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Abstract. Introduced by Kodama and Williams, Bruhat interval polytopes are general-
ized permutohedra closely connected to the study of torus orbit closures and total pos-
itivity in Schubert varieties. We show that the 1-skeleton posets of these polytopes are
lattices and classify when the polytopes are simple, thereby resolving open problems
and conjectures of Fraser, of Lee–Masuda, and of Lee–Masuda–Park. In particular, we
classify when generic torus orbit closures in Schubert varieties are smooth.
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1 Introduction

1.1 Bruhat interval polytopes

For a permutation w in Sn, write w for the vector (w−1(1), . . . , w−1(n)) ∈ Rn. The Bruhat
interval polytope Qw is defined as the convex hull:

Qw := Conv({u | u ⪯ w}) ⊂ Rn,

where ⪯ denotes Bruhat order on Sn (see Section 2). Bruhat interval polytopes were
introduced by Kodama and Williams in [18], where it is shown that they are the images
under the moment map of the Schubert variety Xw in the flag variety, and also of the totally
positive part X≥0

w of the Schubert variety. Therefore, the combinatorics of Qw encodes
information about the actions of the torus and positive torus on Xw and X≥0

w respectively.
The combinatorics of Qw was studied further by Tsukerman and Williams [31], who

showed that Qw is a generalized permutohedron in the sense of Postnikov [27] and the
matroid polytope of a flag positroid. Additional connections to the geometry of matroids
were made in [6], and Bruhat interval polytopes have also appeared [32] in the context
of BCFW-bridge decompositions [1] from physics, and in the study [20, 21, 22, 24] of
generic torus orbit closures Yw in Xw.
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1.2 The 1-skeleton of Qw as a lattice

Throughout this work, we study the 1-skeleton poset Pw of Qw, a partial order on the
lower Bruhat interval [e, w] = {u | u ⪯ w}.

Definition 1.1. The poset (Pw,≤w) has underlying set the Bruhat interval [e, w] and cover
relations u ⋖w v whenever Qw has an edge between vertices u and v and ℓ(v) > ℓ(u),
where ℓ denotes Coxeter length.

When w = w0 is the longest permutation, the polytope Qw is the permutohedron, a
fundamental object in algebraic combinatorics, and the poset Pw is the very well-studied
right weak order (see Section 2). For general w, since edges of Qw must be Bruhat covers
by [31], the order ≤w is intermediate in strength between right weak order and Bruhat
order on [e, w]. Since the work of Björner [3] it has been known that the weak order Pw0

on Sn is a lattice; in our first main theorem, we generalize this to all of the posets Pw.

Theorem A (Proven as Theorem 4.5). Let w ∈ Sn, then Pw is a lattice.

As explained below, special cases of this lattice structure confirm a conjecture of
Fraser [12], recover several previous results of various authors, imply new properties of
Qw, and suggest interesting directions for future work.

1.2.1 BCFW-bridge decompositions

In the last decade, there has been an explosion of work (see [1]) relating the physical
theory of scattering amplitudes to the combinatorics and geometry of the totally nonnega-
tive Grassmannian Gr(k, n)≥0 by way of the amplituhedron. In this setting, on-shell diagrams
from physics correspond to reduced plabic graphs, which give parametrizations of an im-
portant cell decomposition of Gr(k, n)≥0 [26].

In [1] it is shown that reduced plabic graphs for a given cell may be built up recur-
sively using BCFW-bridge decompositions. In [32], Williams showed that these decomposi-
tions of plabic graphs correspond to the maximal chains in Pv when v is a Grassmannian
permutation, analogous to the fact that reduced words for the longest permutation w0
correspond to maximal chains in Pw0 (weak order). Since weak order is a lattice, Theo-
rem A extends this analogy and implies new structure within the set of BCFW-bridge
decompositions. That Pv is a lattice for Grassmannian permutations was conjectured by
Fraser [12]. Fraser also conjectured that a larger class of posets, which are not necessarily
the 1-skeleton posets of any polytope, are lattices; this problem remains open.

1.2.2 Quotients of weak order

Theorem A is proven by realizing Pw as a quotient of weak order Pw0 by an equivalence
relation Θw which respects the weak order join operation (but does not respect the meet
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operation!) Thus Pw is a semilattice quotient of Pw0 but not a lattice quotient. The lattice
quotients and lattice homomorphisms of weak order have been classified [28, 29]. This
work thus suggests that semilattice quotients and homomorphisms of weak order are an
intriguing topic for further study.

1.2.3 The parabolic map and the mixed meet

Let Sn(I) denote the subgroup of Sn generated by a subset I of the simple reflections.
Billey, Fan, and Losonczy proved [2] that for any w ∈ Sn the set Sn(I) ∩ [e, w] has
a unique maximal element m(w, I) under Bruhat order. Richmond and Slofstra [30]
showed that this element m(w, I) determines whether the projection of the Schubert va-
riety Xw ⊂ G/B to a partial flag variety G/P is a fiber bundle, and is thus important for
understanding the singularities of Xw. We show in Theorem 4.6 that the element m(w, I)
is just the join in Pw of the simple reflections from I, demonstrating the richness of the
lattice structure on Pw.

A related operation of mixed meet was studied by Bump and Chetard in [9] in rela-
tion to certain intertwining operators of representations of reductive groups over nonar-
chimedean local fields. The mixed meet of u, v ∈ Sn is the unique Bruhat maximal
permutation in [e, u]R ∩ [e, v]. In the language of Section 4, this element is botv(u), the
unique minimal element under ≤R in the equivalence class of u under the equivalence
relation Θv induced on Sn by the normal fan of Qv. This element is a translate of µv(u),
where µv is the matroid map obtained by viewing [e, v] as a Coxeter matroid [7].

1.2.4 The non-revisiting path property

A polytope Q has the non-revisiting path property if no shortest path in its 1-skeleton be-
tween two vertices returns to a face after having left it. This property has long been of
interest in the field of combinatorial optimization. In [14], Hersh proves that any simple
polytope whose 1-skeleton poset is a lattice has the non-revisiting path property. Thus,
combining Theorem A and the classification of simple Bruhat interval polytopes in Theo-
rem B below, we obtain a rich new family of examples to which Hersh’s theorem applies.
Additionally, in Section 5 we observe that all polytopes Qw are directionally simple. We
therefore ask: does Hersh’s theorem extend to directionally simple polytopes?

1.3 Bruhat interval polytopes and generic torus orbit closures

1.3.1 Simple Bruhat interval polytopes and smooth torus orbit closures

Let G = GLn(C), let B denote the Borel subgroup of upper triangular matrices, and let
T denote the maximal torus of diagonal matrices. The flag variety Fln = G/B and its
Schubert subvarieties Xw := BwB/B are of fundamental importance in many areas of
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algebraic combinatorics, algebraic geometry, and representation theory. The torus T acts
naturally on G/B via left multiplication, and the fixed points (G/B)T are the points wB
for w ∈ Sn, where we identify w with its permutation matrix. The fixed points of the
Schubert variety Xw are {uB | u ⪯ w}.

Torus orbits in G/B and their closures are a rich family of varieties, studied since
Klyachko [17] and Gelfand–Serganova [13] with close connections to matroids and Cox-
eter matroids [7]. One class of torus orbit closures has received considerable interest [20,
21, 22, 24] of late: generic torus orbit closures in Schubert varieties. A torus orbit closure
Y ⊂ Xw is called generic if YT = XT

w; we write Yw for a generic torus orbit closure in Xw.
One of the main properties of interest for torus orbits in the flag variety has his-

torically been their singularities [10, 11], and in particular determining when they are
smooth. For Schubert varieties themselves, smoothness was famously characterized by
Lakshmibai–Sandhya [19] in terms of pattern avoidance. In our next main theorem, we
resolve a conjecture of Lee and Masuda [20] by classifying when Yw is smooth.

Theorem B (Conjectured by Lee–Masuda [20]; Proven below as Corollary 6.3). Let w ∈
Sn, then Qw is a simple polytope if and only if it is simple at the vertex w; equivalently, Yw is a
smooth variety if and only if it is smooth at the point wB.

Theorem B is proven by showing (see Theorem 6.1) that the degree of a vertex of Qw
is an ordering preserving function of the poset Pw.

By [20], the condition that Yw is smooth at wB can be checked combinatorially by
determining whether a certain graph Γw(w) is a tree (see Section 3). This tree condition
has in turn been characterized combinatorially in terms of pattern avoidance [8], and
shown [33] to characterize when Xw is locally factorial. By work of Björner–Ekedahl [5] it
is also equivalent to the vanishing of the coefficient of q in the associated Kazhdan–Lusztig
polynomial [15] and thus [16] the vanishing of a certain middle intersection cohomology
group of Xw. It would be fascinating to give a purely geometric explanation for the
equivalence (by Theorem B) of the smoothness of Yw with these other geometric condi-
tions on Xw.

1.3.2 Directionally simple polytopes and h-vectors

In Section 5 we show that, even when Qw is not a simple polytope, it is still directionally
simple (see Definition 5.1). This fact was also shown in [24] by an involved calculation, but
follows directly from our results realizing Pw as a quotient of weak order. This property
of Qw implies that its h-vector has positive entries which count certain permutations
according to their number of ascents. In Proposition 5.6 we resolve an open problem
of Lee–Masuda–Park [23] by showing that Yw is smooth if and only if this h-vector is
palindromic.



Bruhat interval polytopes, 1-skeleton lattices, and smooth torus orbit closures 5

2 Background on the weak and strong Bruhat orders

We refer the reader to [4] for basic definitions and results on Coxeter groups.
We view the symmetric group Sn as a Coxeter group with generators s1, . . . , sn−1,

where si := (i i + 1) is an adjacent transposition. An expression w = si1 · · · siℓ of minimal
length is a reduced word for w and in this case the quantity ℓ = ℓ(w) is the length of w.
There are two important partial orders on Sn, each graded by length. The right weak
order ≤R by definition has cover relations w ⋖R ws whenever s is a simple generator
and ℓ(ws) = ℓ(w) + 1; the (strong) Bruhat order ⪯ has cover relations w ≺· wt whenever
ℓ(wt) = ℓ(w) + 1 and t lies in the set T of transpositions (ij). We write [v, w]R and [v, w]
for the closed interval between v, w in right weak and Bruhat order respectively.

The left inversions of an element w ∈ Sn are the reflections TL(w) := {t ∈ T | ℓ(tw) <
ℓ(w)}. It is well-known that weak order is characterized by containment of inversions:

Proposition 2.1. Let v, w ∈ Sn, then v ≤R w if and only if TL(v) ⊆ TL(w).

The symmetric group contains a unique element w0 of maximum length, and w0 is
the unique maximal element of Sn under both ≤R and ⪯. In fact, weak order is a lattice.

Theorem 2.2 (Björner [3]). The poset (Sn,≤R) is a lattice; we write ∧R and ∨R for the meet
and join in right weak order.

3 The graphs Γ̃w and Γw

Lee and Masuda [20] provided a combinatorial model for determining the edges incident
to a vertex u of Qw.

Definition 3.1 (Lee and Masuda [20]). For u ⪯ w, the directed graph Γ̃w(u) has vertex set
[n] with directed edges (u(i), u(j)) whenever i < j, u(ij) ⪯ w, and |ℓ(u(ij))− ℓ(u)| = 1.
We write Ẽw(u) for this set of edges. The directed graph Γw(u) is defined to be the
transitive reduction of Γ̃w(u), with edge set Ew(u).

Proposition 3.2 (Lee and Masuda [20], Proposition 7.7). Two vertices u and v of Qw are
connected by an edge of the polytope if and only if v = u(ij) where (u(i), u(j)) ∈ Ew(u).

The proofs of the main theorems rely on a detailed development of the properties of
directed paths in the graphs Γw(u) and Γ̃w(u), and how these change as u varies, some
of which are sampled below.
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3.1 Directed paths and local changes

When the permutation w is understood, we write a u−→ b when (a, b) ∈ Ẽw(u) and
a

u
99K b when there is a directed path from a to b in Γ̃w(u) (equivalently, in Γw(u)); we

write a u
=⇒ b when (a, b) ∈ Ew(u).

Proposition 3.3. Let u, w ∈ Sn with u ⪯ w, and suppose (ab)u ⪯ w, where u−1(a) < u−1(b),
then a

u
99K b. In particular, if (ab) ∈ TL(u), then a

u
99K b.

The following proposition is a fundamental ingredient in many of proofs of the sub-
sequent theorems. Its proof is rather involved and must be omitted for the sake of space.

Proposition 3.4. Suppose that u, v ∈ Sn satisfy u ⋖w v = (ab)u, with a < b:

(i) If c < d and c
v
99K d, then c

u
99K d;

(ii) If c > d, c ̸= b, d ̸= a, and c
v
99K d, then c

u
99K d.

4 The lattice property

4.1 Generalized permutohedra

The normal fan of the permutohedron Permn = Qw0 is the fan determined by the braid
arrangement, which has defining hyperplanes xi − xj = 0 for ∀i ̸= j. The top-dimensional
cones C(y) in this fan are naturally labelled by permutations y ∈ Sn giving the relative
order of the coordinates of a point (x1, . . . , xn) ∈ C(y); in particular we have y ∈ C(y).

Following Postnikov [27], a polytope whose normal fan coarsens the braid arrange-
ment is called a generalized permutohedron. Kodama–Williams [18] showed that Bruhat in-
terval polytopes are generalized permutohedra. This implies that each top-dimensional
cone Cw(u) (where u now runs over the elements of [e, w]) in the normal fan of Qw con-
tains some of the C(y). We write [y]w for the equivalence class of y under the equivalence
relation Θw induced on Sn by the normal fan of Qw.

We say y ∈ Sn is a linear extension of Γw(u) (equivalently, of Γ̃w(u)) if y−1(i) < y−1(j)
whenever i

u
99K j. The following proposition is immediate from the construction of

Γw(u) in Section 5 of [20] and the discussion of normal fans of generalized permutohedra
in Section 3 of [25].

Proposition 4.1 (See [20, 25]). Let w ∈ Sn and u ⪯ w, then [u]w is exactly the set of linear
extensions of Γw(u).

Somewhat surprisingly, the equivalence classes [x]w turn out to be intervals in right
weak order. This result was established by other means in [20], but the particulars of our
proof will be important later.
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Proposition 4.2. Let x, w ∈ Sn, then [x]w contains a unique minimal element botw(x) and
unique maximal element topw(x) under right weak order.

Proof. Let u be the unique element of [e, w] ∩ [x]w. By Proposition 4.1, the elements y of
[x]w are exactly the linear extensions of Γ̃w(u). Suppose that (ab) ∈ TL(u) with a < b,
then by Proposition 3.3 we have b

u
99K a, so by Proposition 4.1 we have (ab) ∈ TL(y) for

any y ∈ [x]w. Thus by Proposition 2.1 we have u ≤R y, so botw(x) = u.
The reflections occurring as left inversions of some linear extension of Γ̃w(u) are

exactly those in
I := {(ab) | a < b and a ̸ u

99K b}.

To see that topw(x) exists, we will demonstrate that the corresponding set of roots,
R = {ea − eb | (ab) ∈ I}, is biclosed, so that topw(x) will be the unique permutation with
left inversion set I.

First, note that if a
u
99K b and b

u
99K c, then a

u
99K c, so R is coclosed.

For closedness, let a < b < c and assume that a
u
99K c, which implies that u−1(a) <

u−1(c). If u−1(b) < u−1(a), then (ab) ∈ TL(u), so by Proposition 3.3 we have b
u
99K

a
u
99K c, so b

u
99K c. If instead u−1(b) > u−1(c), then (bc) ∈ TL(u), so by Proposition 3.3

we have a
u
99K c

u
99K b, so a

u
99K b. Otherwise we have u−1(a) < u−1(b) < u−1(c).

Consider a path a → a1 → · · · → ar → c1 → · · · → cs → c, where u−1(ai) ≤ u−1(b)
and u−1(b) < u−1(cj) for all i, j. If any ai > b, then a

u
99K ai

u
99K b. If any cj < b, then

b
u
99K cj

u
99K c. Otherwise, since (ar c1)u covers u in Bruhat order, we must have ar = b,

so a
u
99K b

u
99K c. In all cases, we see a

u
99K b or b

u
99K c, so R is closed.

4.2 The poset structure

Theorem 4.3. Given w ∈ Sn, the map topw : Sn → Sn is order preserving with respect to
right weak order. That is, if x ≤R y then topw(x) ≤R topw(y). Furthermore, the quotient
WeakR(Sn)/Θw is isomorphic to Pw via the map [x]w 7→ botw(x).

Proof. By the proof of Proposition 4.2, we have for any z ∈ Sn that

TL(topw(z)) = {(cd) | c < d and c ̸
botw(z)
999999K d}. (4.1)

Thus if u = ⋖w = v = (ab)u with a < b then by Proposition 3.4(i) and (4.1) we have that

TL(topw(u)) ⊂ TL(topw(v)).

By Proposition 2.1 we see topw(u) <R topw(v).
Now suppose that x ⋖R y = xs = tx with [x]w ̸= [y]w, so Cw(u) and Cw(v) share

a facet along the hyperplane fixed by the reflection t, where u := botw(x) and v :=
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botw(y). This implies that there is an edge of Qw with vertices u and v. Since u ≤R x by
Proposition 4.2, we have that t ̸∈ TL(u) by Proposition 2.1 and the fact that t ̸∈ TL(x).
Since the convex cones Cw(u) and Cw(v) share at most one facet, and since v = ut′ for
some t′ ∈ T, we must have in fact that t = t′, and thus ℓ(v) > ℓ(u) and u ⋖w v. This
establishes that Pw ∼= Weakn /Θw, and that topw is order preserving, after applying the
first paragraph and that fact that topw(u) = topw(x) and topw(v) = topw(y).

Corollary 4.4. Let w ∈ Sn, then the map topw : [e, w] → topw([e, w]) is an isomorphism
between the posets Pw and (topw([e, w]),≤R).

The fact that Pw is a lattice also follows easily from Theorem 4.3.

Theorem 4.5. For any w ∈ Sn, the poset Pw is a lattice, with join operation given by

u ∨w v = botw(topw(u) ∨R topw(v)).

Proof. Let z = botw(topw(u) ∨R topw(v)). Then

u ≤R topw(u) ≤R topw(u) ∨R topw(v),

so by Theorem 4.3 we have u ≤w z, and similarly v ≤w z. On the other hand, if y ≥w u, v,
then by Theorem 4.3 we have topw(y) ≥ topw(u), topw(v) so topw(y) ≥ topw(u) ∨R
topw(v). Thus y ≥w z and we see that z is the join of u, v in Pw. Since Pw is a finite poset
with a join and a unique minimal element, it also has a meet and is thus a lattice.

Unlike weak order, Pw is not in general a semidistributive lattice.

4.3 The Billey–Fan–Losonczy parabolic map

Let Sn(I) denote the subgroup of Sn generated by a subset I of the simple reflections.
For w ∈ Sn let m(w, I) denote the unique maximal element of Sn(I)∩ [e, w] under Bruhat
order [2] (see Richmond and Slofstra [30] for the importance of these elements in deter-
mining the fiber bundle structure of Schubert varieties).

Theorem 4.6. Let w ∈ Sn, and let I be a set of simple generators, then:

m(w, I) =
∨
w
{si ∈ I | si ⪯ w}.

5 Directionally simple polytopes

Given a polytope Q ⊂ Rd, say that a cost vector c ∈ Rd is generic if c is not orthogonal
to any edge of Q. A generic cost vector induces an acyclic orientation on the 1-skeleton
G(Q) by taking edges to be oriented in the direction of greater inner product with c; we
write Gc(Q) for the resulting acyclic directed graph. It is clear that every face F of Q
contains a unique source minc(F) and sink maxc(F) with respect to this orientation.
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Definition 5.1. We say that a polytope Q ⊂ Rd is directionally simple with respect to the
generic cost vector c if for every vertex v of Q and every set E of edges of Gc(Q) with
source v there exists a face F of Q containing v whose set of edges incident to v is E.

Proposition 5.2. A simple polytope Q ⊂ Rd is directionally simple with respect to any generic
cost vector.

Theorem 5.3 was proven in [24] by an involved direct computation; here we give a
new proof using the results of Section 4.

Theorem 5.3. Let w ∈ Sn, then Qw is a directionally simple polytope with respect to the cost
vector c = (n, n − 1, . . . , 1).

Theorem 5.3 shows that Qw is always directionally simple, in Section 6 we will deter-
mine when Qw is in fact simple.

5.1 h-vectors of directionally simple polytopes

The f-vector of a polytope Q ⊂ Rd is the tuple f (Q) = ( f0, . . . , fd) where fi is the number
of i-dimensional faces of Q. The h-vector h(Q) is defined by the equality of polynomials

d

∑
i=0

fi(x − 1)i =
d

∑
k=0

hkxk. (5.1)

Proposition 5.4. Let Q ⊂ Rd be directionally simple with respect to the generic cost vector c,
with h-vector h(Q) = (h0, . . . , hd). Then for all k = 0, . . . , d the entry hk is the number of
vertices of Q with out-degree exactly k in Gc(Q).

Remark. One implication of Proposition 5.4 is that hi ≥ 0, ∀i. This by itself is already a
very special property of directionally simple polytopes; indeed h-vectors of non-simple
polytopes are rarely considered, because they are rarely positive or otherwise interesting.

For u ∈ Sn, write asc(u) for the number n − 1 − |DR(u)| of right ascents of u. Corol-
lary 5.5 below is an extension to Qw of the kind of interpretation for h-vectors of simple
generalized permutohedra given by Postnikov–Reiner–Williams [25].

Corollary 5.5. Let (h0, h1, . . .) be the h-vector of Qw, then for all k we have:

hk =
∣∣{z ∈ topw([e, w]) | asc(z) = k}

∣∣ .

As explained in [24], the h-vector of Qw also gives the Poincaré polynomial of the
toric variety Yw, so Corollary 5.5 gives a new formula for that invariant. We can also
resolve an open problem raised in [23]:

Proposition 5.6 (Resolves Problem 6.1 of [23]). The variety Yw is smooth if and only if its
Poincaré polynomial is palindromic.
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6 Vertex-degree monotonicity

In Section 4 we applied properties of the relation c
u
99K d to prove that Pw is a lattice.

It is possible to develop and use more refined information about the relation c u
=⇒ d

to prove that vertex-degrees of Qw are monotonic with respect to the partial order ≤w,
but we lack the space to do this here. As an application, we resolve a conjecture of
Lee–Masuda–Park [20] characterizing smooth generic torus orbit closures in Schubert
varieties.

Write degw(u) for the number of edges of Qw incident to the vertex u.

Theorem 6.1. Let w ∈ Sn. If u ≤w v then degw(u) ≤ degw(v).

Theorem 6.1 will follow from the stronger Theorem 6.4 below.

Corollary 6.2. Let w ∈ Sn, then the polytope Qw is simple if and only if it is simple at the vertex
w.

Proof. It is clear from Proposition 3.2 and the definition of Ew(e) that Qw is always simple
at the vertex e. Thus if Qw is also simple at w, Theorem 6.1 implies that it is simple at
every vertex.

Corollary 6.2 resolves Conjecture 7.17 of Lee–Masuda [20]. As described there, Corol-
lary 6.2 has the following geometric interpretation.

Corollary 6.3. Let Yw be a generic torus orbit closure in the Schubert variety Xw := BwB/B,
then Yw is smooth if and only if it is smooth at the torus fixed point wB.

Write c u⇐⇒ d if c u⇐= d or c u
=⇒ d (note that we never have both c u⇐= d and c u

=⇒ d).

Theorem 6.4. Let w ∈ Sn and suppose u ⋖w v = tu with c u⇐⇒ d, then there is a unique edge

of Ew(v) described by c v⇐⇒ d or t(c) v⇐⇒ t(d). Moreover, the map φ : Ew(u) → Ew(v) sending

the edge c u⇐⇒ d to the corresponding edge of Ew(v) is an injection.

Theorem 6.1 follows from Theorem 6.4 since, by Proposition 3.2 we have degw(u) =
|Ew(u)| for all u ⪯ w.
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