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Abstract. We report on an implementation of Galois groups in the new computer alge-
bra system OSCAR. As an application we compute Galois groups of Ehrhart polynomials
of lattice polytopes.
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1 Introduction

OSCAR is an acronym for “Open Source Computer Algebra Resource” [13, 25]. This is
a new computer algebra system, written in Julia, which combines and extends the full
feature set of ANTIC [17], GAP [19], polymake [20] and Singular [11]. The implemen-
tation is an ongoing major collaborative effort lead by the transregional collaborative
research center (SFB-TRR) 195 “Symbolic Tools in Mathematics and their Application”,
which is funded by the German Research Foundation (DFG). At the current version 0.8.2
the system is still in its infancy; yet it offers a wide range of functions already. As a
showcase here we give an account of computations in OSCAR which require methods
from algebra, number theory, group theory and polyhedral geometry. OSCAR is regis-
tered as a Julia package, which makes the installation of a released version via Julia’s
package manager trivial. Additionally, the entire source code and its ongoing devel-
opment can be followed at https://github.com/oscar- system. This also includes
documentation, unit tests and continuous integration. The specific computations shown
here are documented at https://github.com/micjoswig/oscar-notebooks.

A lattice polytope, P, is the convex hull of finitely many points in Rn with integral
coordinates. The function LP(t), for t ∈ N, counts the lattice points in the dilations
t · P. Ehrhart’s Theorem says that LP(t) is a rational univariate polynomial of degree
d = dim P in the parameter t; see, e.g., [6, Section 3.4]. Research on Ehrhart polynomials
abounds for their connections to combinatorics, algebraic geometry and beyond. Here
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we use OSCAR to study the Galois groups of Ehrhart polynomials. To the best of our
knowledge this is a new idea.

2 Computing Galois Groups

The computation of Galois groups of rational polynomials is among the fundamental
problems of algorithmic algebraic number theory as formulated by Zassenhaus in [30].
In the following we will give a brief overview about the standard algorithm for solving
this task as well as the state of current implementations.

We will first explain what is meant by computing the Galois group of a rational
polynomial. To this end let f ∈ Q[t] be a polynomial of degree n. Recall that the Galois
group Gal( f ) of f is defined as the group of automorphisms of Gal(N/Q), where N
denotes a splitting field of f , i.e., a minimal field extension of Q such that f decomposes
over N into linear factors. Denote by S = {α1, . . . , αn} the set of roots of f in any
field containing Q. After choosing an ordering on the roots S, via its action on S the
Galois group Gal( f ) gives rise to a faithful permutation representation G → Sn. The
equivalence class of this representation is independent of the chosen set S or its ordering.
Thus when speaking of computing Gal( f ), we mean the computation of a permutation
group G ⊆ Sn such that the action of Gal( f ) on a set of roots in any splitting field is
permutation equivalent to the natural action of G. Note that this implies Gal( f ) ∼= G as
groups, but permutation equivalence is in general stronger.

We now sketch an algorithm of Stauduhar [28] and its improvements by Fieker and
Klüners [18] for finding the Galois group Gal( f ) ≤ Sn, where f ∈ Q[t] has degree n.

1. Determine approximations Ŝ = {α̂1, . . . , α̂n} ⊆ L of the roots of f in a suitable
field extension Q ⊆ L. One may take L = C and employ well-known methods to
approximate roots of univariate polynomials, but it is also possible to use algebraic
closures of p-adic fields Qp.

2. Assume that we know a subgroup G ≤ Sn for which the inclusion Gal( f ) ≤ G
holds (at the beginning G = Sn). To test whether Gal( f ) is equal to G, it is suffi-
cient to test whether Gal( f ) ≤ H for any of the finitely many maximal subgroups
H ≤ G. Thus let H ≤ G be a subgroup. Denote by F ∈ Z[x1, . . . , xn] a G-relative
H-invariant polynomial, that is, F equals Fσ := F(xσ(1), . . . , xσ(n)) for all σ ∈ H and
the stabilizer of F in G equals H. Now after certain technical properties are checked,
the main result of Stauduhar states that Gal( f ) ≤ H if and only if F(α1, . . . , αn) is
an element of Z. As this latter task can be performed by evaluating F(α̂1, . . . , α̂n)
to a high enough precision, we can decide whether Gal( f ) ≤ H rigorously. By per-
forming this task iteratively, the algorithm traverses down the lattice of subgroups
of Sn until the Galois group Gal( f ) ≤ Sn is determined.
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Remark 1. While the algorithm described above yields a procedure to compute Galois
groups that works well in practice for input of small size, we want to point out several
improvements, which are necessary to render this algorithm practical.

1. While we formulated the algorithm for arbitrary polynomials, it is advisable to
first determine a factorization of f into irreducible polynomials and compute the
Galois group for each of these polynomials first. This yields two advantages: For
irreducible polynomials, the Galois group is automatically transitive, hence fewer
candidates have to be checked and secondly, for pairs of transitive groups more
sophisticated methods for finding invariants are available than in the generic case.

2. Instead of testing Gal( f ) ≤ H for all maximal subgroups H of G, one can restrict
to representatives of conjugacy classes of maximal subgroups of G. Given such
a representative H, one then tests for a set of coset representatives τ of H in G
whether Fτ(α1, . . . , αn) is an integer, which is equivalent to Gal( f ) ≤ Hτ. Deter-
mining the conjugacy classes of maximal subgroups and coset representatives of
permutation groups are well-studied problems in algorithmic group theory, with
efficient solutions.

3. One bottleneck of the algorithm is finding the G-relative H-invariant polynomial
F. Generic methods described in [18] yield a polynomial whose number of terms
grows linearly in the index [G : H], making this step quite costly for groups with
maximal subgroups of large index. More advanced techniques have been intro-
duced by Elsenhans [15].

4. To deal with large index subgroups, the idea of short cosets has been introduced,
where additional information is used to reduce the set of coset representatives that
need to be considered. For example, if f has a pair of complex conjugate roots, the
complex conjugation has to be an element of the Galois group of f , and hence only
σ such that Hσ contains the complex conjugation need to be tested.

5. To make use of highly optimized algorithms for finding subfields of number fields,
instead of starting with the full symmetric group, one can start with the intersection
of suitable wreath products: If f is irreducible, each subfield of the stem field
Q[t]/( f ) of f yields a block system for the unknown Galois group, hence a maximal
subgroup supporting this.

An implementation of the algorithm, which performs quite well in practice, is avail-
able in OSCAR (Version 0.8.2). The implementation exploits the tight integration be-
tween the group theoretic component built upon GAP and the number theoretic func-
tionality provided by ANTIC. Section 3 below comprises concrete computations in the
context of Ehrhart polynomials.
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We end with comparisons to other computer algebra packages with the functionality
to compute Galois groups of (a restricted set of) polynomials in Q[t]. As is apparent from
the description of the algorithm, critical steps require the use of sophisticated techniques
from both algorithmic group and number theory. This requirement already narrows
down possible computer algebra software able to handle this scenario.

1. Computing Galois groups of rational polynomials has been available in the closed
source system Magma [8] for quite some time. In comparison to OSCAR, due
to various optimizations, for increasing parameters Magma will outperform the
current implementation in OSCAR. Yet, for parameter ranges of practical relevance,
the performance profiles are similar.

2. Based on the work of Eichenlaub [14], the number theory package Pari (Ver-
sion 2.13.1) provides an implementation to determine Galois groups for polynomi-
als f with degree deg( f ) ≤ 11, which in addition need to be irreducible. Neither
assumption is met in our application: Ehrhart polynomials may be reducible, and
they may have arbitrarily high degrees.

3. Implementations of algorithms of Soicher–McKay [27] and Hulpke [23] in GAP
allow to determine Galois groups of irreducible polynomials of degree up to 15.

4. The computer algebra system SageMath [29] (Version 9.5) includes interfaces to
Pari and GAP, which are subject to the same restrictions ( f needs to be irreducible
with deg( f ) ≤ 11 or deg( f ) ≤ 15, depending on which interface is used).

Thus, for the first time, Galois groups of arbitrary rational polynomials can be deter-
mined using a freely available open source computer algebra package. For example, the
Galois group of the Ehrhart polynomial (of degree 16) of the 16-dimensional Fano sim-
plex of order 28 · 8! (see Section 3) can be determined using OSCAR within 10 minutes,
a computation which was previously impossible without Magma.

3 Ehrhart Polynomials of Lattice Polytopes

Let P ∈ Rd be a d-dimensional lattice polytope. Then the function LP(t) = |tP ∩Zd|
is a polynomial in t of degree d; this is called the Ehrhart polynomial of P. Numerous
facts are known about Ehrhart polynomials: e.g., the leading coefficient is the volume of
P, the constant term equals one, and the polynomial d! · LP(t) has integral coefficients.
Yet many questions remain open. For instance, it is unclear which polynomials arise as
Ehrhart polynomials [6, Open Problem 3.43]. We refer to the monographs of Beck and
Robins [6] and Ewald [16] for the general background.
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Computing Ehrhart polynomials is a subtle task, which may involve triangulating
the input and computing lattice points; see, e.g., [6, Section 3.4] and [4]. Note that even
computing the leading coefficient, which is the volume, is #P-hard [12]. Standard imple-
mentations include LattE [3] and Normaliz [9]; both are available through interfaces
in polymake and thus also in OSCAR. For comparisons and further implementations
see [1].

Galois groups. Here we propose to investigate the Galois groups of Ehrhart polyno-
mials, considered as polynomials over some algebraically closed extension of Q, such as
C or the algebraic closure of the p-adics. This extends ongoing research on the zeros
of Ehrhart polynomials; see, e.g., [5, 7] and their references as well as [6, Open Prob-
lem 3.44]. We start with a first example, which is straightforward. Its purpose is to
exhibit that Ehrhart polynomials may be reducible.

Example 2. Let C be the d-dimensional cube [−1, 1]d. Its Ehrhart polynomial reads
LC(t) = (2t + 1)d, whose Galois group is trivial.

The next example is more interesting.

Example 3. Consider the d-simplex S = conv{e1, e2, . . . , ed,−e1 − e2 − · · · − ed}, whose
normalized volume equals d + 1. Here the Ehrhart polynomial is

LS(t) =

(
t + d + 1

d + 1

)
−
(

t
d + 1

)
.

Its roots are determined in [7, Theorem 1.7].

The polytope S in the example above is sometimes called the Fano simplex. Employing
the results of [7] one can prove the following.

Theorem 4. The Galois group Gal(LS(t)) over Q of the d-dimensional Fano simplex S is iso-
morphic to the wreath product C2 o Sk, where k = bd/2c. Its order is 2kk!.

We show how to compute the Ehrhart polynomial and its Galois group for d =
14. This requires an installation of Julia (Version ≥ 1.6), with OSCAR installed via
using Pkg; Pkg.add("Oscar"). Timings are taken on an Apple M1, 16 GB and macOS
version 11.6.

julia> using Oscar;

julia> S = fano_simplex(14)

A polyhedron in ambient dimension 14

julia> @time G = galois_group(ehrhart_polynomial(S))



6 C. Fieker, T. Hofmann, and M. Joswig

0.840115 seconds (3.59 M allocations: 280.822 MiB, 6.75% gc time)

(<permutation group of size 645120 with 9 generators>, Galois Context for

15*t^14 + 105*t^13 + 24115*t^12 + 143325*t^11 + 7724717*t^10 +

37312275*t^9 + 725938785*t^8 + 2681453775*t^7 + 21964438496*t^6 +

56663366760*t^5 + 201186840400*t^4 + 310989260400*t^3 + 429952217472*t^2

+ 283465647360*t + 87178291200 and prime 59)

↪→

↪→

↪→

↪→

julia> describe(G[1])

"C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : S7)"

Smooth Fano polytopes. We conclude this note with an analysis of a particularly inter-
esting class of lattice polytopes. Let P ⊂ Rd be a d-dimensional lattice polytope with the
origin in the interior. Its polar is P◦ = {y ∈ Rd | 〈x, y〉 ≤ 1 for all x ∈ P}, which is again
a d-dimensional polytope. The lattice polytope P is reflexive if P◦ is a lattice polytope [10,
Section 2.4]. Further, the lattice polytope is said to be smooth if the primitive facet nor-
mal vectors in each normal cone form a Z-basis of the ambient lattice Zd; see, e.g., [10,
Section 2.4]. In particular, smooth polytopes are necessarily simple. A smooth Fano poly-
tope is a smooth and reflexive lattice polytope. Examples include the cube (Example 2)
and the polar of the Fano simplex (Example 3). Notice that sometimes in the literature
smoothness is associated with the face fan of P rather than the normal fan; see, e.g., [2,
21, 22]. In that case our definition applies to the polar P◦. Interest in reflexive polytopes
comes from toric algebraic geometry and its applications to mathematical physics.

Example 5. The reflexive polytope DP(d) = conv{±e1,±e2, . . . ,±ed,±1} is the del Pezzo
polytope of dimension d. Its polar DP(d)◦ is smooth Fano if and only if d is even.

The Ehrhart polynomials of the polars of the smooth Fano polytopes and their zeros
have been investigated a lot; see, e.g., [7, 21, 22] and references therein. Hegedüs and
Kasprzyk [22, Theorem 1.5] proved that for P a smooth Fano polytope of dimension
d ≤ 5 the roots of the Ehrhart polynomial LP◦(t) of the polar lie on the “critical line”
of those points in C whose real part equals −1

2 . Moreover, Hegedüs and Kasprzyk also
showed that, up to lattice equivalence, there are precisely four smooth Fano 6-polytopes
P such that the roots of LP◦(t) do not lie on the critical line. In [22, Example 1.7] these
four polytopes are identified via the IDs 1895, 1930, 4853, and 5817 in the Graded Ring
Database [31, 32], which stores the polars of all smooth Fano polytopes of dimension
≤ 6. The second but last example, which is the free sum DP(2) ⊕ DP(4), is special;
see [2, Theorem 7(iii)]. An OSCAR computation reveals that the Galois group of its
Ehrhart polynomial is isomorphic to S3. In fact, DP(2) ⊕ DP(4) is the only polar of a
smooth Fano 6-polytope such that the Ehrhart polynomial has Galois group of order six.

OSCAR provides direct access to the database polyDB [26] which extends the classifi-
cation from [32] to dimension ≤ 8. The respective polyDB IDs of (the polars of) the four
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polytopes from [22, Example 1.7] read: F.6D.0803, F.6D.0720, F.6D.3154, and F.6D.2616.
We can query polyDB to obtain a tally of the orders of the Galois groups of the Ehrhart
polynomials of the polars of all 7622 smooth Fano 6-polytopes:

julia> db = Polymake.Polydb.get_db();

julia> collection = db["Polytopes.Lattice.SmoothReflexive"];

julia> query = Dict("DIM"=>6);

julia> res = Polymake.Polydb.find(collection, query);

julia> E6 = [ ehrhart_polynomial(polarize(Polyhedron(P))) for P in res ];

julia> sort(MSet(order(galois_group(e)[1]) for e = E6).Dict)

OrderedCollections.OrderedDict{Int64, Int64} with 6 entries:

4 => 623

6 => 1

8 => 22

12 => 44

16 => 310

48 => 6622

4 Conclusion

The following question is immediate:

Question 6. Which groups arise as Galois groups of Ehrhart polynomials?

It is a deep open question whether each finite group occurs as some Galois group
of a rational polynomial; see, e.g., [24]. While it seems to be difficult to characterize
all Ehrhart polynomials it may still be the case that the above question is simpler. For
instance, it is known that each finite cyclic group occurs as the Galois group of some
rational polynomial. Can these be chosen as Ehrhart polynomials?
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