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Abstract. We initiate the study of a quantitative measure for the failure of a binary
operation to be commutative and associative. We call this measure the associative-
commutative spectrum as it extends the associative spectrum (also known as the sub-
associativity type), which measures the nonassociativity of a binary operation. In fact,
the associative-commutative spectrum (resp., associative spectrum) is the cardinality
of the symmetric (resp., nonsymmetric) operad obtained naturally from a groupoid
(a set with a binary operation). In this paper we provide some general results on the
associative-commutative spectrum, precisely determine this measure for certain binary
operations, and propose some problems for future study.
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1 Introduction

Associativity and commutativity are important properties for binary operations. Al-
though many familiar operations satisfy both properties, some only satisfy one or nei-
ther of them. Moreover, nonassociativity and noncommutativity arise in many algebraic
structures, such as Lie algebras, Poisson algebras, and so on. The operad theory models
both nonassociativity and noncommutativity using binary trees. It was developed by
Boardman, May, Vogt, and others, with applications recently found in many branches of
mathematics (see, e.g., Loday and Vallette [15]). We recall some basic definitions below.

A nonsymmetric operad is an indexed family P = {P(n)}n≥1 of sets with an identity
element 1 ∈ P(1) and, for all positive integers n, m1, . . . , mn, a composition map ◦ : P(n)×
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P(m1)× · · · × P(mn) → P(m1 + · · ·+ mn), (P, P1, . . . , Pn) 7→ P ◦ (P1, . . . , Pn) such that
P ◦ (1, . . . , 1) = P = 1 ◦ P and P ◦ (P1 ◦ (P1,1, . . . , P1,m1), . . . , Pn ◦ (Pn,1, . . . , Pn,mn)) =
(P ◦ (P1, . . . , Pn)) ◦ (P1,1, . . . , P1,m1 , . . . , Pn,1, . . . , Pn,mn) for any P ∈ P(n), Pi ∈ P(ni),
Pi,j ∈ P(ni,j) (1 ≤ i ≤ n, 1 ≤ j ≤ ni). A nonsymmetric operad can thus be seen as
a many-sorted algebra with a nullary operation 1 and operations ◦n,m1,...,mn for all pos-
itive integers n, m1, . . . , mn, but for notational simplicity, the same symbol ◦ is used to
denote all of the latter. The elements of P(n) are called n-ary operations. The Hilbert series
of a nonsymmetric operad P is ∑∞

n=1|P(n)|tn.
On the other hand, a symmetric operad is a nonsymmetric operad P = {P(n)}n≥1

with a right action of the symmetric group Sn on P(n) for each n ≥ 1 satisfying the
equivariance conditions (P ·w) ◦ (Pw−1(1), . . . , Pw−1(n)) = (P ◦ (P1, . . . , Pn)) ·w and P ◦ (P1 ·
w1, . . . , Pn · wn) = (P ◦ (P1, . . . , Pn)) · (w1, . . . , wn) for any P ∈ P(n), w ∈ Sn, Pi ∈ P(mi),
and wi ∈ Smi . Here by abuse of notation, the permutation w on the right side of the
first equation is a permutation of the set {1, . . . , m1 + · · ·+ mn} that breaks the set into
n blocks of sizes m1, . . . , mn and then permutes the n blocks by w. The Hilbert series of a
symmetric operad P = {P(n)}n≥1 is ∑∞

n=1
|P(n)|

n! tn.
Now recall that a groupoid is a set G with a single binary operation ∗.1 A bracketing of

n variables is a groupoid term over the set Xn := {x1, . . . , xn} of variables that is obtained
by inserting parentheses in x1 ∗ x2 ∗ · · · ∗ xn in a valid way. With P∗(n) denoting the set of
all n-ary term operations on (G, ∗) induced by the bracketings of n variables, we obtain
the non-symmetric operad P∗ := {P∗(n)}n≥1. The cardinality |P∗(n)| measures to some
extent the failure of ∗ to be associative. In general, we have 1 ≤ |P∗(n)| ≤ Cn−1 where
Cn := 1

n+1(
2n
n ) is the ubiquitous Catalan number.

Csákány and Waldhauser [2] called the sequence (sa
n(∗) := |P∗(n)|)n∈N+ the asso-

ciative spectrum of the binary operation ∗, while Braitt and Silberger [1] named it the
subassociativity type of the groupoid (G, ∗). Independently, Hein and the first author [5]
proposed the study of sa

n(∗) = |P∗(n)| for a binary operation ∗ and provided an explicit
formula when ∗ satisfies k-associativity (a generalization of associativity). The associative
spectra of many other binary operations have been determined [6, 8, 12, 13, 14].

For each n ≥ 1, let P∗(n) be the set of all n-ary term operations induced on (G, ∗)
by full linear terms of n variables, i.e., groupoid terms over Xn in which each variable
x1, . . . , xn occurs exactly once (but in an arbitrary order, as opposed to bracketings). This

gives a symmetric operad P∗ := {P∗(n)}n≥1 with Hilbert series ∑∞
n=1

|P∗(n)|
n! tn. We call

the sequence (sac
n (∗))n∈N+ , where sac

n (∗) := |P∗(n)|, the associative-commutative spectrum
(in brief, ac-spectrum) of the binary operation ∗, which measures both the nonassociativ-
ity and the noncommutativity of ∗. We will determine the ac-spectra for some binary
operations and exhibit connections to other interesting combinatorial objects and results.

It is clear that sac
n (∗) ≥ 1 and the equality holds for all n ∈ N+ if and only if ∗ is both

1Note that the term groupoid has a different meaning in category theory.
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commutative and associative. On the other hand, we have the following upper bounds.
(i) Since full linear terms over Xn are in bijection with (ordered) binary trees with n
labeled leaves, we have sac

n (∗) ≤ n!Cn−1 for an arbitrary binary operation ∗.
(ii) Since the equivalence classes of full linear terms over Xn modulo the equational
theory of associative groupoids (semigroups) are in bijection with the set of permutations
of {1, . . . , n}, we have sac

n (∗) ≤ n! if ∗ is an associative binary operation.
(iii) Since the equivalence classes of full linear terms over Xn modulo the equational
theory of commutative groupoids are in bijection with unordered binary trees with n
labeled leaves, we have sac

n (∗) ≤ (2n − 2)!/(2n−1(n − 1)!) [16, A001147] if ∗ is commuta-
tive. This upper bound is the solution to Schröder’s third problem [17, p. 178].

In Section 3 we show that the above upper bounds can be achieved by the free
groupoid on one generator, the free associative groupoid (i.e., the free semigroup) on
two generators, and the free commutative groupoid on one generator, respectively.

In Section 4 we focus on associative or commutative binary operations. For an asso-
ciative noncommutative binary operation ∗, we show that its ac-spectrum sac

n (∗) attains
the upper bound n! if it has a neutral element (i.e., identity element), and give some
other examples for which sac

n (∗) < n!. We provide some concrete examples of commuta-
tive groupoids whose ac-spectra reach the upper bound (2n− 2)!/(2n−1(n− 1)!), but for
the arithmetic, geometric, and harmonic means, we show that their ac-spectra coincide
with an interesting sequence that counts ways to express 1 as an ordered sum of pow-
ers of 2 [16, A007178]. The last example shows that the ac-spectrum of a commutative
operation may not achieve the upper bound (2n − 2)!/(2n−1(n − 1)!) even if it is totally
nonassociative, i.e., its associative spectrum equals the upper bound Cn−1. However, we
show that the converse does hold: a commutative groupoid is totally nonassociative if
its ac-spectrum reaches that upper bound.

In Section 5 we show that the ac-spectrum of some anticommutative algebras over a
field, including the cross product and certain Lie brackets, is exactly two times the upper
bound (2n − 2)!/(2n−1(n − 1)!) for the ac-spectrum of a commutative operation.

In Section 6, we determine the ac-spectra of some more examples of totally nonas-
sociative operations, including the exponentiation, the (converse) implication, and the
negated disjunction (NOR). The exponentiation and the converse implication satisfy the
identity x(yz) ≈ x(zy) and their ac-spectrum reaches the upper bound nn−1 for the
ac-spectrum of any binary operation satisfying the above identity. Here nn−1 shows
up because it is the number of unordered rooted trees with n labeled vertices. The
negated disjunction is commutative and its ac-spectrum reaches the upper bound (2n −
2)!/(2n−1(n − 1)!) for commutative operations. Together with Example 4.2, this com-
pletely describes the ac-spectra of all two-element groupoids.

In Section 7 we obtain a formula involving the Stirling numbers of the second kind for
the ac-spectrum of a binary operation ∗ satisfying the property that any two full linear
terms agree on ∗ if and only if the right depth sequences of their corresponding binary
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trees are congruent modulo k (this is equivalent to the k-associativity mentioned earlier).
An example is given by a ∗ b := a + e2πi/kb, which becomes addition and subtraction
when k = 1 and k = 2. Related to this example is the operation a ∗ b := e2πi/k(a + b).
When k = 2 this becomes the double minus operation a ⊖ b := −a − b whose associative
spectrum is |P∗(n)| = ⌊2n/3⌋ [16, A000975], as shown by Csákány and Waldhauser [2,
§ 5.3] and independently by the first author, Mickey, and Xu [8]. We show that sac

n (⊖) =
(2n − (−1)n)/3, which is the well-known Jacobsthal sequence [16, A001045]. The more
general operation a ∗ b := e2πi/k(a + b) satisfies the k-depth-equivalence studied recently
by the second author. Computations show that neither the associative spectrum nor the
ac-spectrum of this operation is in OEIS [16] when k > 2.

In Section 8, we give remarks and indicate possible directions for further research.

2 Preliminaries

In this section we briefly recall some fundamental concepts that are necessary for our
work and introduce the (fine) associative-commutative spectrum of a groupoid.

Let ∗ be a binary operation on a set G. Then G = (G, ∗) is called a groupoid. Define
N+ := {1, 2, 3, . . .} and [n] := {1, . . . , n}. Let X be a set of variables; some common
choices are Xω := {x1, x2, . . . } and Xn := {x1, . . . , xn} for n ∈ N+. A term over X is
of the form xi1 ∗ · · · ∗ xiℓ with ℓ− 1 pairs of parentheses inserted in a valid way, where
xi1 , . . . , xiℓ ∈ X. We may omit ∗ from a term if there is no confusion to do so.

Let T(X) denote the set of all terms over X. A term t ∈ T(X) is linear if no variable
occurs more than once in t, or full if every variable x ∈ X occurs in t. A full linear
term over Xn can be obtained by inserting n − 1 pairs of parentheses in a valid way
into xσ(1) ∗ · · · ∗ xσ(n) for some permutation σ ∈ Sn. If σ happens to be the identity
permutation then we get a bracketing over Xn. Let Fn and Bn denote the set of all full
linear terms over Xn and the set of all bracketings over Xn, respectively. It is well known
that the number of bracketings over Xn equals the (n − 1)-st Catalan number Cn−1 =
1
n (

2n−2
n−1 ), i.e., |Bn| = Cn−1. Consequently, |Fn| = n!Cn−1.
Each t ∈ Fn corresponds to an n-ary operation tG on G. Given two terms s, t ∈ Fn,

we have an identity s ≈ t satisfied by G if sG = tG. The fine associative-commutative
spectrum (in brief, fine ac-spectrum) of G is the sequence (σac

n (G))n∈N+ , where σac
n (G) is

the set of all (s, t) ∈ Fn with sG = tG. It is clear that σac
n (G) is an equivalence relation

on Fn. The associative-commutative spectrum (in brief, ac-spectrum) of G is the sequence
(sac

n (G))n∈N, where sac
n (G) := |Fn/σac

n (G)|, i.e., the number of equivalence classes of
σac

n (G). Equivalently, sac
n (G) is the number of distinct term operations on G induced

by the full linear terms over Xn, in symbols, sac
n (G) = |FG

n | = |{tG | t ∈ Fn}|. The fine
associative spectrum (σa

n(G))n∈N+ and the associative spectrum (sa
n(G))n∈N+ of G were

defined analogously by Liebscher and Waldhauser [14] by taking bracketings instead of
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full linear terms, i.e., by replacing Fn with Bn in the above definitions. These numbers
satisfy 1 ≤ sa

n(G) ≤ |Bn| = Cn−1 and 1 ≤ sac
n (G) ≤ |Fn| = n!Cn−1. We say G is totally

nonassociative if sa
n(G) = Cn−1 for all n ≥ 1. For notational simplicity, we may write t∗

for tG or sac
n (∗) for sac

n (G).
It is easy to see that isomorphic or antiisomorphic groupoids have the same associa-

tive spectrum and the same ac-spectrum. The following facts follow immediately from
the fact that varieties (classes of groupoids axiomatized by identities) are closed under
homomorphic images, subgroupoids, and direct products.

(i) If A is a homomorphic image of B, then σac
n (A) ⊇ σac

n (B) and sac
n (A) ≤ sac

n (B).
(ii) If A is a subgroupoid of B, then σac

n (A) ⊇ σac
n (B) and sac

n (A) ≤ sac
n (B).

(iii) If C = A × B, then σac
n (C) = σac

n (A) ∩ σac
n (B) and sac

n (C) ≥ max{sac
n (A), sac

n (B)}.
Now let T be a rooted tree, i.e., a tree with a distinguished vertex called the root and

with edges oriented away from the root (usually downward). A vertex in T is a leaf if it
has no children, or an internal vertex otherwise. A rooted tree T is ordered2 if the children
of each internal vertex are linearly ordered, or unordered otherwise. Given an ordered
tree T, the unordered tree obtained from T by simply ignoring the order of children of
each internal vertex is called the underlying unordered tree of T and denoted by Tu. A
rooted tree is labeled if all of its vertices are labeled. Given a vertex v in a rooted tree T,
the subtree of T rooted at v consists of all the vertices and edges weakly below v. A rooted
tree T is a binary tree if each internal vertex has exactly two children. A binary tree is
leaf-labeled if its leaves are labeled. The left subtree TL and right subtree TR of an ordered
binary tree T are the subtrees rooted at the left child and at the right child of the root of
T, respectively. If S and T are two ordered binary trees, then S ∧ T is the ordered binary
tree whose left and right subtrees are S and T, respectively. One can naturally extend
these definitions to unordered binary trees by not distinguishing left and right.

Let T be a binary tree with n leaves labeled 1, . . . , n in some order. The left depth
δT(i), right depth ρT(i), and depth dT(i) of a leaf i in an ordered binary tree T is the
number of left, right, and all steps in the path from the root to the leaf labeled i. This
leads to the left depth sequence δT := (δT(1), . . . , δT(n)), the right depth sequence ρT :=
(ρT(1), . . . , ρT(n)) and the depth sequence dT := (dT(1), . . . , dT(n)) of T. If the leaves of t
are labeled 1, . . . , n from left to right, then each sequence above determines the ordered
binary tree T uniquely [2, 5, 8]. The depth sequence can also be defined for unordered
leaf-labeled binary trees.

There is a bijection between the set T(X) of all terms over X and the set of ordered
binary trees with leaves labeled by the variables in X (if X = Xω then we may identify a
label xi with i), defined recursively as follows: each variable x ∈ X corresponds to a tree
with just one vertex labeled with x, and if the terms t1 and t2 correspond to trees T1 and

2Ordered trees are often called plane trees since a plane embedding of a tree induces a cyclic ordering of
the neighbours of each vertex; moreover, if the root is drawn at the top – following our drawing convention
– then the embedding specifies a linear ordering for the children of each internal vertex.
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T2, respectively, then the term (t1t2) corresponds to the tree T1 ∧ T2. We write Tt for the
binary tree corresponding to the term t via this bijection, and we write tT for the term
corresponding to the binary tree T via its inverse map.

3 Free groupoids

In this section we show that the various upper bounds for the associative-commutative
spectra mentioned in Section 1 can be achieved by certain free groupoids.

Recall that a groupoid G = (G, ∗) is a set G with a single binary operation ∗. A
groupoid is commutative if it satisfies the identity x ∗ y ≈ y ∗ x (commutative law), and it is
associative if it satisfies the identity x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z (associative law). An associative
groupoid is called a semigroup. The free semigroup over X is isomorphic to the semigroup
X+ = (X+, ·) of nonempty words over X endowed with the operation · of concatenation.

We first show that the upper bound sac
n (G) ≤ n!Cn−1 for the ac-spectrum sac

n (G) of an
arbitrary groupoid G becomes an equality when G is the free groupoid on one generator.

Proposition 3.1. If G is a free groupoid with one generator then sac
n (G) = n!Cn−1 for all n ≥ 1.

If G is a semigroup then sac
n (G) ≤ n! for all n ∈ N+, since all bracketings over Xn

induce the same term operation on G and it is only the order of variables in a full linear
term that matters. We show that the equality in this upper bound holds when G is the
free semigroup with two generators. Note that the ac-spectrum of the free semigroup
with one generator is the constant 1 sequence.

Proposition 3.2. If G is a free semigroup with two generators then sac
n (G) = n! for all n ≥ 1.

If G is a commutative groupoid then sac
n (G) is bounded above by the number (2n −

2)!/(2n−1(n − 1)!) of unordered binary trees with n labeled leaves [16, A001147], i.e., the
solution to Schröder’s third problem; see, e.g., Stanley [17, p. 178].

Proposition 3.3. If G is a free commutative groupoid with one generator then its ac-spectrum
achieves the above upper bound: sac

n (G) = (2n − 2)!/(2n−1(n − 1)!) for all n ≥ 1.

4 Associative or commutative groupoids

In this section we study the ac-spectra of some associative or commutative groupoids.
First assume that ∗ is an associative binary operation on a set G, i.e., G = (G, ∗) is a

semigroup. We know that the upper bound sac
n (G) ≤ n! is reached by the free semigroup

with two generators (Proposition 3.2). Now we provide another example of a family of
groupoids for which this upper bound is achieved.

Recall that a monoid is a semigroup G = (G, ∗) with a neutral element (or identity
element), i.e., an element e ∈ G such that e ∗ x = x = x ∗ e for all x ∈ G.
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Proposition 4.1. If G = (G, ∗) is a noncommutative monoid, then sac
n (G) = n! for all n ≥ 1.

The above proposition would no longer be true if we omitted the assumption that the
groupoid has a neutral element, as shown by the following example.

Example 4.2. Csákány and Waldhauser [2, Section 4] determined the associative spec-
trum of every two-element groupoid. Such a groupoid is isomorphic or anti-isomorphic
to G = ({0, 1}, ∗), where x ∗ y is defined as one of the following: (1) 1, (2) x, (3) min{x, y},
(4) x + y (mod 2), (5) x + 1 (mod 2), (6) x ↓ y (negated disjunction, NOR) or (7) x → y
(implication). We have sac

n (G) = 1 for all n ∈ N+ if ∗ defined by (1), (3), or (4) since
∗ is both associative and commutative in these three cases. The operation ∗ defined by
(2) is associative but not commutative, and we have sac

n (G) = n for all n ∈ N+. For the
operation ∗ defined by (5), we can show that sac

1 (G) = 1, sac
2 (G) = 2, and sac

n (G) = 2n
for all n ≥ 3. The groupoids given by (6) and (7) are totally nonassociative and their
ac-spectra will be determined in Section 6.

Assume that G = (G, ∗) is a commutative groupoid. Recall that we have an up-
per bound sac

n (G) ≤ (2n − 2)!/(2n−1(n − 1)!) which is attained by a free commutative
groupoid with one generator (Proposition 3.3). The following lemma shows that any
commutative groupoid G reaching this upper bound must be totally nonassociative.

Lemma 4.3. Let G = (G, ∗) be a commutative groupoid. If sac
n (G) = (2n− 2)!/(2n−1(n− 1)!)

for n ∈ N+, then G is totally nonassociative, i.e., sa
n(G) = Cn−1 for all n ∈ N+.

The converse of Lemma 4.3 does not hold. If ∗ is the arithmetic, geometric, or har-
monic mean, then sa

n(∗) = Cn−1 for all n ≥ 1 (see Csákány and Waldhauser [2]). How-
ever, as we are going to show next, its ac-spectrum agrees with an interesting sequence
in OEIS [16, A007178], which enumerates different ways to write 1 as an ordered sum of
n powers of 2 (i.e., compositions of 1 into powers of 2) and is also related to the prefix codes
or Huffman codes (see, e.g., Even and Lempel [3], Giorgilli and Molteni [4], Knuth [9],
Krenn and Wagner [10] and Lehr, Shallit and Tromp [11]).

Proposition 4.4. If ∗ is the arithmetic mean on R or the geometric/harmonic mean on R+ then
sac

n (∗) equals the number of ways to write 1 as an ordered sum of n powers of 2 for all n ≥ 1.

Proposition 4.5. For the rock-paper-scissors operation ∗ defined on {rock, paper, scissors} by
x ∗ y = y ∗ x := x if x beats y or x = y (rock beats scissors, scissors beat paper, and paper beats
rock) we have sac

n (∗) = (2n − 2)!/(2n−1(n − 1)!) and sa
n(∗) = Cn−1 for all n ≥ 1.

We next study nonassociative commutative groupoids with neutral elements. An
example is the Jordan algebras of n × n self-adjoint matrices over R, C, or H (the algebra
of quaternions) with a product defined by x ◦ y := (xy + yx)/2. The identity matrix In
is the neutral element for this commutative algebra.

Theorem 4.6. Let G = (G, ∗) be a commutative groupoid with neutral element e. Then either
(i) G is associative, in which case sa

n(G) = sac
n (G) = 1 for all n ≥ 1, or

(ii) sa
n(G) = Cn−1 and sac

n (G) = (2n − 2)!/(2n−1(n − 1)!) for all n ≥ 1.
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5 Anticommutative algebras

We now turn our attention to ac-spectra of bilinear products in algebras over a field. An
algebra over a field F of characteristic not 2 is anticommutative if it satisfies the identity
xy ≈ −yx, which implies the identity xx ≈ 0 since xx ≈ −xx.

Given an anticommutative algebra over a field, we can turn the product ∗ into a
commutative bilinear product ⊛ as follows. Let A be the universe of the algebra. Let
g be any choice function on the collection C := {{a,−a} | a ∈ A} and let f : A → C,
f (a) := {a,−a}. (Recall that a choice function on a collection C of subsets of some base
set X is a mapping g : C → X such that g(S) ∈ S for every S ∈ C. Note that any
map f arising in this way is even, i.e., it satisfies f (a) = f (−a) for all a ∈ A.) Now
we can fix a basis B of the vector space A, and for all basis vectors a, b ∈ B, we define
a ⊛ b := g( f (a ∗ b)). This partial operation extends to a commutative bilinear product
on A. (It is well known that any partial operation on A with domain B extends in a
unique way to a bilinear product on A, and a bilinear product is commutative if and
only if its restriction to the basis is commutative.) Such a product ⊛ will be referred to
as a commutative version of ∗.

Theorem 5.1. Let ∗ be the bilinear product of an anticommutative algebra over a field with a
commutative version ⊛ satisfying s⊛ ̸= ±t⊛ for any terms s, t ∈ Fn with Tu

s ̸= Tu
t . Then

(i) sac
n (⊛) = (2n − 2)!/(2n−1(n − 1)!) and sa

n(⊛) = Cn−1 for all n ≥ 1;
(ii) sac

n (∗) = 2sac
n (⊛) for all n ≥ 2 and sa

n(∗) = Cn−1 for all n ≥ 1.

Since the cross product is anticommutative, we can determine its ac-spectrum by us-
ing a commutative operation associated with it. Define ⋊⋉ on a three-dimensional real
vector space V with a basis {u, v, w} by letting x ⋊⋉ x := 0 for all x ∈ {u, v, w} and
x ⋊⋉ y := z for all distinct x, y ∈ {u, v, w}, where z ∈ {u, v, w} \ {x, y}, and extending
this bilinearly from {u, v, w} to V. This operation occurs in recent studies of the Norton
algebras of certain distance regular graphs and it is commutative and totally nonasso-
ciative [7, Example 3.11, Remark 5.10].

Corollary 5.2. For the cross product × on R3 and its commutative version ⋊⋉, we have
(i) sac

n (⋊⋉) = (2n − 2)!/(2n−1(n − 1)!) for all n ≥ 1,
(ii) sac

n (×) = 2sac
n (⋊⋉) = (2n − 2)!/(2n−2(n − 1)!) for all n ≥ 2, and

(iii) sa
n(×) = sa

n(⋊⋉) = Cn−1 for all n ≥ 1.

Now we study Lie algebras. A triple (e, f , h) of nonzero elements of a Lie algebra
is called an sl2-triple if [e, f ] = h, [h, e] = 2e, and [h, f ] = −2 f . It is well known that
sl2-triples exist in every semisimple Lie algebra over a field of characteristic zero.

Corollary 5.3. Let L be a Lie algebra over a field of characteristic distinct from 2 with an sl2-
triple. For the Lie bracket [−,−] of L, it holds that sac

n ([−,−]) = (2n − 2)!/(2n−2(n − 1)!) for
all n ≥ 2 and sa

n([−,−]) = Cn−1 for all n ≥ 1.
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6 Totally nonassociative operations

In this section we focus on the ac-spectra of some totally nonassociative operations that
are not commutative or anticommutative. Recall that a binary operation ∗ is said to
be totally nonassociative if sa

n(∗) = Cn−1 for all n ≥ 1. The arithmetic, geometric, and
harmonic means, the cross product on R3, and the Lie brackets of Lie algebras over
fields of characteristic distinct from 2 with an sl2-triple are all totally nonassociative
and their ac-spectra have been determined in earlier sections. There are many other
examples of totally nonassociative operations [2, 7]. We will study the exponentiation,
the implication, and the negated disjunction (NOR) in this section.

Recall that any binary operation ∗ satisfies sac
n (∗) ≤ n!Cn−1 for all n ≥ 1, and the

equality is achieved by the free groupoid on one generator (Proposition 3.1). We show
that if ∗ is the exponentiation then sac

n (∗) is strictly less than this upper bound.

Proposition 6.1. Let G = (G, ∗) be a groupoid satisfying the identity (xy)z ≈ (xz)y. If
s, t ∈ T(Xω) are linear terms such that the corresponding ordered labeled trees Ps and Pt have
equal underlying unordered trees, i.e., Pu

s = Pu
t , then sG = tG. (See Section 2 for definitions.)

Consequently, sac
n (G) ≤ nn−1. Moreover, if the equality holds, then sa

n(G) = Cn−1.

Proposition 6.2. For G = (R≥0, ∗), where ∗ is the exponentiation operation defined by a ∗ b :=
ab for all a, b ∈ R≥0, we have sac

n (G) = nn−1.

Next we study the implication → defined on {0, 1} by x → y := 0 if (x, y) = (1, 0) or
x → y := 1 otherwise.

Proposition 6.3. For G = ({0, 1},→), we have sac
n (G) = nn−1.

Now we study the ac-spectrum of the groupoid G = ({0, 1}, ↓), where ↓ is the negated
disjunction (NOR), defined by the rule x ↓ y = 1 if and only if x = y = 0.

Proposition 6.4. For G = ({0, 1}, ↓), we have sac
n (G) = (2n − 2)!/(2n−1(n − 1)!).

7 Depth equivalence relations

In this section we study binary operations ∗ satisfying the property that two full linear
terms agree on ∗ if and only if their corresponding binary trees are equivalent with
respect to certain attributes related to the depths of the leaves.

A groupoid G = (G, ∗) and the corresponding binary operation ∗ are said to be right
k-associative if G satisfies the identity ([x1x2 · · · xk+1]Rxk+2) ≈ (x1[x2 · · · xk+2]R), where
[· · · ]R is a shorthand for the rightmost bracketing of the variables occurring between the
square brackets, e.g., [x1x2 · · · xk+1]R = (x1(x2(· · · (xkxk+1) · · · ))). Typical examples of
k-associative operations are the ones defined by a ∗ b := a + ωb for all a, b ∈ C, where
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ω = e2πi/k is a k-th primitive root of unity. This reduces to addition and subtraction
when k = 1, 2, respectively. One can also define the left k-associativity similarly. The left
or right k-associativity becomes the usual associativity when k = 1.

Previous work [5] showed that the equivalence relation on binary trees induced by
the left k-associativity is the same as the congruence relation on the left depth sequences
of binary trees modulo k; this is called the k-left-depth-equivalence relation by the second
author. The number of equivalence classes is called the k-modular Catalan number, which
counts many restricted families of Catalan objects and has interesting closed formu-
las [5]. Of course, the right k-associativity corresponds to the k-right-depth-equivalence
relation, whose equivalence classes are also counted by the k-modular Catalan number.

Now we consider a stronger form of the right k-associativity. The k-right-depth-
equivalence relation extends immediately from binary trees with unlabeled leaves to
ones with labeled leaves. Let T and T′ be binary trees with n leaves labeled by x1, . . . , xn
(in an arbitrary order). We say that T and T′ are k-right-depth-equivalent if ρT(xi) ≡ ρT′(xi)
(mod k) for all i ∈ [n], i.e., the right-depth sequences ρT and ρT′ are componentwise
congruent modulo k. Suppose that a binary operation ∗ satisfies the property that any
two full linear terms agree on ∗ if and only if Ts and Tt are k-right-depth-equivalent, i.e.,

∀s, t ∈ Fn, s∗ = t∗ ⇐⇒ ρTs(xi) ≡ ρTt(xi) (mod k), i = 1, 2, . . . , n. (7.1)

It is clear that such a binary operation ∗ must be k-right-associative. The above example
a ∗ b := a + e2πi/kb satisfies property (7.1) and another example is given by f ∗ g :=
x f + yg for all x, y ∈ C[x, y]/(yk − 1) [6]. The associative spectrum of these examples
is given by the k-modular Catalan numbers mentioned above. We determine the ac-
spectrum sac

n (∗) of a binary operation ∗ satisfying property (7.1). If k = 1 then we clearly
have sac

n (∗) = 1 for all n ≥ 1. Thus we assume k ≥ 2 in the remainder of this section.
For k = 2 we are looking at subtraction. We have sac

n (−) = 2n − 2 for n ≥ 2 since
the term operations in F−

n are precisely the operations of the form (a1, . . . , an) 7→ ±a1 ±
a2 · · · ± an with at least one plus sign and at least one minus sign. For k ≥ 2 we need
to use the Stirling number of the second kind S(n, k), which counts partitions of the set
[n] = {1, 2, . . . , n} into k (unordered) blocks.

Theorem 7.1. Let ∗ be a binary operation satisfying property (7.1) with k ≥ 2. Then

sac
n (∗) = k!S(n, k) + n ∑

0≤i≤k−2
i!S(n − 1, i), ∀n ≥ 1.

Remark 7.2. When k = 3 we have n ∑1≤i≤k−2 i!S(n − 1, i) = n for all n ≥ 2. When k = 4,
the sequence n ∑1≤i≤k−2 i!S(n − 1, i) is recorded in OEIS [16, A058877] and has simple
closed formulas: n2n−1 − n = ∑1≤j≤n(n − 2 + j)2n−j−1 = ∑1≤j≤n−1 (

n
j)(n − j).

Recently, Hein and the first author [6] generalized the k-associativity to the (k, ℓ)-
associativity, based on the example f ∗ g := x f + yg for all x, y ∈ C[x, y]/(xk − 1, yℓ − 1),
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which satisfies the following for i = 1, 2, . . . , n.

∀s, t ∈ Fn, s∗ = t∗ ⇐⇒ δTs(xi) ≡ δTt(xi) (mod k), ρTs(xi) ≡ ρTt(xi) (mod ℓ) (7.2)

For ∗ satisfying the above property (7.2), computations show that sac
n (∗) is not in OEIS.

Next, define a ∗ b := e2πi/ℓa + e2πi/kb for all a, b ∈ C, which generalizes the example
a ∗ b := a + e2πi/kb mentioned earlier. When k = ℓ, one sees that two full linear terms
agree on ∗ if and only if their corresponding binary trees are k-depth-equivalent, i.e.,

∀s, t ∈ Fn, s∗ = t∗ ⇔ dTs(xi) ≡ dTt(xi) (mod k). (7.3)

Further generalizations of depth equivalence were studied recently by the second author.
For k = 2, the resulting operation is the double minus operation a ⊖ b := −a − b. The

first author, Mickey, and Xu [8] showed that sa
n(⊖) coincides with an interesting sequence

in OEIS [16, A000975]. We show that sac
n (⊖) (or the ac-spectrum of any binary operation

satisfying property (7.3) with k = 2) agrees with the well-known Jacobsthal sequence [16,
A001045]. For k ≥ 3, computations show that neither sa

n(∗) nor sac
n (∗) occurs in OEIS.

Theorem 7.3. For n ≥ 1 we have sac
n (⊖) = (2n − (−1)n)/3.

8 Remarks and questions

Csákány and Waldhauser [2, Section 4] examined the associative spectra of all two-
element groupoids (up to isomorphism). The ac-spectra of two-element groupoids are
given in Example 4.2, Proposition 6.3 and Proposition 6.4. As possible directions for
further research, one could study the associative spectra and the ac-spectra of groupoids
with three elements or groupoids satisfying some properties weaker than associativity,
such as alternative, flexible, or power associative groupoids. We already studied the
Jordan algebra in Section 4, which is commutative (hence flexible), power associative,
but not associative. Another example is the Okubo algebra, which is flexible and power
associative but not associative nor alternative.
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