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Abstract. In this paper, we consider the problem of toggling independent sets in cycle
graphs. In each orbit, we find an infinite abelian “snake group” that acts simply tran-
sitively on the “live entries”. This allows us to characterize a number of combinatorial
properties of the dynamics by studying the topological covering maps between this tor-
sor and finite quotients. We also characterize the orbits via solutions to a three-variable
Diophantine equation. Preliminary work has found other toggle actions where the live
entries are a torsor for a group, suggesting that this work is a special case of a more
general framework, and posing the question of when this phenomenon arises and why.
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1 Introduction

Toggling combinatorial objects has gained considerable interest over the past decade,
and has elevated the subfield now known as dynamical algebraic combinatorics. Let Cn be
the cycle graph with vertex set v(Cn) = [n] = {1, . . . , n} and edges {i, i + 1} with the
indices taken modulo n. Denote the set of independent sets of Cn by In. We will write
these as cyclic binary strings v1, . . . , vn such that no two adjacent entries1 are 1. The
toggle operation at position k is the function τk : In → In that “attempts to flip” the kth bit.
Specifically, if vk = 1, then τk flips it to 0. On the other hand, if vk = 0, then it flips it to 1
if doing so does not introduce consecutive 1s; otherwise, it fixes the kth bit. In this paper,
we will consider the action of iteratively toggling the bits of our binary string in the
order τ1, . . . , τn, and we will denote this by the bijection τ = τn ◦ · · · ◦ τ1. Given an initial
cyclic binary string x(0), let x(1) = τ(x(0)), x(2) = τ(x(1)), and so on. Eventually, after
some m ≥ 1 number of steps, we will return to our original string. That is, x(i+m) = x(i)
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for all i ∈ Z. The dynamics of this action can be represented by Z × Zn binary tables
called scrolls, each of which is naturally embedded on a bi-infinite cylinder. An example
on n = 12 vertices that repeats every m = 15 rows is shown in Figure 1.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
...

...
...

...
...

...
...

...
...

...
...

...
...

x(0) 1 0 1 0 1 0 0 0 1 0 1 0
x(1) 0 0 0 0 0 1 0 0 0 0 0 1
x(2) 0 1 0 1 0 0 1 0 1 0 0 0
x(3) 0 0 0 0 1 0 0 0 0 1 0 1
x(4) 0 1 0 0 0 1 0 1 0 0 0 0
x(5) 0 0 1 0 0 0 0 0 1 0 1 0
x(6) 1 0 0 1 0 1 0 0 0 0 0 0
x(7) 0 1 0 0 0 0 1 0 1 0 1 0
x(8) 0 0 1 0 1 0 0 0 0 0 0 1
x(9) 0 0 0 0 0 1 0 1 0 1 0 0
x(10) 1 0 1 0 0 0 0 0 0 0 1 0
x(11) 0 0 0 1 0 1 0 1 0 0 0 1
x(12) 0 1 0 0 0 0 0 0 1 0 0 0
x(13) 0 0 1 0 1 0 1 0 0 1 0 1
x(14) 0 0 0 0 0 0 0 1 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
Sum: 3 4 5 3 4 5 3 4 5 3 4 5

Figure 1: A single period of an orbit from toggling independent sets over Cn, for
n = 12. This bi-infinite table, naturally embedded on a cylinder, is called a scroll.

In this paper, we will see some simple questions that lead to surprising structural
properties of the dynamics, which seem to be a special case of a more general unexplored
framework. As as gentle introduction, let’s pause to make a few innocuous observations
about Figure 1. As we’ve noted, this scroll repeats every 15 rows, which we call its
period. If we view the dynamics as one reads a book – from left to right and down the
rows, this bi-infinite sequence, called the ticker tape, has period 45. Finally, the column
sums over one period, written as a cyclic string, have period 3. It turns out that the
period of the column sums is odd in any orbit, and the relationships between these
various periods can be characterized algebraically by an abelian “snake group” that acts
simply transitively on the set of “live entries” in the scroll (the positions with a 1). This
action endows the live entries with a Cayley diagram structure, i.e., they are a torsor
for the snake group. Specifically, some of the fundamental combinatorial properties of
these scrolls, and thus of the dynamics generated by toggling independent sets, can be
explained by interpreting the scroll as a covering space and using some basic algebraic
topology. We can also enumerate the orbit tables for any n via a Diophantine equation
in three variables. Preliminary work has suggested that other toggle actions admit such
a torsor structure – not only just toggling independent sets over other graphs, but other
toggle actions as well.
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2 Scrolls and snakes

There are two formats for viewing the dynamics that result from toggling independent
sets of Cn: the scroll and the ticker tape, which we informally described above, and will
formalize now. Recall that for an independent set x = x(0) = (x1, . . . , xn) ∈ In the result
of iterating τ exactly i times from x is denoted x(i). Since τ is bijective on In, we can
define this for all i ∈ Z. Formally, the scroll of x is the bi-infinite table with n columns,
indexed by j = 1, . . . , n, and rows indexed by i ∈ Z, reading downward. We denote this
by S = (Xi,j) = Scroll(x), and so the (i, j)-entry Xi,j is the state of vertex vj in x(i). Since
the scroll is naturally embedded on a cylinder, with the end of one line wrapping around
to the beginning of the next, we will define Xi,n+1 = Xi+1,1. As an example, the scroll of
x = 101010001010 ∈ F12

2 from Figure 1 is simply the infinite table with the m = 15 rows
shown repeated indefinitely, both above and below.

The ticker tape of x, denoted X = (Xk) = Tape(x), is a bi-infinite sequence defined by
reading off the scroll as one reads from a book: across each row from left to right, and
then the rows downward, starting with X1 = X0,1, X2 = X0,2, X3 = X0,3, and so on.

In both a scroll and a ticker tape, positions that have a value of 1 are said to be live.
Formally, the sets of live entries, in both formats, are

Live(S) =
{
(i, j) ∈ Z × Zn | Xi,j = 1

}
, Live(X ) =

{
k ∈ Z | Xk = 1

}
.

For a second example, and henceforth our “running example,” a repeating portion of
the scroll of x = 00001010000 ∈ F11

2 is shown twice in Figure 2. The ticker tape is

. . . , X−6, X−5, X−4, X−3, X−2, X−1, X0︸ ︷︷ ︸
0,0,0,0,1,0,1

, X1, X2, X3, X4, X5, X6, X7︸ ︷︷ ︸
0,0,0,0,1,0,1

, X8, X9, X10, X11, X12, X13, X14︸ ︷︷ ︸
0,0,0,0,1,0,1

. . . .

Notice that in this example, the period of the scroll is m = 7 (rows), and the period of
the ticker tape is 7 (bits).

It is elementary to check that for each live entry (i, j) in the scroll, exactly one of
the entries (i, j + 2) and (i + 1, j + 1) is live, as is exactly one of the entries (i + 2, j − 2)
and (i + 2, j − 1). These define canonical bijections on the live entries, that we call the
successor and co-successor, respectively. These are illustrated in Figure 2, and the formal
definition follows.

Definition 1. Given a scroll S , the successor and co-successor functions are the bijections
s, c : Live(S) → Live(S) that send (i, j) to the unique element of{

(i, j + 2), (i + 1, j + 1)
}
∩ Live(S) and

{
(i + 2, j − 2), (i + 2, j − 1)

}
∩ Live(S),

respectively. If desired, we can view these as functions s, c : Live(X ) → Live(X ) of ticker
tapes.
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· · · 0 0 · · ·
· · · 0 1 0 a · · ·
· · · 0 0 a 0 · · ·

“successor of (i, j)”

· · · 0 0 · · ·
01 · · ·· · ·

0
0
0 · · ·· · ·

· · · bb · · ·
“co-successor of (i, j)”

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 2: At left: a scroll consists of the seven rows x(0), . . . , x(6), repeated indefinitely.
This is shown twice, with different color schemes, to emphasize the snakes and co-
snakes separately. There are two snakes and six co-snakes. At right: a visualization of
the successor and co-successor functions; the 1 in each figure is in position (i, j).

The successor and co-successor define equivalence classes on the live entries called
snakes and co-snakes, respectively, and denoted (in scroll notation)

Snake(i, j) =
{

sk(i, j) | k ∈ Z
}

, CoSnake(i, j) =
{

ck(i, j) | k ∈ Z
}

.

These are highlighted by color in Figure 2. It is elementary to show that the successor
and co-successor functions commute. Therefore, they define an abelian group called
the snake group, denoted G(S). This group acts simply transitively on the live entries.
Throughout this paper, we will assume that a scroll S has α snakes and β co-snakes.

Theorem 1. The set Live(S) is a torsor for the snake group, which has presentation

G(S) =
〈
s, c | sc = cs, sβ = cα

〉
.

It follows that there is a bijective correspondence between snakes and cosets of ⟨s⟩,
and between co-snakes and cosets of ⟨c⟩. That is,

α = [G(S) : ⟨s⟩] and β = [G(S) : ⟨c⟩]

are the smallest positive integers for which sβ ∈ ⟨c⟩ and cα = ⟨s⟩.
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Since snakes are cosets, they have the same algebraic structure in a Cayley diagram.
The live entries in a (co-)snake are also embedded in the scroll via the (co-)successor
function, but it is not guaranteed that these necessarily have the same “shape”. However,
it turns out that this is indeed the case. To establish this, we need to formalize the notion
of the “shape” of a snake.

From a fixed (i, j) ∈ Live(S), consider the next live entry reached when applying the
successor or co-successor function. There are two cases for each, as was shown back in
Figure 2. We will annotate a step of s(i, j) = (i + 1, j + 1) by “D” for “diagonal” and a
step of s(i, j) = (i, j+ 2) by “2.” Similarly, we will annotate a step of c(i, j) = (i + 2, j− 1)
by “S” for “short”, and c(i, j) = (i + 2, j − 2) by “L” for “long.” Allowing inverses and
concatenations, it is straightforward to annotate any path in the Cayley diagram of G(S).
We will call this the shape of a path.

The elements of the cyclic quotient group G(S)/⟨c⟩ ∼= Zβ correspond to the co-
snakes in S . Thus, starting at any live entry and iterating the successor function β times
defines an ordering of the co-snakes. The shape of this path (a length-β word over
{D, 2}), up to cyclic shift, is independent of the starting live entry. We will call any such
sequence a slither of Snake(i, j). For ease of notation, we can use exponents to write a
slither. For example, (D2)3 = D2D2D2 is a slither of the snakes in Figure 2. Since any
cyclic shift of a slither is also a slither, when we speak of “the slither,” we mean up to
cyclic shift.

There is a similar construction for co-snakes. The elements of the cyclic quotient
group G(S)/⟨s⟩ ∼= Zα are the snakes in S . Starting at any live entry and iterating the
co-successor function α times defines an ordering of the snakes. The shape of this path
(a length-α sequence over {S, L}), up to cyclic shift, is independent of the starting live
entry. We will call any such sequence a co-slither of CoSnake(i, j). The co-slithers of the
co-snakes in Figure 2 are all S2 = SS.

Proposition 1. In any scroll, all (co-)snakes have the same (co-)slither.

By Proposition 1, we can define the slither and co-slither of a scroll (or ticker tape),
which we will denote by Slither(S) and CoSlither(S), respectively. Our next definition is
meant to capture the exponent that we used when writing (D2)3 and S2 above.

Definition 2. The degree of a scroll, denoted deg(S), is the length of the co-slither of any
co-snake divided by the period of the co-slither as a cyclic word. The co-degree, denoted
codeg(S), is the length of the slither of any snake divided by the period of the slither as
a cyclic word.

The scroll from our initial example Figure 1 has degree and co-degree 1, because
Slither(S) = 22DD2D and CoSlither(S) = SL. In contrast, the scroll in our running
example from Figure 2 has degree 2 because its co-slither is S2, and co-degree 3 because
its slither is (D2)3. Note that deg(S) must divide α, the number of snakes, and codeg(S)
must divide β, the number of co-snakes.
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3 Orbit tables and ouroboroi

Thus far, we have viewed the dynamics generated by toggling independent sets using
infinite scrolls and ticker tapes. However, sometimes it is convenient to restrict our atten-
tion to a repeating sequence of rows and identify the top and bottom by a quotient map,
thereby allowing snakes and co-snakes to “wrap around” from bottom-to-top. Inspired
by the ancient symbol of a snake swallowing its tail, we will call such a finite circular
snake an ouroboros. A co-ouroboros is defined similarly.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 3: The fundamental orbit table T1 from our running example in Figure 2. When
we allow snakes and co-snakes to wrap from bottom-to-top, the two snakes merge
into one ouroboros with slither D 2 (left), and the six co-snakes merge into two co-
ouroboroi, with co-slither S (right).

Let x ∈ Fn
2 , and consider a sequence x = x(0), . . . , x(m−1), x(m) = x. Let k be the

fundamental period, which we define to be the minimum number of rows before the scroll
repeats. The frequency is ω := m/k. Define the ω-fold orbit table of x, denoted Tω =
Tableω(x), to be the m × n table with top row x(0) and bottom row x(m−1). We will refer
to the 1-fold orbit table as the fundamental orbit table. Returning to our running example,
the fundamental orbit table appears in Figure 3, and the 2-fold orbit table in Figure 4.
These are both shown twice, with the live entries colored to highlight the (co-)ouroboroi,
which will be formalized soon.

At times it is useful to work with a finite version of the ticker tape. If m = ωk as
above, then define the ω-fold orbit vector to be the length-mn subsequence of the ticker
tape that has x as an initial sequence—the result of reading the ω-fold orbit table across
each column, downward row-by-row. We denote this as

Vω = Vectorω(x) =
(
X0,1, . . . , X0,n, X1,1, . . . , X1,n, . . . , Xm−1,1, . . . , Xm−1,n

)
∈ Fnm

2 . (3.1)

If T is an orbit table and V an orbit vector, we define their live entries as the sets

Live(T ) =
{
(i, j) ∈ Zm × Zn | Xi,j = 1

}
, Live(V) =

{
k ∈ Zmn | Xk = 1

}
.
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x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1
x(7) 0 0 0 0 1 0 1 0 0 0 0
x(8) 1 0 1 0 0 0 0 1 0 1 0
x(9) 0 0 0 1 0 1 0 0 0 0 1
x(10) 0 1 0 0 0 0 1 0 1 0 0
x(11) 0 0 1 0 1 0 0 0 0 1 0
x(12) 1 0 0 0 0 1 0 1 0 0 0
x(13) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1
x(7) 0 0 0 0 1 0 1 0 0 0 0
x(8) 1 0 1 0 0 0 0 1 0 1 0
x(9) 0 0 0 1 0 1 0 0 0 0 1
x(10) 0 1 0 0 0 0 1 0 1 0 0
x(11) 0 0 1 0 1 0 0 0 0 1 0
x(12) 1 0 0 0 0 1 0 1 0 0 0
x(13) 0 1 0 1 0 0 0 0 1 0 1

Figure 4: In the 2-fold orbit table T2 from our running example in Figure 2, there are
two ouroboroi with slither D 2 and two co-ouroboroi with co-slither S2

.

Though it makes no difference either way, we will continue with the convention of num-
bering the columns 1, . . . , n and the rows 0, . . . , m − 1. As such, we will harmlessly take
Zn = {1, . . . , n} and Zm = {0, . . . , m − 1} in the orbit table and Zmn = {1, . . . , mn} in
the orbit vector.

The live entries in an orbit table are simply the images of the live entries in the corre-
sponding scroll under the natural quotient map pω : Live(S) → Live(Tω) that reduces the
first coordinate of each entry modulo m. Under this map, the successor and co-successor
functions descend to bijections on Live(Tω) that we call the ω-successor function sω and
ω-co-successor function cω. The relationship between the successor and ω-counterparts is
illustrated by the following commutative diagrams.

Live(S)
pω

��

s // Live(S)
pω

��
Live(Tω)

sω // Live(Tω)

(i + km, j)
_

pω

��

� s // s(i + km, j)
_

pω

��
(i, j) � sω // sω(i, j)

Naturally, there is an analogous diagram relating c and cω. The functions sω and cω

generate a finite abelian group G(Tω) := ⟨sω, cω⟩ that we call the ouroboros group of
Tω, or the ω-fold ouroboros group of S . Since pω is a topological covering map, there
is an induced homomorphism p∗ω : G(S) → G(Tω) sending s 7→ sω and c 7→ cω. The
ouroboros group is the quotient

G(Tω) ∼= G(S)/ ker p∗ω,

and it acts simply transitively on Live(S)/ ker pω, which can be canonically identified
with Live(Tω). We get a bijective correspondence between the orbits under sω and cω
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and the cosets of ⟨sω⟩ and ⟨cω⟩. These are the images of the snakes and the co-snakes
under the quotient map pω.

Definition 3. Given a live entry (i, j) in an orbit table Tω, the ouroboros and co-ouroboros
containing it are the sets

Ouroω(i, j) =
{

sk
ω(i, j) | k ∈ Z

}
, CoOuroω(i, j) =

{
ck

ω(i, j) | k ∈ Z
}

.

Throughout the rest of this paper, we will continue to assume that a scroll S has α

snakes and β co-snakes. If T = Tω is the ω-fold orbit table, then we will say that it has
αω ouroboroi and βω co-ouroboroi. If ω is clear from the context, which it usually will
be, then we will typically drop it as a subscript. Similarly, we will often write s and c
rather than sω and cω, because there should be no ambiguity about ω.

Theorem 2. The set Live(T ) is a torsor of the ouroboros group, which has presentation

G(T ) =
〈

s, c
∣∣∣ s c = c s, sβ = cα, s λ/α = c λ/β = 1

〉
∼= Zα × Zλ/α

∼= Zβ × Zλ/β,

where λ is the number of live entries of the orbit table T .

It follows that for each ω, there are bijective correspondences between ouroboroi
and cosets of ⟨s⟩, and between co-ouroboroi and cosets of ⟨c⟩. Since G(T ) = ⟨s, c⟩ ∼=
G(S)/ ker p∗ω is a finite abelian group of order λ, the first two relations hold, and

α = [G(T ) : ⟨s⟩] = λ/β, and β = [G(T ) : ⟨c⟩] = λ/α. (3.2)

In other words, G(T )/⟨s⟩ ∼= Zα and G(T )/⟨c⟩ ∼= Zβ.

Definition 4. The (co-)ouroboros degree of an orbit table Tω is the number of (co-)snakes
in the pω-preimage of each (co-)ouroboros. We denote these as

deg(p∗ω) :=
[G(S) : ⟨s⟩]

[G(Tω) : ⟨sω⟩]
= α/αω, codeg(p∗ω) :=

[G(S) : ⟨c⟩]
[G(Tω) : ⟨cω⟩]

= β/βω.

The case when ω = 1 is called the fundamental (co-)ouroboros degree.

Returning to our running example, in the fundamental orbit table (i.e., ω = 1) the
α = 2 snakes in S merge into α1 = 1 ouroboros, and the β = 6 co-snakes merge into
β1 = 2 co-ouroboroi. Thus, the fundamental ouroboros degree is deg(p∗1) = 2/1 = 2,
and the fundamental co-ouroboros degree is codeg(p∗1) = 6/2 = 3. In contrast, the 2-
fold orbit table has α2 = 2 ouroboroi and β2 = 2 co-ouroboroi. Its ouroboros degree is
deg(p∗2) = 2/2 = 1, and its co-ouroboros degree is codeg(p∗2) = 6/2 = 3.

Slithers and co-slithers naturally descend to orbit tables via the canonical quotient
map pω : Live(S) → Live(Tω). The slither of S is a length-β sequence of Ds and 2s, and it
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defines a cyclic ordering ⟨c⟩, s⟨c⟩, . . . , sβ−1⟨c⟩ of co-snakes. If we apply the quotient map
p∗ω : G(S) → G(Tω), we get a cyclic ordering of the βω co-ouroboroi. Each co-ouroboros
appears in the sequence ⟨cω⟩, sω⟨cω⟩, . . . , sβ−1

ω ⟨cω⟩ exactly codeg(p∗ω) = β/βω times, and
this must be a divisor of codeg(S) (the exponent in the slither). Define the slither of Tω,
or ω-slither of S , denoted Slither(Tω), to be any length-β subsequence of a slither of S .

Everything we just said above has a natural analogue for co-slithers. That is, a co-
slither of S is a length-α sequence of Ss and Ls that defines a cyclic ordering ⟨s⟩, c⟨s⟩, . . . ,
cα−1⟨s⟩ of snakes. Via the quotient map p∗ω : G(S) → G(Tω), we get a cyclic ordering of
the αω ouroboroi. Each ouroboros appears in the sequence ⟨s⟩, c⟨s⟩, . . . , cα−1⟨s⟩ exactly
deg(p∗ω) = α/α times, and this must be a divisor of the degree of S (the exponent that
appears in the co-slither). We define the co-slither of Tω, or the ω-co-slither of S , as
any length-α subsequence of a co-slither of S , and we denote this as CoSlither(Tω). The
preceding two paragraphs have established the following.

Lemma 1. For any scroll S , we have(
Slither(Tω)

)codeg(p∗ω) = Slither(S) and
(
CoSlither(Tω)

)deg(p∗ω) = CoSlither(S).

We will refer to the (co-)slither of the fundamental orbit table (i.e., ω = 1) as the
fundamental (co-)slither. To emphasize that we are taking the slither in an orbit table
rather than in the scroll, we will sometimes write 2 and D rather than 2 and D, and
similarly use S and T in co-slithers.

Return to our running example, the length of the fundamental slither D 2 is β1 =
β/ codeg(p∗1), the number of co-ouroboroi, and the length of the fundamental co-slither
S is α1 = α/ deg(p∗1), the number of ouroboroi. As guaranteed by Lemma 1, the
(co-)slithers of S and T are related by

(D2)codeg(p∗1) = (D2)3 and Sdeg(p∗1) = S2.

The 2-fold orbit table of our running example, shown in Figure 4, has two ouroboroi
with slither D 2, and two co-ouroboroi with co-slither S2

. The ouroboros degree is thus
deg(p∗2) = 2/2 = 1, and the co-ouroboros degree is codeg(p∗2) = 6/2 = 3. As predicted
by Lemma 1, we have

(D2)codeg(p∗2) = (D2)3 and (S2)deg(p∗2) = S2.

4 Combinatorial properties of the dynamics

Recall from the introduction that there are several notions of “period”: the period of a
scroll is the minimal number of rows before it repeats, and the period of a ticker tape is
the length of a minimal invariant shift.
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Definition 5. The fundamental period of a scroll S = (Xi,j), denoted T(S), is the smallest
k > 0 such that Xi+k,j = Xi,j for all i, j. The fundamental period of a ticker tape X = (Xk),
denoted T(X ), is the smallest ℓ > 0 such that Xk+ℓ = Xk for all k.

It is clear that T(X ) divides nT(S), which is the length of the fundamental orbit
vector. In our running example, the fundamental orbit vector has length nT(S) = 11 ·
7 = 77, but the period of the ticker tape is just T(X ) = 7 because the ticker tape is
generated by the subsequence 1010000. In this section, we will derive a formula relating
these two periods.

Consider the equivalence relation on Live(S) defined by the intersection of snakes
and co-snakes. In other words, the equivalence classes, which we will call fibers,

⟨s⟩ ∩ ⟨c⟩ = ⟨sβ⟩ = ⟨cα⟩ ≤ G(S).

In both notations, we will denote the fiber containing a live entry by

Fiber(i, j) = Snake(i, j) ∩ CoSnake(i, j), Fiber(k) = Snake(k) ∩ CoSnake(k).

Since the fibers are the orbits under the action of a cyclic group, there is some integer
σ such that two live entries in X are in the same fiber if and only if they differ by a
multiple of σ in the ticker tape.

Definition 6. The scale of a ticker tape X (or scroll S) is the minimal distance σ > 0
between any two live entries in the same fiber. That is, in ticker tape notation, for any
k ∈ Z,

σ = Scale(S) = Scale(X ) = sβ(k)− k = cα(k)− k.

From some fixed k ∈ Live(X ), we can compute the scale in two ways: (i) by applying
the successor function β times, or (ii) applying the shadow function α times. We can
compute the scale by summing the number of positions we increase at each step, and
this is useful for deriving elementary properties, some of which appear below.

Henceforth, given a scroll S with α snakes and β co-snakes, let βT and βD denote
the number of instances of 2 and D in Slither(S), respectively. Let αS and αL denote the
number of instances of S and L in CoSlither(S), respectively. Clearly, the lengths of the
slither and co-slither are∣∣Slither(S)∣∣ = β = βT + βD and

∣∣CoSlither(S)∣∣ = α = αS + αL.

Given an orbit table Tω, let βω,T and βω,D denote the number of instances of 2 and D in
Slither(Tω), respectively. Similarly, let αω,S and αω,L denote the number of instances of S
and L, respectively. The length βω (resp. αω) of the ω-slither (resp. ω-coslither) is∣∣Slither(Tω)

∣∣ = βω,T + βω,D =
β

codeg(p∗ω)
,

∣∣CoSlither(Tω)
∣∣ = αω,S + αω,L =

α

deg(p∗ω)
.
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Lemma 2. The scale of a ticker tape is σ = 2βT + (n + 1)βD = (2n − 1)αS + (2n − 2)αL.

Lemma 2 has several seemingly unrelated consequences. The first one involves a
property that was pointed out in the introduction: that the column sums, as a cyclic
vector, has odd period.

Proposition 1. If n is even, then Scale(S) is odd. It follows that the sum vector of a scroll, and
hence of any orbit table, has odd cyclic period.

Lemma 2 also implies that the fundamental ouroboros and co-ouroboros degrees are
relatively prime. Using this, along with the facts that deg(p∗ω) divides deg(p∗1) and
codeg(p∗ω) divides codeg(p∗1), we can make a stronger statement.

Proposition 2. For any ω ≥ 1, we have gcd
(

deg(p∗ω), codeg(p∗ω)
)
= 1.

From here, we can characterize the number of ouroboroi and co-ouroboroi in the
ω-fold orbit table in terms of the number of them in the fundamental orbit table.

Proposition 3. Suppose a scroll S has α snakes and β co-snakes and that its fundamental orbit
table has α ouroboroi and β co-ouroboroi. For ω > 1, the numbers αω and βω of ouroboroi and
co-ouroboroi in its ω-fold orbit table satisfy

αω = α · gcd(deg(p∗1), ω) and βω = β · gcd(codeg(p∗1), ω).

Putting together the prior results yields a relationship between the periods of the
scroll and ticker tape, and their fundamental degree, co-degree, and scale.

Theorem 3. The periods of the ticker tape X and scroll S are

T(X ) =
Scale(X )

deg(p∗1) codeg(p∗1)
, T(S) = Scale(X )

deg(p∗1) codeg(p∗1) gcd(T(X ), n)
,

and thus are related by T(X ) = gcd(T(X ), n) · T(S).

A natural next question to ask is what scrolls and/or ticker tapes are possible for a
given n, and how many are there. Suppose the slither has exactly a instances of 2, and
its co-slither has exactly b instances of S and exactly c instances of L. This forces the
slither to have exactly 2(b + c)− 1 instances of D, and these quantities must satisfy

2a + 3b + 4c = n + 1. (4.1)

This is a straightforward necessary condition governing the slithers and co-slithers that
can exist in a scroll for a given n. However, the next theorem ensures that it is also
sufficient. In particular, any solution to Equation (4.1) with a, b, c ≥ 0 and b + c > 0 gives
a set of potential slithers and co-slithers that only differ by rearrangement,2 and every
one of these slither and co-slither combinations corresponds to a valid ticker tape.

2Note that if b = c = 0, our co-slither would be empty, which is impossible.
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Theorem 4. For a fixed n, we can construct all orbit tables that begin with a live entry through
the following procedure:

1. Take a solution to the equation 2a + 3b + 4c = n + 1, with a, b, c ∈ Z≥0, b + c > 0.

2. Construct the slither by choosing any sequence of 2(b + c)− 1 instances of D and a in-
stances of 2.

3. Construct the co-slither by choosing any sequence of b instances of S and c instances of L.

Different solutions correspond to distinct ticker tapes, up to cyclic shift of the (co-)slither.

It is important to note that though every scroll determines a unique ticker tape, and
vice-versa, two ticker tapes that differ by a shift can lead to different scrolls. However,
this is an artifact of that representation. Intuitively, Theorem 4 is a characterization of
the different possible dynamics that can arise by toggling independent sets in In.

5 Concluding remarks

The original problem posed in this paper arose as a natural next step of the second
author’s work on toggling independent sets over a path graph [2]. The torsor structure
came as a surprise, and it led us down a much more interesting mathematical road
than we had expected. It all works because of the commuting (co-)successor bijections
that happen to act simply transitively on the live entries, and it opens up a slew of
questions. This can all be framed in terms of asynchronous cellular automata [1], which
leads to new interesting questions in that field, such as exploring these ideas using other
elementary cellular automata rules. In another direction, in ongoing work, we have
found other similar torsor structures from toggling, such as over different graphs and
using different toggle actions. This suggests that some of the results in this paper are
special cases of an unexplored more general framework, relating algebra and topology
to combinatorial dynamics in new ways.
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