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Abstract. We study the totally non-negative part of the complete flag variety and
of its tropicalization. We start by showing that Lusztig’s notion of non-negative com-
plete flag variety coincides with the flags in the complete flag variety which have
non-negative Plücker coordinates. This mirrors the characterization of the totally non-
negative Grassmannian as those points in the Grassmannian with all non-negative
Plücker coordinates. We then study the tropical complete flag variety and complete
flag Dressian, which are two tropical versions of the complete flag variety, capturing
realizable and abstract flags of tropical linear spaces, respectively. The complete flag
Dressian properly contains the tropical complete flag variety. However, we show that
the totally non-negative parts of these spaces coincide.

Keywords: flag varieties, tropical varieties, total positivity, Dressian

1 Introduction

The Grassmannian of k-planes in n-space describes k dimensional linear subspaces in n
dimensional space. It is an algebraic variety cut out by the Plücker relations. We can
tropicalize these relations to obtain the tropical Plücker relations. The set of points satisfy-
ing the tropical Plücker relations, called the Dressian, is the parameter space of abstract
tropical linear spaces [16]. The set of points satisfying the tropicalizations of all poly-
nomials in the ideal generated by the Plücker relations, called the tropical Grassmannian,
is the parameter space of realizable tropical linear spaces [5]. In general, the Dressian
properly contains the tropical Grassmannian (see, for instance, [6]). However, in [19],
it is shown that if we restrict to positive solutions, for an appropriate notion of positiv-
ity, the situation is simpler: the positive Dressian equals the positive tropical Grassmannian.
More explicitly, this means that a positive solution to the tropicalizations of the Plücker
relations is also a positive solution to the tropicalization of any polynomial in the ideal
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generated by the Plücker relations. Our goal is to generalize this fact to the setting of the
complete flag variety.

The complete flag variety, Fln, is the set of complete flags of linear subspaces {0} =
V0 ⊊ V1 ⊊ · · · ⊊ Vn = Rn. Any point of this variety is determined by a set of coordinates
called its Plücker coordinates. These are cut out by the incidence-Plücker relations, a set of
polynomials which extends the Plücker relations, which generate an ideal called the
incidence-Plücker ideal. We consider the set of points satisfying the tropicalizations of the
incidence-Plücker relations, called the complete flag Dressian, FlDrn, and the set of points
satisfying the tropicalizations of all polynomials in the incidence-Plücker ideal, called
the tropical complete flag variety, TrFln. These parameterize abstract flags of tropical linear
spaces and realizable flags of tropical linear spaces, respectively [3].

The tropical spaces FlDrn and TrFln are generally different [3]. Motivated by the ex-
ample of the tropical Grassmannian, we will investigate the totally non-negative (TNN)
parts of these spaces. We define the totally non-negative complete flag Dressian to be the set
of simultaneous positive solutions to the tropicalizations of the incidence-Plücker rela-
tions and the totally non-negative tropical complete flag variety to be the set of simultaneous
positive solutions to the tropicalizations of all the polynomials in the incidence-Plücker
ideal. Our main result, Theorem 4.9, says the following:

Theorem. The TNN tropical complete flag variety, TrFl≥0
n , equals the TNN complete flag Dres-

sian, FlDr≥0
n .

A number of authors, among them [20], [8] and [11], have proven that the TNN
Grassmannian, in the sense of Lusztig [9], consists precisely of points in the Grassman-
nian where each Plücker coordinate is non-negative. We extend this result to the setting
of the complete flag variety. Specifically, in proving theorem Theorem 4.9, we will need
to carefully study the totally non-negative complete flag variety, denoted Fl≥0

n . A construc-
tion based on the parameterization of Fl≥0

n by Marsh and Rietsch [12] will allow us to
understand explicitly the Plücker coordinates {PI(F)}I⊂[n] of an arbitrary flag F in Fl≥0

n .
In Theorem 3.15, we show:

Theorem. The TNN complete flag variety Fl≥0
n equals the set {F ∈ Fln| PI(F) ≥ 0 for all I ⊂

[n]}.

We have learned recently that this result has been independently proven in [1], where
they show moreover that the only partial flag variety for which this theorem holds are
those where the dimensions of the constituent subspaces are consecutive integers. This
includes FL≥0

n , with constituent dimensions {1, 2, . . . , n}, and the TNN Grassmannian of
k planes in n space, with constituent dimension {k}.

The structure of this extended abstract is as follows: In section 2, we introduce the
TNN complete flag variety. In section 3, we give a parameterization of this space and
study its Plücker coordinates. In section 4, we introduce two tropicalizations of the
complete flag variety and demonstrate that the TNN parts of these spaces are equal.
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2 The Totally Non-Negative Complete Flag Variety

Definition 2.1. The complete flag variety Fln is the collection of all complete flags in
Rn, which are collections (Vi)

n
i=0 of linear subspaces satisfying {0} = V0 ⊊ V1 ⊊ · · · ⊊

Vn = Rn.

We first observe that Fln is a multi-projective variety. We can represent a flag (Vi)
n
i=1

by a full rank n by n matrix M such that Vi equals the span of the topmost i rows of
M. Let GLn be the group of invertible n by n matrices and SL(n, R) be the special linear
group of real matrices with determinant 1. Let B− be the Borel subgroup of GLn consisting
of lower triangular matrices. One can check that two matrices M and M′ represent the
same flag if and only if they are related by left multiplication by some B ∈ B−. Thus, we
can think of the complete flag variety as Fln = {B−u|u ∈ SL(n, R)}, where a flag in Fln
represented by a matrix u is identified with the set B−u.

For I ⊂ [n] = {1, . . . , n} and M an n by n matrix, the Plücker coordinate (or flag minor)
PI(M) is the determinant of the submatrix of M in rows {1, 2, . . . , |I|} and columns I.
To any flag F, associate the Plücker coordinates (PI(F))I⊂[n], defined to be the Plücker
coordinates of any matrix representative of that flag. By [13, Proposition 14.2], this is an
embedding of Fln in RP(n

1)−1 × · · · × RP( n
n−1)−1. The Plücker coordinates of flags in Fln

are cut out by multi-homogeneous polynomials, as shown in the following definition and
theorem. Note that we will use shorthand such as (S \ ab) ∪ cd in place of (S \ {a, b}) ∪
{c, d}.

Definition 2.2 ([4]). Consider RP(n
1)−1 × · · · × RP( n

n−1)−1, with coordinates indexed by
proper subsets of [n]. For 1 ≤ r ≤ s ≤ n, the incidence-Plücker relations for indices of
size r and s are

Pr,s;n =

 ∑
j∈J\I

sign(j, I, J)PI∪jPJ\j

∣∣∣∣I ∈ (
n

r − 1

)
, J ∈

(
n

s + 1

) , (2.1)

where sign(j, I, J) = (−1)|{k∈J|k<j}|+|{i∈I|j<i}|.
The full set of incidence-Plücker relations is given by PIP;n =

⋃
1≤r≤s≤n Pr,s;n. The

ideal generated by PIP;n, denoted IIP;n, is called the incidence-Plücker ideal.
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Note that the above definition allows for the option of r = s. The incidence-Plücker
relations for which r = s are called the (Grassmann) Plücker relations.

Theorem 2.3 ([4, Section 9, Proposition 1]). Let P ∈ RP(n
1)−1 × · · · × RP( n

n−1)−1. Then
P = P(F) for some F ∈ Fln if and only if P satisfies the incidence-Plücker relations PIP;n.

In particular, this means the incidence-Plücker relations are precisely the relations
between the topmost minors of a generic full rank matrix.

Lusztig introduced the notion of non-negativity for flag varieties. We outline here
the definition of the totally non-negative complete flag variety, following [10]. We work in
type A and so the appropriate simplifications will be made in presenting the definition.
Let si be the transposition (i, i + 1) in the symmetric group Sn and let w0 be the longest
permutation in Sn. For 1 ≤ k < n, let xk(a) be the n by n matrix which is the identity
matrix with an a added in row k of column k + 1. Explicitly,

xk(a) =

k k + 1



1
. . .

k 1 a
k + 1 0 1

. . .
1

,

where unmarked off-diagonal matrix entries are 0.

Definition 2.4 ([9]). Let N = (N
2 ). Pick (i1, i2, . . . , iN) such that si1 · · · siN = w0. Then let

U+
>0 =

{
xi1(a1) · · · xiN (aN)

∣∣ ai ∈ R>0 for all i
}

This definition is independent of the choice of sequence (i1, . . . , iN).

Definition 2.5 ([9]). Let B>0 = {B−u|u ∈ U+
>0} ⊂ Fln. The totally non-negative com-

plete flag variety (of type A), Fl≥0
n , is the closure of B>0.

3 Parameterization of the TNN Complete Flag Variety

3.1 The Marsh–Rietsch Parameterization

As shown by Rietsch [15], Fl≥0
n is a cell complex, whose cells R>0

v,w are indexed by pairs
of permutations v ≤ w in the Bruhat order on Sn. Each such R>0

v,w is given an explicit
parameterization in [12]. We will describe this parameterization here, making some
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choices that in principle are arbitrary but will be convenient for our purposes, and invite
the reader to look at the above references for full generalities.

Any permutation w in Sn can be written as a product of simple transpositions si,
called an expression for w. The length of w, ℓ(w), is the fewest number of transpositions
in any expression for w. An expression for w consisting of ℓ(w) transpositions is called
reduced. Let w = si1si2 · · · sik be a reduced expression for w. If v ≤ w in the Bruhat order,
then there is a reduced subexpression v = sij1

sij2
· · · sijm

for v in w, where 1 ≤ j1 < j2 <

· · · < jm ≤ k. We will be interested in a special choice of subexpression which is called
the positive distinguished subexpression. Intuitively, this can be thought of as the leftmost
subexpression.

Definition 3.1. Let v ≤ w. Choose a a reduced expression w = si1si2 · · · sik for w and
a reduced subexpression v = sij1

· · · sijm
for v in w. Then v is a positive distinguished

subexpression if whenever ℓ(sip sijr
· · · sijm

) < ℓ(sijr
· · · sijm

) for jr−1 ≤ p < jr, we have
p = jr−1.

Lemma 3.2 ([12, Lemma 3.5]). For every v ≤ w, and every reduced expression w of w, there is
a unique positive distinguished subexpression for v in w.

Example 3.3. Let n = 4. Set w = s1s2s3s1s2s1 and v = s1s2s1. The leftmost subexpression
for v in w is j1 = 1, j2 = 2 and j3 = 4. Indeed, this choice satisfies the definition.

For 1 ≤ k < n, let ṡk be the n by n identity matrix with the 2 × 2 submatrix in rows

{k, k + 1} and columns {k, k + 1} replaced by the matrix
(

0 1
−1 0

)
. Explicitly,

ṡk =

k k + 1



1
. . .

k 0 1
k + 1 −1 0

. . .
1

,

where unmarked off-diagonal matrix entries are 0.
We will describe each cell of Fl≥0

n as a product of matrices of the form xk and ṡk′ .

Definition 3.4. Fix v ≤ w in the Bruhat order. Fix a vector a ∈ Rℓ(w)−ℓ(v). Consider the
reduced expression w0 = (s1s2 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2)(s1) for w0, the longest
permutation in the Bruhat order in Sn.1 Choose the positive distinguished subexpression

1This choice of expression is arbitrary in the context of the Marsh–Rietsch parameterization, but plays
an important role in the proofs underlying later results in this abstract.
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w for w in w0, and the positive distinguished subexpression v for v in w, and write them
as w = si1 · · · sik and v = sij1

· · · sijm
, respectively. Let J = {j | j = jt for some t}. In other

words, J are those indices which correspond to transpositions that are used in v. Then
set

Mv,w(a) := M1 · · · Mk, where Mj =

{
ṡij , j ∈ J

xij(aj), j /∈ J
.

Theorem 3.5 (Marsh–Rietsch Parametrization [12]). Each cell R>0
v,w of Fl≥0

n can be parame-
terized as

R>0
v,w =

{
Mv,w(a)

∣∣∣a ∈ R
ℓ(w)−ℓ(v)
>0

}
In particular, each flag F ∈ Fl≥0

n is uniquely represented in some unique R>0
v,w. Moreover,

each R>0
v,w is a cell, meaning it is homeomorphic to an open ball.

Example 3.6. Let n = 4, w = s1s3s2s1 and v = s2. The positive distinguished subex-
pression for v in w is the subexpression where j1 = 3, so J = {3}. Thus, M1 = x1(a1),
M2 = x3(a2), M3 = ṡ2 and M4 = x1(a3). The cell of the non-negative flag variety
corresponding to v ≤ w is represented by matrices of the form

M = M1M2M3M4 =


1 a3 a1 0
0 0 1 0
0 −1 0 a2
0 0 0 1

 ,

where the ai range over all positive real numbers.

We now give a useful property of the cells R>0
v,w.

Lemma 3.7. Each cell R>0
v,w of Fl≥0

n consists entirely of flags for which some fixed collection of
Plücker coordinates is strictly positive and the rest are 0.

3.2 Extremal Non-Zero Plücker Coordinates

We define a special subset of the Plücker coordinates of a flag which we call extremal non-
zero Plücker coordinates. The set of indices of the extremal non-zero Plücker coordinates
of a flag in Fl≥0

n will depend only on which cell R>0
v,w that flag lies in. Further, in any

given cell of Fl≥0
n , the extremal non-zero Plücker coordinates will be chosen such that

they determine all of the other Plücker coordinates.
For any 1 ≤ k < n and any P ∈ RP(n

1)−1 × · · · × RP( n
n−1)−1, we define a map

ΞP : ([n]k ) → ([n]k ). Intuitively, when applied to the index of a non-zero Plücker coor-
dinate I, this map finds the largest member of I that can be increased without making
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the corresponding Plücker coordinate 0 and increases it maximally. Explicitly, given
I, define b = maxi∈I

{
i |there exists j, i < j /∈ I, P(I\i)∪j ̸= 0

}
, if that set is non-empty.

Otherwise, say b does not exist. If b exists, define a = maxj/∈I

{
j | P(I\b)∪j ̸= 0

}
. Then,

ΞP(I) =

{
(I \ b) ∪ a if I is the index of a non-zero Plücker coordinate and b exists,
I otherwise.

The indices of non-zero Plücker coordinates with index of some fixed size can be seen
as the bases of a matroid. In this light, ΞP acts by basis exchange. Also note that for a
TNN flag F, the map ΞP(F) depends only on the cell Rv,w in which F lies by Lemma 3.7.

The extremal non-zero Plücker coordinates will be indexed by certain Ξ orbits. To
properly define them, we first need a preliminary result on matroids:

Definition 3.8. The Gale order on subsets of [n] of size k is a partial order such that, if
I = {i1 < · · · < ik} and J = {j1 < · · · < jk}, then we say I ≤ J if ir ≤ jr for every r ∈ [k].

Lemma 3.9 ([2, Theorem 1.3.1]). Any matroid has a unique Gale minimal basis.

Note that the Gale minimal basis referenced in the previous lemma must simply be
the lexicographically minimal and maximal bases, respectively.

Definition 3.10. Given a set of Plücker coordinates {PI} of a flag, let Ik be the Gale
minimal index of size k such that PIk ̸= 0. The set of indices of the extremal non-zero
Plücker coordinates (referred to as extremal indices) of a point P in RP(n

1)−1 × · · · ×
RP( n

n−1)−1 is the set consisting of those indices which are in the ΞP orbit of Ik for some
k ∈ [n − 1].

If F is a TNN flag, the extremal indices of the Plücker coordinates P(F) depend only
on the cell R>0

v,w in which F lies, since ΞP(F) depends only on the cell in which F lies.

Example 3.11. Let a, b, c, d, e ∈ R>0 and consider

M =


1 a + e ab + ad abc
0 1 b + d bc
0 0 1 c
0 0 0 1

 .

The minors of this matrix with indices of size 2 are all positive except for P34 = 0.
Thus, the non-zero Plücker coordinate with Gale minimal index of size 2 is P12. Then,
ΞP(M)(12) = 14, replacing the 2 with a 4. Next, ΞP(M)(14) = 24, replacing the 1 with a
2. Thus, P12 = 1, P14 = bc and P24 = bce are the extremal non-zero Plücker coordinates
of size 2 of this flag.
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The next theorem highlights the importance of the extremal Plücker coordinates.

Theorem 3.12. For any flag F with non-negative Plücker coordinates, the extremal non-zero
Plücker coordinates of F uniquely determine the other non-zero Plücker coordinates of F by three-
term incidence-Plücker relations.

3.3 Plücker Coordinates of the TNN Flag Variety

Now, given a set of extremal non-zero Plücker coordinates for a flag lying in R>0
v,w, we

want to understand how to construct a set of parameters ai for which Theorem 3.5 yields
a matrix agreeing with those coordinates.

Theorem 3.13. For any v ≤ w with r = ℓ(w) − ℓ(v), let Ψv,w : R>0
v,w → Rr be the map

Mv,w(a) 7→ a, in the notation of Theorem 3.5. The map Ψv,w consists of Laurent monomials in
the extremal Plücker coordinates.

In fact, by studying the relations between extremal Plücker coordinates, we can say
something stronger.

Theorem 3.14. Let S be any maximal algebraically independent subset of the extremal Plücker
coordinates of R>0

v,w. The map Ψv,w, defined as above, can be expressed as Laurent monomials in
the coordinates contained in S.

We can use this theorem to prove the following, which is one of our main results:

Theorem 3.15. The TNN flag variety defined in Definition 2.5 is precisely the set of flags with
non-negative Plücker coordinates. In other words, Fl≥0

n = {F ∈ Fln| PI(F) ≥ 0 for all I ⊂ [n]}.

It is shown in [7] that any flag in Fl≥0
n has non-negative Plücker coordinates. We now

outline the strategy used to obtain the converse.

Definition 3.16. A (complete) flag matroid on a ground set E of size n is a sequence of
matroids M = (M1,M2, . . . ,Mn−1) on the ground set E with the rank of Mi equal to
i, called constituent matroids, such that for any j < k,

• each basis of Mj is contained in some basis of Mk.

• each basis of Mk contains some basis of Mj.

We identify a flag matroid with the collection of bases of its constituent matroids,
collectively referred to as the bases of the flag matroid. Note that the indices of non-zero
Plücker coordinates of an invertible square matrix are easily seen to form a flag matroid.

Definition 3.17. A flag matroid on [n] is realizable if its bases are the non-zero Plücker
coordinates of some F ∈ Fln.
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We now define two types of flag positroid, mirroring the apparent difference between
a flag in Fl≥0

n by Definition 2.5 and a flag with non-negative Plücker coordinates.

Definition 3.18. A realizable flag positroid on [n] is the set of indices of non-zero Plücker
coordinates of a flag F ∈ Fl≥0

n (as per Definition 2.5). A synthetic flag positroid on [n] is
the set of indices of non-zero Plücker coordinates of a flag F satisfying PI(F) ≥ 0 for all
I ⊂ [n].

A priori, one may expect that there could be more synthetic flag positroids than
realizable flag positroids, but this is not the case.

Theorem 3.19. The set of synthetic flag positroids on [n] equals the set of realizable flag positroids
on [n].

Proof of Theorem 3.15. Note that by Lemma 3.7, the realizable flag positroid arising from
the non-zero Plücker coordinates of a TNN flag only depends on which cell R>0

v,w that
flag lies in. Thus, we can associate a cell R>0

v,w to any realizable flag positroid. Let F
be a flag whose Plücker coordinates P are all non-negative. Let M be the synthetic
(equivalently, realizable) flag positroid which has I ⊂ [n] as a basis if and only if PI > 0.
As above, let R>0

v,w be the cell associated to M. To prove Theorem 3.15, we are left
to show that F ∈ R>0

v,w. By Theorem 3.14, Ψv,w can be defined purely in terms of an
algebraically independent subset of the extremal Plücker coordinates. Thus, one can
apply Ψv,w to the extremal coordinates of F and Mv,w (Ψv,w(F)) is a flag in R>0

v,w which
has the same extremal Plücker coordinates as F. Then, using Theorem 3.12, one may
conclude that F itself lies in R>0

v,w, completing the proof of Theorem 3.15.

4 Tropicalizing the Complete Flag Variety

We now discuss tropical varieties and introduce the precise definitions of the TNN tropical
complete flag variety and the TNN complete flag Dressian.

Definition 4.1. Let x = (x1, . . . , xn) ∈ Rn and b = (b1, . . . , bn) ∈ Nn. We will use the
notation xb = xb1

1 · · · xbn
n . Let p = ∑i ±aixbi be a polynomial, where each ai > 0 and each

bi ∈ Nn. We define the tropicalization of p by trop(p) = mini {ai + x · bi}. We say that
a point y ∈ Tn := (R ∪ ∞)n is a solution of the tropicalization of p if

min
i

{ai + y · bi} = min
i

{ai + y1(bi)1 + · · ·+ yn(bi)n}

is achieved at least twice. We further say that a point in Tn is a positive solution of the
tropicalization of p if additionally, at least one of the minima comes from a term of p
with a + sign, and at least one of the minima comes from a term with a − sign.
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The tropical objects we are interested in will live in projective tropical spaces, which are
spaces that interact nicely with homogeneous polynomials.

Definition 4.2. Projective tropical space TPn is given by
(
Tn+1 \ (∞, . . . ∞)

)
/ ∼ where

the equivalence relation is x ∼ y if there exists c ∈ R such that xi = yi + c for all i ∈ [n].

The following is immediate from the definition:

Proposition 4.3. If p is a homogeneous polynomial, then x is a (positive) solution of trop(p) if
and only if y is a (positive) solution of trop(p) for all y ∼ x.

Definition 4.4. Given a set of multi-homogeneous polynomials P , each of which is ho-
mogeneous with respect to sets of variables of sizes {ni}t

i=1, and the ideal I which they
generate, we define the following sets in TPn1−1 × · · · × TPnt−1:

• The tropical prevariety trop(P) or trop(I) is the set of simultaneous solutions to
the tropicalizations of all the polynomials in P or in I, respectively.

• The non-negative tropical prevariety, trop≥0(P) or trop≥0(I), is the set of simul-
taneous positive solutions of the tropicalizations of all the polynomials in P or in
I, respectively.

Solutions of tropicalizations of polynomials can alternatively be described in a way
that more clearly explains the term “positive solution”. Let C =

⋃∞
n=1 C((t1/n)) be the

field of Puisseux series over C. A Puisseux series p(t) ∈ C has a term with a lowest
exponent, say atu with a ∈ C∗ and u ∈ Q. In this case, we define val(p(t)) = u. Also, we
will define the semifield R+ to be the set of p(t) in C where the coefficient of tval(p(t))

is in R+. In fact, R+ and C can be thought of as analogous to R+ and C, respectively.
Given an ideal I ⊴ C[x1, . . . xn], let V(I) ⊆ Cn be the variety where all polynomials in I
vanish. We define the positive part of this variety to be V+(I) = V(I) ∩ (R+)

n.

Proposition 4.5 ([17, Theorem 2.1], [18, Proposition 2.2]). Let I be an ideal of C[x1, . . . , xn].
Then trop(I) = val(V(I)) and trop≥0(I) = val(V+(I)), where val(V(I)) and val(V+(I))
are the closures of val(V(I)) and val(V+(I)), respectively.

Having introduced Fln, we now define two tropical analogues of this space along
with their totally non-negative parts. Recall that PIP;n is the set of incidence-Plücker
relations and IIP;n is the ideal generated by those relations.

Definition 4.6. We define the tropical complete flag variety to be trFln = trop(IIP;n)

and the totally non-negative tropical complete flag variety to be trFl≥0
n = trop≥0(IIP;n).

We define the complete flag Dressian to be FlDrn = trop(PIP;n) and the totally non-
negative complete flag Dressian to be FlDr≥0

n = trop≥0(PIP;n).
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Theorem 4.9 will show that trFl≥0
n and FlDr≥0

n coincide. Note that this is not obvious,
since a point in trFl≥0

n a priori satisfies more relations than a point in FlDr≥0
n . In fact, in

general, the tropical prevariety of a collection of polynomials will properly contain the
tropical prevariety of the ideal those polynomials generate. In the specific case of the
complete flag variety, it is shown in [3] that for n ≥ 6, FlDrn properly contains trFln.

We now shift our attention to the non-negative parts of the tropical varieties we have
introduced. For v ≤ w in the Bruhat order with r = ℓ(w) − ℓ(v), let Φv,w : Rr

>0 →
RP(n

1)−1 × · · · ×RP( n
n−1)−1 be the map which takes a collection of a ∈ Rr

>0 to the Plücker
coordinates of the matrix Mv,w(a), in the notation of Theorem 3.5. Note that by construc-
tion, this map consists of a collection of polynomials in the ai, and so we can tropicalize
this map, obtaining a map Trop Φv,w : Rr → TP(n

1)−1 × · · · × TP( n
n−1)−1. We now state

the key connection between this map and TrFl≥0
n .

Lemma 4.7 ([18, 14]). The image of Trop Φv,w lies in trFl≥0
n .

We next make an observation relating the TNN complete flag variety and of the
TNN complete flag Dressian. For S ⊂ [n], and a < b < c satisfying a, c /∈ S and
b ∈ S, we have a three-term incidence-Plücker relation PSP(S\b)∪ac = P(S\b)∪aPS∪c +
P(S\b)∪cPS∪a. Observe that if all the coordinates other than PS are known and positive,
then PS is uniquely determined and is itself positive. Similarly, we can tropicalize this
relation to get the three-term positive tropical incidence-Plücker relation PS + P(S\b)∪ac =
min{P(S\b)∪a + PS∪c, P(S\b)∪c + PS∪a}. Again, if all the coordinates other than PS are
known, then PS is uniquely determined. One way to rephrase Theorem 3.15 is as follows:
Every point in Fln with all non-negative Plücker coordinates lies in the image of Φv,w for
some v ≤ w ∈ Sn. From this, we will deduce a helpful corollary. In particular, the general
idea is that whenever we determine certain values of PS in the proof of Theorem 3.15, we
are careful to do so using a three-term incidence-Plücker relation, as described earlier in
this paragraph. This then translates nicely to the tropical context.

Corollary 4.8. Every point in FlDrn
≥0 lies in the image of Trop Φv,w for some v ≤ w ∈ Sn.

Using this corollary and Lemma 4.7, we come to our main result:

Theorem 4.9. The TNN topical flag variety trFl≥0
n equals the TNN complete flag Dressian

FlDr≥0
n .
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