr, r ≥ 1, all of Coxeter length h. If J =⋂
i∈[r] Iwi , then the irreducible components of Spec(R/inσ(J)), counted with multiplicity, are

indexed by
⋃

i∈[r] BPD(wi). Precisely, the multiplicity of Spec(R/P) along Spec(R/inσ(J)) is

#
{
B ∈ ⋃

i∈[r] BPD(wi) : P = ID(B)

}
.

The situation of Theorem 20 is especially nice when Spec(R/inσ(J)) is reduced. In
that case, for all D ⊆ [n]× [n], # {B ∈ ⋃r

i=1 BPD(wi) : D(B) = D} = 1; that is, there are
no repeated diagrams occurring among the BPDs of the wi.
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