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Automorphisms of undirected Bruhat graphs
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Abstract. The undirected Bruhat graph Γ(u, v) has the elements of the Bruhat inter-
val [u, v] as vertices, with edges given by multiplication by a reflection. Famously,
Γ(e, v) is regular if and only if the Schubert variety Xv is smooth, and this condition
on v is characterized by pattern avoidance. In this work, we classify when Γ(e, v) is
vertex-transitive; surprisingly this class of permutations is also characterized by pattern
avoidance and sits nicely between the classes of smooth permutations and self-dual
permutations. This leads us to a general investigation of automorphisms of Γ(u, v)
in the course of which we show that special matchings, which originally appeared in
the theory of Kazhdan–Lusztig polynomials, can be characterized, for the symmet-
ric and right-angled groups, as certain Γ(u, v)-automorphisms which are conjecturally
sufficient to generate the orbit of e under Aut(Γ(e, v)).
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1 Introduction

The (directed) Bruhat graph Γ̂ of a Coxeter group W is the directed graph with vertex set W
and directed edges w → wt whenever ℓ(wt) > ℓ(w) and t is a reflection. Write Γ̂(u, v) for
its restriction to a Bruhat interval [u, v] ⊂ W, and simply Γ̂(v) for its restriction to [e, v].
These graphs appear ubiquitously in the combinatorics of Coxeter groups and Bruhat
order [14], the topology of flag, Schubert, and Richardson varieties as the GKM-graph
for the natural torus action [17, 18], and in the geometry of these varieties and related
algebra, for example in the context of Kazhdan–Lusztig polynomials [4, 5, 12, 13].

In all of these contexts, the directions of the edges, and sometimes additional edge
labels, are centrally important. In this work, however, we study the associated undirected
graphs Γ(u, v) and Γ(v) := Γ(e, v). In particular, from the perspective of the undirected
graph, it is very natural to study graph automorphisms (in contrast, the directed Bruhat
graph Γ̂ has very few automorphisms [23]), and these automorphisms end up having
close connections to previous work on smooth Schubert varieties [20, 9], self-dual Bruhat
intervals [15], Billey–Postnikov decompositions [2, 22], and special matchings [8].
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1.1 Regular, vertex-transitive, and self-dual Bruhat graphs

The following well-known theorem, combining results of Lakshmibai–Sandhya [20] and
Carrell–Peterson [9], helped establish the fundamental nature of both the Bruhat graph
and pattern avoidance conditions in the combinatorial and geometric study of Schubert
varieties.

Theorem 1 (Lakshmibai–Sandhya [20], Carrell–Peterson [9]). The following are equivalent
for a permutation w in the symmetric group Sn:

(S1) the undirected Bruhat graph Γ(w) is a regular graph,

(S2) the permutation w avoids the patterns 3412 and 4231,

(S3) the poset [e, w] is rank-symmetric, and

(S4) the Schubert variety Xw is smooth.

In light of (S3), it is natural to ask whether [e, w] is in fact self-dual as a poset when
Xw is smooth. This turns out to not always be the case, but the smaller class of self-dual
intervals also admits a nice characterization by pattern avoidance:

Theorem 2 (G.–G. [15]). The following are equivalent for a permutation w ∈ Sn:

(SD1) the Bruhat interval [e, w] is self-dual as a poset, and

(SD2) the permutation w avoids the patterns 3412 and 4231 as well as 34521, 54123, 45321,
and 54312.

In our first main theorem here, we characterize by pattern avoidance those permuta-
tions w such that Γ(w) is vertex-transitive; this characterization implies that this class of
permutations sits nicely between the classes of self-dual permutations (Theorem 2) and
smooth permutations (Theorem 1).

Theorem 3. The following are equivalent for a permutation w ∈ Sn:

(VT1) the undirected Bruhat graph Γ(w) is a vertex-transitive graph,

(VT2) the permutation w avoids the patterns 3412 and 4231 as well as 34521 and 54123.

The proof of Theorem 3 is quite technical and is omitted in this extended abstract.
Since vertex-transitive graphs are necessarily regular, it is clear that the permutations

from Theorem 3 are a subset of those from Theorem 1, and this is borne out by comparing
conditions (S2) and (VT2). It is not at all conceptually clear, however, why the self-dual
permutations of Theorem 2 should in turn be a subset of those from Theorem 3, even
though this fact is easily seen by comparing conditions (VT2) and (SD2). A conceptual
bridge between these two classes of permutations is provided by Conjecture 1.
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Conjecture 1. Let w ∈ Sn and let O = {φ(e) | φ ∈ Aut(Γ(w))} be the orbit of the identity
under graph automorphisms of Γ(w), then O = [e, v] for some v ≤ w.

Indeed, if [e, w] is self-dual, then w ∈ O, and so if Conjecture 1 holds we must have
O = [e, w]. That is, Γ(w) must be vertex-transitive.

In the course of the proof of Theorem 3 and the refinement (see Section 3) of Con-
jecture 1, we are led to consider certain automorphisms of Γ(u, v) arising from perfect
matchings on the Hasse diagram of [u, v]. That these automorphisms are the same thing
as the previously well-studied special matchings on [u, v] is the subject of our second main
theorem.

1.2 Special matchings and Bruhat automorphisms

Special matchings (see the definition in Section 2.3) on Bruhat intervals were introduced [6,
8] because they can be used to define a recurrence for Kazhdan–Lusztig R-polynomials [19]
which allows for the resolution of the Combinatorial Invariance Conjecture in the case of
lower intervals [e, w]. These matchings are intended to generalize many of the combina-
torial properties of the matching on W induced by multiplication by a simple reflection
s. Special matchings on Bruhat intervals and related posets have since found several
other combinatorial and topological applications and been generalized in several ways
[1, 7, 21], and are completely classified on lower Bruhat intervals. [11].

In Theorem 4 and Conjecture 2 below we give a new characterization of special
matchings of Bruhat intervals [u, v] in terms of automorphisms of Γ(u, v). This char-
acterization is notable because it expresses the special matching condition, originally
formulated as a condition only on Bruhat covers, as a condition on the global structure
of the undirected Bruhat graph.

A Coxeter group W is called right-angled if every pair of simple generators either
commutes or generates an infinite dihedral group.

Theorem 4. Let W be a right-angled Coxeter group or the symmetric group and let u ≤ v be
elements of W. Then a perfect matching of the Hasse diagram of [u, v] is a special matching if
and only if it is an automorphism of Γ(u, v).

Conjecture 2. Theorem 4 holds for arbitrary Coxeter groups W.

1.3 Outline

In Section 2, we cover background and definitions relating to Coxeter groups, Bruhat
order and Bruhat graphs, Billey–Postnikov decompositions, and special matchings. In
Section 3 we give a more precise version of Conjecture 1 in terms of almost reducible de-
compositions and some partial results towards resolving the conjecture. Section 4 outlines
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the proof of Theorem 4. The proof of Theorem 4 relies on a structural property of Bruhat
order, the existence of upper bounds of butterflies, which may be of independent interest.
Most of the proofs are omitted for this extended abstract, notably including those of
Theorem 3, Theorem 7, Proposition 4, Lemma 1 and Lemma 3. Readers may refer to [16]
for additional details.

2 Background and definitions

2.1 Bruhat graphs and Bruhat order

The directed Bruhat graph Γ̂ of a Coxeter group W is the directed graph with vertex set W
and directed edges w → wt whenever t is a reflection with ℓ(wt) > ℓ(w). Note that, since
T is closed under conjugation, the “left" and “right" versions of Γ̂ in fact coincide. The
(undirected) Bruhat graph Γ is the associated simple undirected graph. The directed graph
Γ̂ is much more commonly considered in the literature, and often called “the Bruhat
graph" but, since our focus in this work is on the undirected graph Γ, when directedness
is not specified we mean the undirected graph.

The (strong) Bruhat order (W,≤) is the partial order on W obtained by taking the
transitive closure of the relation determined by Γ̂. We write [u, v] for the interval {w ∈
W | u ≤ w ≤ v} in Bruhat order. For u ≤ v, we write Γ̂(u, v) and Γ(u, v) for the
restrictions of Γ̂, Γ to the vertex set [u, v]; when u is the identity element e, we sometimes
write simply Γ̂(v) and Γ(v).

Fundamental properties of Bruhat order can be found in [3].
For w ∈ W, we write Supp(w) for the support of w: the set of simple reflections

appearing in some (equivalently, every) reduced word for w. We say the element w ∈ W
has a disjoint support decomposition if it may be expressed as a nontrivial product w =
w′w′′ with Supp(w′) ∩ Supp(w′′) = ∅ (note that, in this case, we have w′ = wJ and
w′′ = wJ with J = Supp(w′′)).

Proposition 1. Let w = w′w′′ be a disjoint support decomposition, then:

Γ̂(w) ∼= Γ̂(w′)× Γ̂(w′′),
Γ(w) ∼= Γ(w′)× Γ(w′′),
[e, w] ∼= [e, w′]× [e, w′′].

In each case, the isomorphism is given by group multiplication.

Proposition 1 implies that when w = w′w′′ is a disjoint support decomposition,
Γ(w), Γ̂(w), and [e, w] have automorphisms induced by automorphisms for w′, w′′.
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2.2 Billey–Postnikov decompositions

Definition 1 (Billey–Postnikov [2], Richmond–Slofstra [22]). Let W be a Coxeter group and
J ⊆ S, the parabolic decomposition w = wJwJ of w is a Billey–Postnikov decomposition or
BP-decomposition if

Supp(wJ) ∩ J ⊆ DL(wJ).

BP-decompositions were introduced by Billey and Postnikov in [2] in the course of
their study of pattern avoidance criteria for smoothness of Schubert varieties in all finite
types. The following characterizations of BP-decompositions will be useful to us.

Proposition 2 (Richmond–Slofstra [22]). For w ∈ W and J ⊆ S, the following are equivalent:

1. w = wJwJ is a BP-decomposition,

2. the multiplication map
(
[e, wJ ] ∩ W J)× [e, wJ ] → [e, w] is a bijection,

3. wJ is the maximal element of WJ ∩ [e, w].

2.3 Special matchings

The Hasse diagram, denoted H(P), of a poset P is the undirected graph with vertex set P
and edges (x, y) whenever x ⋖P y is a cover relation in P. Note that the Hasse diagram
H(W) of Bruhat order on W is a (non-induced) subgraph of Γ. A perfect matching of a
graph G is a fixed-point-free involution M : G → G such that (x, M(x)) is an edge of G
for all x ∈ G.

Definition 2 (Brenti [6], Brenti–Caselli–Marietti [8]). A perfect matching M on the Hasse
diagram of a poset P is a special matching if, for every cover relation x ⋖P y, either M(x) = y
or M(x) <P M(y).

For u ≤ v ∈ W it is not hard to check, using the Lifting Property, that for s ∈
DL(v) \ DL(u) (resp. s ∈ DR(v) \ DR(u)) left (resp. right) multiplication by s determines
a special matching of the Hasse diagram H([u, v]). In fact, this motivated the definition
of special matching [6]. Proposition 3 below, a special case of the classification by Caselli
and Marietti [10, 11] of special matchings of lower Bruhat interval, observes that middle
multiplication is also a special matching for lower intervals.

Proposition 3 (Special case of Theorem 5.1 in [10]). Suppose w = wJwJ is a BP-decom-
position of w and in addition we have Supp(wJ) ∩ Supp(wJ) = {s}, then the middle multipli-
cation map

ϕ : x 7→ x JsxJ ,

is a special matching of [e, w].
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2.4 From special matchings to Bruhat automorphisms

The following result of Waterhouse shows that Γ̂ has no nontrivial automorphisms as a
directed graph.

Theorem 5 (Waterhouse [23]). Let W be an irreducible Coxeter group which is not dihe-
dral, then Aut((W,≤)) (equivalently, Aut(Γ̂)) is generated by the graph automorphisms of
the Dynkin diagram of W and the group inversion map on W.

In this paper we study the much richer sets of automorphisms of Γ and particularly
of its subgraphs Γ(u, v). Although it is stated only for lower intervals [e, v], the proof of
Theorem 10.3 in [8] also applies to general intervals [u, v] and yields Theorem 6 below:

Theorem 6 (Theorem 10.3 of [8]). Let u ≤ v be elements of a Coxeter group W. Any special
matching M of the Hasse diagram H([u, v]) is an automorphism of Γ(u, v).

Corollary 1. Let w ∈ W. If s ∈ DL(w) (resp. DR(w)) then left (resp. right) multiplication
by s is an automorphism of Γ(w). If w = wJwJ is a BP-decomposition of w with Supp(wJ) ∩
Supp(wJ) = {s}, then middle multiplication by s is an automorphism of Γ(w).

Theorem 6 provides one direction of Theorem 4 and Conjecture 2 for arbitrary Cox-
eter groups. This implies that special matchings on Bruhat intervals, although defined
by a local condition (that is, a condition on cover relations), respect the global structure
of Bruhat graphs. The reverse direction is the subject of Section 4.

3 Identity orbits in Bruhat graphs

We describe a more precise version of Conjecture 1, taking into account the automor-
phisms described in Section 2.4 and Theorem 3. In light of Proposition 1, it is sufficient
to consider permutations w ∈ Sn which have full support and do not admit a disjoint
support decomposition; we call such permutations Bruhat irreducible.

Definition 3. A Bruhat irreducible permutation w ∈ Sn is almost reducible at (J, i) if w =
wJwJ is a BP-decomposition with Supp(wJ) ∩ J = {si} and si /∈ DL(w), DR(w).

Definition-Proposition 1. If a Bruhat irreducible w ∈ Sn is almost reducible at (J, i), then
J = {s1, . . . , si} or {si, . . . , sn−1}. We say it is left-almost-reducible at i if J = {s1, . . . , si},
and right-almost-reducible at i if J = {si, . . . , sn−1}.

Definition 4. For a Bruhat irreducible permutation w ∈ Sn, let

{i1 < · · · < ik} = {i | w is right-almost-reducible at i}

and define AR(w) := si1 · · · sik . Similarly, let {j1 < · · · < jt} be the set of j at which w is
left-almost-reducible and define AL(w) := sjt · · · sj1 .
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Theorem 7. Let w be Bruhat irreducible. Then the following three elements commute pairwise:

AR(w), AL(w), w0(DL(w) ∩ DR(w)).

The following is a strengthened version of Conjecture 1.

Conjecture 3. Let w ∈ Sn be Bruhat irreducible and let O denote the orbit of e under graph
automorphisms of Γ(w). Define

v(w) := w0(DL(w)) · AR(w) · w0(DL(w) ∩ DR(w)) · AL(w) · w0(DR(w)),

then O = [e, v(w)].

Proposition 4. Let w ∈ Sn be Bruhat irreducible and such that Γ(w) is vertex-transitive, then
v(w) = w, so Conjecture 3 holds in this case.

The following proposition shows that the element v(w) is indeed in the identity orbit
of Γ(w). An automorphism of Γ(w) sending e to v(w) may be obtained by composing
various left, right, and middle multiplication automorphisms (see Section 2.4).

Proposition 5. Let w ∈ Sn be Bruhat irreducible and let O be the orbit of e under graph
automorphisms of Γ(w), then v(w) ∈ O.

4 From Bruhat automorphisms to special matchings via
butterflies

In Theorem 8 below we give a converse to Theorem 6 for certain Coxeter groups. Theo-
rem 6 and Theorem 8 together imply Theorem 4.

Theorem 8. Let u ≤ v be elements of a Coxeter group W which is right-angled or a symmetric
group, then any perfect matching of H([u, v]) which is an automorphism of Γ(u, v) is a special
matching.

The proof of Theorem 8 relies on Lemma 1, a structural property of Bruhat order
involving butterflies.

Definition 5. We say that elements x1, x2, y1, y2 of a Coxeter group W form a butterfly if
x1 ⋖ y1, y2 and x2 ⋖ y1, y2.

The butterfly structures are essential to the analysis of Bruhat automorphisms and
special matchings, and are of interest on their own.

Lemma 1. Let W be a Coxeter group which is right-angled or the symmetric group, and suppose
that x1, x2, y1, y2 ∈ [u, v] form a butterfly. Then there is an element z ∈ [u, v] with y1, y2 ⋖ z.
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Proof of Theorem 8 given Lemma 1. Let u ≤ v be elements of a Coxeter group W which is
right-angled or the symmetric group, and let M be a perfect matching of H([u, v]) which
is an automorphism of Γ(u, v). Suppose that M is not a special matching; since M is
a Γ(u, v)-automorphism, the violation of the special matching property must consist of
elements x ⋖ y with M(y)⋖ M(x). Choose x, y so that y has maximal length among all
such violations in [u, v].

Now, note that x, M(y), y, M(x) form a butterfly, so by Lemma 1 there exists an
element z ∈ [u, v] with y, M(x) ⋖ z. We must have M(z) > z, for otherwise each of
y, M(x), and M(z) would each cover both x and M(y), but this substructure cannot
occur in Bruhat order of a Coxeter group (see Theorem 3.2 of [8]). Since height-two
intervals in Bruhat order are diamonds (see Chapter 2 of [3]), there exists an element
w ̸= z with y ⋖ w ⋖ M(z).

Suppose that M(w) < w, then since M is an automorphism of the Bruhat graph we
must have M(w) ⋖ z and M(y) ⋖ M(w). Now, since y ⋖ z, we know M(y) → M(z)
in Γ̂(u, v), but the height-three interval [M(y), M(z)] contains at least three elements—
y, M(w), and M(x) at height one, contradicting Proposition 3.3 of [14].

We conclude that w ⋖ M(w). However this too is a contradiction, since w ⋖ M(z) is
a violation of the special matching condition with ℓ(M(z)) > ℓ(y). Thus M must be a
special matching.

We conjecture that a slight weakening of Lemma 1 holds for arbitrary Coxeter groups.

Conjecture 4. Let W be any Coxeter group, and suppose that the elements x1, x2, y1, y2 ∈ [u, v]
form a butterfly. Then there is an element z ∈ [u, v] with y1, y2 ⋖ z or with z ⋖ x1, x2.

Remark 1. The weakening of Lemma 1 conjectured for general Coxeter groups in Conjecture 4
is necessary even for finite Coxeter groups. For example, the finite Coxeter group of type F4 has a
butterfly:

x1 = s2s3s4s2s3s1s2s3s4s3s2s3s1s2s3s1s2,
x2 = s3s2s3s4s3s2s3s1s2s3s4s2s3s1s2s3s2,
y1 = s2s3s1s2s3s4s3s2s3s1s2s3s4s2s3s1s2s3,
y2 = s3s2s3s4s3s2s3s1s2s3s4s2s3s1s2s3s1s2,

which has a lower bound z = s2s3s4s2s3s1s2s3s4s3s2s3s1s2s3s2 ⋖ x1, x2 but no upper bound
y1, y2 ⋖ z′. See Figure 1 for a Bruhat interval that contains z ⋖ x1, x2 ⋖ y1, y2.

We end with a few more structural results concerning butterflies, in the setting of
finite Weyl groups.

Lemma 2. In a finite Weyl group, w ⋖ wsα if and only if α /∈ InvR(w) and there does not
exist β1, β2 ∈ InvR(w) such that β2 = −sαβ1. Moreover, if w ⋖ wsα and β ∈ Φ+ satisfies
sαβ ∈ Φ−, then β ∈ InvR(w) if and only if β ∈ InvR(wsα).
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•
• • • •

• • • • • •
• • • •

•

x1 x2

y1 y2

z

Figure 1: A butterfly in F4 which does not admit an upper bound.

Lemma 3. Let W be a finite Weyl group of simply-laced type, and let x1, x2 ⋖ y1, y2 form a
butterfly. Then there exists u ⋖ x1, x2 and z ⋗ y1, y2 in W.
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