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Extremal tensor products of Demazure crystals
are direct sums of Demazure crystals
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Abstract. We give a new necessary and sufficient condition for when tensor products
of Demazure crystals decompose as direct sums of Demazure crystals. Our local cri-
terion depends on the string property which Demazure crystals, and more generally,
extremal crystals, exhibit. Our characterization implies that tensor products of De-
mazure crystals are direct sums of Demazure crystals if and only if they are extremal.
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1 Introduction

In his study of the representations of quantum groups Uq(g) for g a complex semisimple
Lie algebra, Kashiwara [9], based on work of Lusztig [15], introduced crystal bases upon
which, in the q → 0 limit, the action of the Chevalley operators could be easily described.
The crystal bases form the vertices of a crystal graph, a directed, colored graph with
edges given by deformed Chevalley operators. The combinatorial structure of the crystal
encodes the highest weight theory of the corresponding Uq(g)-modules. Thus to any
irreducible highest weight representation V(λ), we associate the highest weight crystal
B(λ) whose character agrees with the Weyl character of the module.

Given the monoidal structure of the category of Uq(g)-modules, Kashiwara defined
a crystal structure on the set B1 ⊗B2 which aligns with the tensor product of the corre-
sponding modules. In particular, the fact that V(λ)⊗ V(µ) admits a good filtration, i.e.
a filtration by Weyl modules, is reflected in the fact that B(λ)⊗ B(µ) decomposes as a
direct sum of highest weight crystals.

Demazure [4] considered a family of submodules generated by extremal weight ele-
ments under the Borel subalgebra, known eponymously as Demazure modules. The asso-
ciated Demazure crystals, introduced by Littelmann [14] and generalized by Kashiwara
[10], arise as truncations of the crystals for Uq(g)-modules. As in the classical case,
Demazure crystals encode the combinatorial structure of the corresponding Demazure
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modules. Hence, each Demazure module Vw(λ) has an associated crystal Bw(λ), indexed
by a highest weight λ and an element w of the Weyl group W of g.

Filtrations by Demazure modules are known as excellent filtrations. Unlike with tensor
products of Weyl modules, tensor products of Demazure modules do not always admit
excellent filtrations [8]. Thus a natural question to consider is when can Vw(λ)⊗ Vu(ν)
be filtered by Demazure modules.

In this paper we answer this question from a crystal theoretic perspective by consid-
ering a larger family of subcrystals, which we call extremal subsets. Extremal subsets are
characterized by the string property which states that every i-string of the crystal which
intersects the subset is either entirely contained in the subset or intersects in only the top
element. Kashiwara [10] showed every Demazure crystal is extremal, though the con-
verse does not hold. We show that tensor products of Demazure crystals Bw(λ)⊗Bu(ν)
decompose as sums of Demazure crystals if and only if Bw(λ)⊗ Bu(ν) is extremal. By
studying tensor products of extremal subcrystals, we give a local criterion for when ten-
sor products of Demazure crystals are extremal, thus giving a local characterization of
precisely when Bw(λ)⊗Bu(ν) decomposes as a sum of Demazure crystals.

Our results generalize work of Lakshimbai, Littelmann, and Magyar [13] and Joseph
[6] in which they prove {uλ} ⊗ Bu(ν) decomposes as a direct sum of Demazure crys-
tals. Our local criterion also provides an alternative characterization to Kouno’s global
condition [12] for when Bw(λ)⊗Bu(ν) remains Demazure. For full details, see [1].

2 Crystal graphs

Let g be a complex semisimple Lie algebra. In this section, we review normal g-crystals.
For a thorough treatment of crystals, see [11].

2.1 Highest weight crystals

Let P be the weight lattice of g and let I be the vertex set of the Dynkin diagram. For
every i ∈ I we have a simple root αi ∈ P and a simple coroot α∨i ∈ P∨ = HomZ(P, Z).
Given λ ∈ P and µ∨ ∈ P∨ we write ⟨µ∨, λ⟩ for the integer obtained by the natural
symmetric pairing on weights and coweights. Write W for the Weyl group generated by
the set of of simple reflections si associated to α∨i ∈ P∨ and P+ for the set of dominant
weights {λ ∈ P : ⟨λ, α∨i ⟩ ∈ Z≥0 for all α∨i ∈ P∨}.

Definition 1. A (finite) normal g-crystal is a nonempty set B, together with crystal op-
erators ei, fi : B → B ⊔ {0}, a weight map wt : B → P, and string operators εi(b) :=
max

{
k ∈ Z≥0 | ek

i (b) ∈ B
}

and φi(b) := max
{

k ∈ Z≥0 | f k
i (b) ∈ B

}
, such that for every

i ∈ I and for every b, b′ ∈ B:

(1) b′ = ei(b) if and only if b = fi(b′) in which case wt(b′) = wt(b) + αi;
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(2) φi(b)− εi(b) = ⟨α∨i , wt(b)⟩.

The finite-dimensional, irreducible, integrable representations of Uq(g) are naturally
indexed by the integral dominant weights. For each λ ∈ P+, let B(λ) denote the crystal
for the irreducible highest weight representation V(λ).

Given a highest weight crystal B, the associated crystal graph is the directed, I-colored
graph with vertex set B and with an i-edge from b to fi(b) provided the latter is nonzero.

A crystal is connected if its underlying (undirected) graph is connected. Henceforth,
we refer to (elements of) crystals and (vertices of) their graphs interchangeably.

Example A. The standard crystal B(1, 0n−1) for sln(C) has basis {i | i = 1, . . . , n}, weight
map wt ( i ) = (0i−1, 1, 0n−i−1), and lowering operators f j(i) = i + 1 if j = i + 1 and
f j(i) = 0 otherwise. We draw the crystal graph for B(1, 0n−1) as shown in Figure 1.

1 2 3 · · · n1 2 3 n − 1

Figure 1: The sln(C)-crystal B(1, 0n−1).

For any i ∈ I and X ⊆ B, let Fi(X) =
{

f m
i (x) | x ∈ X and m ∈ Z≥0

}
\ {0}. For

si1 · · · siℓ a reduced expression for w ∈ W, let Fw(X) = Fi1 · · · Fiℓ(X). When w = w0 is
the longest element we write omit the subscript and write F (X).

Joseph [7] proves that the set Fw(X) is independent of the choice of reduced expres-
sion for w and so is well-defined. The sets Ei(X), Ew(X) and E(X) are similarly defined
using raising operators.

An element b ∈ B is a highest weight element if Ei({b}) = {b} for all i. Let bλ denote
the highest weight element of the irreducible highest weight crystal B(λ).

2.2 Demazure crystals

The Weyl group W is equipped with a partial order ≺ called Bruhat order defined on
any u, v ∈ W by u ≺ v if and only if there exists a reduced word for v which contain a
reduced word for u as a subword. See [3] for a reference on Bruhat order.

Demazure crystals are subsets Bw(λ) ⊆ B(λ) depending on a choice of w ∈ W. They
were introduced by Littelmann who showed for classical g that their characters are the
characters of Demazure modules Vw(λ) [5, 6].

Definition 2 ([10]). For λ ∈ P+ and w ∈ W, the Demazure crystal Bw(λ) is

Bw(λ) = Fw({bλ}). (2.1)
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Kashiwara [10] generalized Littelmann construction to arbitrary g and showed Bw(λ)
satisfies the following properties.

(1) E (Bw(λ)) ⊂ Bw(λ);

(2) if siw ≺ w, then Bw(λ) = { f m
i (b) | m ≥ 0, b ∈ Bsiw(λ), ei(b) = 0} \ {0};

(3) for any i-string S, S ∩ Bw(λ) is either ∅ or S or {b}, where b ∈ S and ei(b) = 0.

For any i ∈ I, an i-string is any connected subset of a crystal closed under both Ei
and Fi. Equivalently, an i-string is a subset of the form Fi({b}) where ei(b) = 0.

Demazure crystals are nested according to Bruhat order [10], i.e. Bv(λ) ⊆ Bw(λ)
whenever v ≺ w. We tighten this result as follows.

Given λ ∈ P+, let Wλ be the stabilizer subgroup of λ in W. The minimal (resp.
maximal) length coset representatives of wWλ are denoted by ⌊w⌋λ (resp. ⌈w⌉λ).

Proposition 3. Let λ ∈ P+ and v, w ∈ W. Then v ⪯ ⌈w⌉λ if and only if Bv(λ) ⊆ Bw(λ).
Moreover, Bv(λ) = Bw(λ) only when v ∈ wWλ.

Example B. Consider Bs2(2, 2, 0) ⊂ B(2, 2, 0) in Figure 2. Here w = s1 and λ = (2, 2, 0).
Since s1 ∈ Wλ, we have ⌈w⌉λ = s2s1 ≻ s1, and so Bs2s1(2, 2, 0) = Bs2(2, 2, 0). Likewise,
since ⌈w⌉λ ≺ s1s2s1, we have Bs2s1(2, 2, 0) ⫋ Bs1s2s1(2, 2, 0) = Bs1s2(2, 2, 0) = B(2, 2, 0).

2.3 Extremal crystals

Following work of the extremal authors [2], we consider subsets satisfying property (3).

Definition 4. A subset X ⊆ B(λ) is extremal if X is nonempty and for any i-string S of
B(λ), S ∩ X is either ∅ or S or {b} where b ∈ S and ei(b) = 0.

Notice any subset of B(λ) satisfying Kashiwara’s property (3) necessarily satisfies
property (1) as well. In particular, if X ⊂ B(λ) is extremal, then EX ⊂ X, and so bλ ∈ X.

As Kashiwara proves [10], all Demazure crystals are extremal subsets. The converse,
however, is false. Not all extremal subsets are Demazure crystals.

Example C. Let g = sl3 and λ = (2, 2, 0). Then X = {bλ, f2(bλ), f 2
2 (bλ), f1 f2(bλ)} (seen

in the middle of Figure 2) is extremal, but not Demazure. In particular, Bs2(2, 2, 0) ⫋
X ⫋ B(2, 2, 0). Similarly, Y = {bλ, f2(bλ), f 2

2 (bλ), f1 f 2
2 (bλ), f 2

1 f 2
2 (bλ)} is also an extremal

subset of B(2, 2, 0) containing Bs1(2, 2, 0) that is not Demazure.
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Figure 2: The sl3-crystal B(2, 2, 0) (left), an extremal subset (middle), and the Demazure
crystal Bs2(2, 2, 0) (right) with f1 and f2 depicted by blue and red arrows, respectively.

3 Tensor products of crystals

3.1 Kashiwara’s tensor product rule

Given g-crystals B1 and B2, the direct sum B1 ⊕ B2 is their disjoint union with corre-
sponding operators. Since any graph decomposes into the disjoint union of its connected
components, every g-crystal decomposes as a direct sum of highest weight crystals.

Definition 5. The tensor product B1 ⊗ B2 has vertex set {b1 ⊗ b2 | b1 ∈ B1 and b2 ∈ B2},
crystal operator fi defined by

fi(b1 ⊗ b2) =

{
fi(b1)⊗ b2 if εi(b2) < φi(b1),
b1 ⊗ fi(b2) if εi(b2) ≥ φi(b1),

ei defined analogously, wti(b) = ⟨α∨i , wt(b)⟩, wt(b1 ⊗ b2) = wt(b1) + wt(b2), and εi(b1 ⊗
b2) = max(εi(b1), εi(b2)− wti(b1)) and φi(b1 ⊗ b2) = max(φi(b2), φi(b1) + wti(b2)).

Kashiwara [9] proves this tensor product is associative and noncommutative and
proves B(λ)⊗B(µ) is a crystal for V(λ)⊗ V(µ).

Example D. Consider the tensor product B(1, 1, 0)⊗B(1, 0, 0), where

B(1, 1, 0) = a1 → a2 → a3 and B(1, 0, 0) = b1 → b2 → b3 .

Then, φ2(a1) = φ1(a2) = ε1(b2) = ε2(b3) = 1 and φ1(a1) = φ2(a2) = ε2(b2) =
ε1(b3) = 0. Thus, as seen in Figure 3, B(1, 1, 0) ⊗ B(1, 0, 0) will decompose into two
connected components with highest weights (2, 1, 0) and (1, 1, 1), respectively. Thus
B(1, 1, 0)⊗B(1, 0, 0) ∼= B(2, 1, 0)⊕B(1, 1, 1), as expected from the decomposition of the
tensor product of the corresponding modules.
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3.2 Tensor products of Demazure crystals

The tensor product Bw(λ)⊗Bu(µ) is not always a direct sum of Demazure crystals.

Example E. Consider the sl3-crystals Bs2(1, 1, 0) and Bs1(1, 1, 0). Their tensor product,
show in the middle diagram of Figure 3, is not a direct sum of Demazure crystals. In
fact, it is not even extremal.

Kouno [12] characterized w, u, λ, µ such that Bw(λ) ⊗ Bu(µ) is a direct sum of De-
mazure crystals.

Recall that for any λ ∈ P+, we denote by Wλ be the stabilizer subgroup of λ in W
and by ⌊w⌋λ and ⌈w⌉λ the minimal and maximal length coset representatives of wWλ,
respectively. For any σ ∈ W, let Wσ ⊆ W denote the parabolic subgroup

Wσ = ⟨ si ∈ W | siσ ≺ σ ⟩.

Theorem 6 (Kouno [12]). Let λ, µ ∈ P+ and u, w ∈ W. Then Bw(λ)⊗ Bu(µ) is a direct sum
of Demazure crystals if and only if ⌊w⌋λ ∈ W⌈u⌉µ .
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Figure 3: The tensor products B(1, 1, 0)⊗ B(1, 0, 0) (left), Bs2(1, 1, 0)⊗ Bs1(1, 0, 0) (mid-
dle), and Bs2(1, 1, 0) ⊗ B(1, 0, 0) = Bs2s1(2, 1, 0) ⊕ Be(1, 1, 1) (right) with f1 and f2 de-
picted by blue and red arrows, respectively.

Example F. Consider λ, µ ∈ P+, and suppose W has a longest element, which we denote
by w0. Then ⌊w⌋λ ∈ W = Ww0 for any w ∈ W, and so Bw(λ)⊗ B(µ) always decomposes
into Demazure crystals; see Figure 3.

Example G. Let g = sl3, and consider Bs2(1, 1, 0)⊗ Bs1(1, 0, 0). Then W(1,0,0) = {s2, e},
thus ⌈s1⌉(1,0,0) = s1s2 and so Ws1s2 = {s1}. However, W(1,1,0) = {s1, e} so that ⌊s2⌋(1,1,0) =
s2 /∈ Ws1s2 . As seen in Figure 3, Bs2(1, 1, 0)⊗ Bs1(1, 1, 0) is indeed not Demazure.

Recall the tensor product of crystals is not commutative, though Kashiwara [10]
showed B(λ)⊗ B(µ) is isomorphic to B(µ)⊗ B(λ). We remark this does not hold for
Demazure crystals; that is, Bw(λ)⊗Bu(µ) is not isomorphic to Bu(µ)⊗Bw(λ) in general.
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Indeed, by Kouno’s characterization Bw(λ)⊗ {uµ} is a direct sum of Demazure crystals
only when w ∈ Wµ. However, Joseph [7] proved {uµ} ⊗ Bw(λ) always decomposes as a
direct sum of Demazure crystals.

Example H. Take g = sl3, then Be(1, 1, 0)⊗ Bs2(1, 1, 0) ∼= Be(2, 2, 0)⊕ Be(2, 1, 1), as seen in
Figure 5 (middle) , is a direct sum of Demazure crystals. However, Bs2(1, 1, 0)⊗ Be(1, 1, 0)
in Figure 5 (right) is not even extremal, let alone Demazure.

3.3 Tensor products of extremal crystals

Just as tensor products of Demazure crystals are not always Demazure, tensor products
of extremal subsets are not always extremal. For instance, in the rightmost diagram of
Figure 5, we see that Bs1(1, 1, 0)⊗ Be(1, 1, 0) is not extremal even though both factors are.

Example I. Consider X = {bλ, f2(bλ), f 2
2 (bλ), f1 f2(bλ)} ⊂ B(2,2,0), an extremal though not

Demazure subset. As seen in Figure 4, X ⊗ X decomposes into connected components
Y1 ⊕ Y2 ⊕ Y3 ⊂ B(4,4,0) ⊕ B(4,3,1) ⊕ B(4,2,2) where neither Y1 nor Y2 are extremal subsets.

However, if the resulting tensor product of two subsets of crystals is itself extremal,
this imposes some structure on the underlying subsets themselves.

Proposition 7. If X ⊗ Y ⊂ B(λ) ⊗ B(µ) is an extremal subset, then E(X) ⊂ X ⊔ {0}.
Furthermore, if E(Y) ⊂ Y ⊔ {0}, then X ⊂ B(λ) is an extremal subset.

Example J. Let g = sl3, λ = (4, 4, 0), and consider X = {bλ} and Y = {bλ, f2(bλ), f 2
2 (bλ)}

subsets of B(4, 4, 0). Then X ⊗ Y ∼= Be(8, 8, 0) ⊕ Be(8, 7, 1) ⊕ Be(8, 6, 2) is a sum of De-
mazure subsets, though Y is not extremal (but it is closed under E ).
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Figure 4: The summands of the extremal but not Demazure subgraph of B(2,2,0) ⊗
B(2,2,0)

∼= B(4,4,0) ⊕ B(4,3,1) ⊕ B(4,2,2) with f1 and f2 depicted by blue and red arrows.
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4 Characterization of extremal tensor products

Determining when the tensor product of extremal subsets remains extremal depends
solely on the following elements.

Definition 8. For i ∈ I, an element x ⊗ y ∈ B(λ)⊗ B(µ) is called an i-hinge if ei(x ⊗ y)
and fi(x ⊗ y) are both nonzero with ei(x ⊗ y) = ei(x)⊗ y and fi(x ⊗ y) = x ⊗ fi(y).

We say x ⊗ y ∈ X ⊗ Y ⊂ B(λ)⊗B(µ) is a broken i-hinge if fi(y) ̸∈ Y.

Example K. Consider B(1, 1, 0) = a1 → a2 → a3. Then the element a2 ⊗ a1 ∈ B(1, 1, 0)⊗
B(1, 1, 0) (seen in the leftmost diagram of Figure 5) is a 2-hinge since ε2(a2) = 1 and
φ2(a2) = 0 but ε2(a1) = 0 with φ2(a1) = 1. In particular, the subset Bs2(1, 1, 0) ⊗
Be(1, 1, 0) (rightmost in Figure 5) contains a broken 2-hinge since f2(a1) ̸∈ Be(1, 1, 0).

Theorem 9. Let X ⊂ B(λ) and Y ⊂ B(µ) be extremal subsets. Then X ⊗ Y is an extremal
subset of B(λ)⊗B(µ) if and only if X ⊗ Y contains no broken i-hinge for any i ∈ I.

In particular, if X = {bλ} ⊂ B(λ) has only the highest weight element or if Y = B(µ)
contains all possible elements, then X ⊗ Y contains no i-hinges for any i. Thus both
{bλ} ⊗ Bu(µ) and Bw(λ)⊗B(µ) are extremal subsets of B(λ)⊗B(µ).

Recall every Demazure subset is extremal, though the converse is false.
Any subset Bw(λ)⊗ Bu(µ) ⊂ B(λ)⊗ B(µ) which is a direct sum of Demazure crys-

tals is also an extremal subset. Amazingly, the converse of this statement is also true.

Theorem 10. For λ, µ ∈ P+ and w, u ∈ W, we have Bw(λ)⊗ Bu(µ) is an extremal subset of
B(λ)⊗B(µ) if and only if ⌊w⌋λ ∈ W⌈u⌉µ .

Combining this with Theorem 6, we derive the following result.

Corollary 11. For λ, µ ∈ P+ and w, u ∈ W, the tensor product Bv(λ)⊗Bw(µ) is a direct sum
of extremal subsets if and only if Bw(λ)⊗Bu(µ) is a direct sum of Demazure crystals.

Thus, Bv(λ)⊗Bw(µ) is a sum of Demazure crystals precisely when it doesn’t contain
a broken i-hinge for any i ∈ I. Hence Corollary 11 gives a local characterization of tensor
products of Demazure crystals that does not rely on the values of λ, µ, w, u.

Example L. Take λ = (1, 1, 0) and w = e and v = s2 as in Figure 5. Then ⌊w⌋λ = e and
⌈v⌉λ = s2s1, thus ⌊w⌋λ ∈ W⌈v⌉λ so Be(1, 1, 0)⊗ Bs2(1, 1, 0) is extremal. Conversely, ⌊v⌋λ =

s2 and ⌈w⌉λ = s1 so ⌊v⌋λ ̸∈ W⌈w⌉λ and thus Bs2(1, 1, 0)⊗ Be(1, 1, 0) is not extremal.

It is important to note that Corollary 11 is false if we replace Bv(λ) and Bw(µ) with
arbitrary extremal subsets. This can seen in Figure 4, where X = Y is extremal and
non-Demazure but the tensor product is neither.
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Figure 5: The tensor products B(1, 1, 0)⊗ B(1, 1, 0) (left), Be(1, 1, 0)⊗ Bs2(1, 1, 0) (mid-
dle), and Bs2(1, 1, 0)⊗ Be(1, 1, 0) (right) with f1 and f2 depicted by blue and red arrows.

5 Application to tensor squares

Even when Bw(λ) ⊗ Bu(µ) is not a direct sum of Demazure crystals, some connected
components of it may be. For instance, in Example M and Figure 6, Bs2s1(2, 1, 0)⊗2

decomposes into four connected components, two of which are Demazure and two of
which are not even extremal. In particular, the component of weight (4, 2, 0) is a De-
mazure crystal. Using Corollary 11, we show that the highest weight component is
always Demazure.

Theorem 12. For λ ∈ P+ and w ∈ W, the m-fold tensor product

F ({bλ ⊗ · · · ⊗ bλ}) ∩ Bw(λ)⊗ · · · ⊗ Bw(λ) ⊂ B(λ)⊗ · · · ⊗ B(λ)

is isomorphic to Bw(mλ). In particular, it is a Demazure crystal.

Example M. Let g = sl3 and consider B(2, 1, 0) ⊗ B(2, 1, 0) ∼= B(4, 2, 0) ⊕ B(3, 3, 0) ⊕
B(4, 1, 1) ⊕ B(3, 2, 1)⊕2 ⊕ B(2, 2, 2). The subset Bs2s1(2, 1, 0) ⊗ Bs2s1(2, 1, 0) decomposes
into four connected components; see Figure 6. Only the components with highest
weights (4, 2, 0) and (3, 3, 0) are Demazure. The components with highest weights
(3, 2, 1) and (4, 1, 1) are not even extremal. The remaining two highest weights do not
appear.
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