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Volume rigidity and algebraic shifting
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Abstract. We study the generic volume rigidity of (d − 1)-dimensional simplicial com-
plexes in Rd−1, and show that the volume rigidity of a complex can be identified in
terms of its exterior shifting. In addition, we establish the volume rigidity of triangula-
tions of several 2-dimensional surfaces and prove that, in all dimensions > 1, volume
rigidity is not characterized by a corresponding hypergraph sparsity property.
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1 Introduction

Let K be an n-vertex (d − 1)-dimensional simplicial complex and p : V(K) → Rd−1

be a generic mapping of its vertices, in the sense that its (d − 1)n coordinates are al-
gebraically independent over Q. This paper deals with the infinitesimal version of the
following problem: is there a non-trivial continuous motion of the vertices starting at p
that preserves the volumes of all the (d − 1)-simplices in K? By “non-trivial" we mean
that, for some (d − 1)-simplex on V(K) that is not in K, its volume would change along
the motion. It is easy to show that the continuous and infinitesimal versions coincide for
generic embeddings, as is the case for graph rigidity [2].

Volume Rigidity. The signed volume of a (d − 1)-face σ = {v1, . . . , vd} ∈ K with
respect to p is given by the determinant of the d × d matrix

Mp,σ =

(
p(v1) . . . p(vd)

1 . . . 1

)
.

Observe that, for every 1 ≤ i ≤ d − 1, 1 ≤ j ≤ d, the derivative of the signed volume
det Mp,σ with respect to the i-th coordinate of p(vj) is given by the cofactor Ci,j(Mp,σ)
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— that is, the determinant of the submatrix obtained by removing the i-th row and j-th
column multiplied by (−1)i+j.

The volume-rigidity matrix V(K, p) of the pair (K, p) is a (d − 1)n × fd−1(K) matrix,
where the columns are indexed by the (d − 1)-faces of K, and every vertex is associated
with a block of (d − 1) rows. The column vector vσ corresponding to a (d − 1)-face
σ = {v1, . . . , vd} ∈ K is defined by

(vσ)vi,j = Ci,j(Mp,σ) , i ∈ [d], j ∈ [d − 1],

and 0 elsewhere. Here (vσ)vi,j denotes the j-th coordinate of vσ in the block of vi. In
words, V is the Jacobian of the function p 7→ (det Mp,σ)σ∈K, viewing p as a (d − 1)n-
dimensional vector.

This matrix was introduced in [16, Appendix A] along with the description of a
trivial (d2 − d − 1)-subspace of the left kernel of V(K, p), arising from the volume-
preserving transformations of Rd−1. Concretely, the trivial subspace consists of all
(d − 1)n-dimensional vectors z obtained by choosing a (d − 1)× (d − 1) matrix A whose
trace is zero and a vector u ∈ Rd−1, and letting zv = A · p(v) + u for every vertex v. The
following definition suggests itself.

Definition 1.1. An n-vertex (d − 1)-dimensional simplicial complex K is called volume-
rigid if

rank(V(K, p)) = (d − 1)n − (d2 − d − 1),

for a generic p : V(K) → Rd−1.

Exterior shifting. Algebraic shifting was introduced by Kalai (see e.g. [11] and the
survey [12]) and has been studied extensively in algebraic combinatorics. Here we
present a variant of exterior shifting. The standard basis (ei)i∈[n] of Rn induces the
basis (eσ)σ⊆[n] of its exterior algebra

∧
Rn. Consider a generic basis ( f1, . . . , fn) of Rn,

where without loss of generality we assume that f1 = 1 ∈ Rn, namely, the other n2 − n
coordinates in this basis are algebraically independent over Q. Consider the exterior face
ring

∧
K =

∧
Rn / (eσ : σ /∈ K), and let q denote the natural quotient map. Given a

partial order < on the power set of [n], define

∆<(K) = {σ : q( fσ) /∈ spanR{q( fτ) : τ < σ, |τ| = |σ|}}. (1.1)

Of special importance in our case is the partial order <p defined by σ = {σ1 < ... <
σm} ≤p τ = {τ1 < ... < τm′} if m = m′ and σi ≤ τi, ∀i ∈ [m]. Corollary 2.3 asserts that
∆p(K) := ∆<p(K) is a shifted simplicial complex independent of the generic choice of f .
(Note that ∆p(K) may have more faces than K.)
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1.1 Main results.

Our main result is a characterization of volume rigidity in the setting of Kalai’s exterior
shifting.

Theorem 1.2. Fix d ≥ 3. An n-vertex (d− 1)-dimensional simplicial complex K is volume-rigid
if and only if {1, 3, 4, ..., d, n} ∈ ∆p(K).

In the 2-dimensional case we are able to derive the volume rigidity of triangulations
of the following surfaces.

Corollary 1.3. Every triangulation of the 2-sphere, the torus, the projective plane or the Klein
bottle is volume rigid. In addition, every triangulation of the 2-sphere and the torus minus a
single triangle is also volume-rigid. In particular, every simplicial disc with a 3-vertex boundary
is minimally volume-rigid.

In the case of the 2-sphere we give a complete mathematical proof. For the other
surfaces , we reduce — via edge contractions á la Whiteley [23] — to irreducible trian-
gulations, whose volume-rigidity we verify numerically.

Hypergraph sparsity was introduced by Streinu and Theran [20], generalizing results
on graph sparsity, prominently by White and Whiteley [24] who studied it from a ma-
troid perspective. We say that a (d − 1)-complex is (d − 1, d2 − d − 1)-sparse (resp. tight)
if every subset A of its vertices of cardinality at least d spans at most (d − 1)|A| − (d2 −
d − 1) simplices of dimensions d − 1 (resp. and equality holds when A equals the entire
vertex set).

Clearly, a vertex subset A spanning more (d− 1)-simplices induces a non trivial linear
dependence between the columns of V(K, p), and it is natural to ask whether this char-
acterizes all the linear dependencies in the volume rigidity matrix. Using Theorem 1.2,
we show that the answer is negative, hence a Laman-type condition for volume-rigidity
does not hold true 1.

Corollary 1.4. For every d ≥ 3, there exists a (d − 1, d2 − d − 1)-tight (d − 1)-complex that is
not volume-rigid.

1.2 Relation to previous works.

The maximal independent sets of columns of V(([n]d ), p), for all generic embeddings p,
form the bases of the same matroid. For d = 2 they correspond to spanning trees,
namely the bases in the graphic matroid on ([n]2 ). Kalai [10] introduced for every integer
k ≥ 1 the k-hyperconnectivity matroid on ([n]2 )

2, where k = 1 corresponds to the graphic

1Corollary 1.4 shows that Prop.1 in the preprint [19] from 2007 is a misstatement.
2The k-hyperconnectivity matroid is derived from an embedding of the vertex set into Rk. Studying

higher hyperconnectivity translates to increasing the dimension of the embedding space.
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matroid, and identified its bases in terms of exterior shifting (w.r.t. the lexicographic
order): G is a basis if and only if the edges of ∆lex(G) form the initial segment that ends
with {k, n}, w.r.t. the lex-order.

Here, in Theorem 1.2, rather than increasing the dimension of the embedding space
and staying with graphs, we increase also the dimension of the pure complex, by the
same number, and characterize the bases of the resulted d-volume-rigidity matroid in
terms of exterior shifting w.r.t. the partial order <p.

The fact that (d − 1, d2 − d − 1)-sparse complexes form the independent sets of a
matroid on ([n]d ) was asserted in [15, 24]. Additional matroidal and algorithmic properties
of sparsity matroids were studied by Streinu and Theran in [20, 21]. By Corollary 1.4, the
(d − 1, d2 − d − 1)-sparsity matroid strictly contains the (d − 1)-volume-rigidity matroid
for all d ≥ 3. It would be interesting to find further combinatorial conditions that once
imposed on the bases of the sparsity-matroid would give the bases of the volume-rigidity
matroid.

The remainder of the paper is organized as follows. In Section 2 we establish the
connection between volume rigidity and exterior shifting, and prove Theorem 1.2. Af-
terwards, in Section 3 we investigate the effect of local moves on volume rigidity and
prove Corollary 1.3. In the following Section 4 we prove Corollary 1.4, and we conclude
in Section 5 with some related open problems.

2 Volume rigidity and ∆p(·)
This section is devoted to studying the basic properties of the shifted complex ∆p(K),
and to establishing the connection between ∆p(K) and K’s volume rigidity.

Basic properties of ∆p(·)
We start by briefly exploring some useful properties of the complex ∆p(K) that appears
in Theorem 1.2. Given a partially ordered set (poset) (P,<) and an element x ∈ P we
denote by P<,x the prefix {y ∈ P : y ≤ x}.

Claim 2.1. Let (P,<) be a poset and x ∈ P, then there exists a linear extension <l of < such
that P<l ,x = P<,x.

Proof. View the sets A = P<,x and B = P \ P<,x as posets with the partial order induced
by <. Extend each of these posets linearly, and concatenate the extensions such that the
elements in A are smaller than those in B.

We will mainly work with the partial order <p on the power set of [n] and denote
the set of its linear extensions by L. We usually denote an element in L by <l and the
corresponding shifted complex by ∆l(K) := ∆<l(K).
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Claim 2.2. ∆p(K) =
⋃
<l∈L ∆l(K).

Proof. On the one hand, if σ ∈ ∆l(K) for some <l∈ L then q( fσ) is not spanned by
Bl,σ := {q( fτ) : τ <l σ}, which contains the vector set Bp,σ. Therefore, by the definition
of ∆< in (1.1), we find that ∆p(K) ⊇ ∆l(K). On the other hand, for every σ ∈ ∆p(K),
there exists by the previous claim a linear extension <l∈ L satisfying Bp,σ = Bl,σ hence
σ ∈ ∆l(K).

Corollary 2.3. For every simplicial complex K there holds that ∆p(K) is a shifted simplicial
complex independent of the choice of the generic basis f . In addition, ∆p(K) = K if K is shifted.□

That ∆p(K) is downwards closed follows exactly as in the proof for ∆lex(K). The rest
of Corollary 2.3 follows immediately from the above decomposition of ∆p(K) and the fact
that the basic properties of algebraic shifting in [11] – being shifted, and independence
the the generic f chosen– hold in every linear extensions of <p, as remarked in [11, p.58].

Volume rigidity and ∆p(·)
We are now ready to prove Theorem 1.2. We denote σ0 = {1, 3, ..., d, n} and observe that
the prefix B := {τ ≤p σ0 : |τ| = d} consists of the subsets [d] and [d] \ {i} ∪ {v} for
2 ≤ i ≤ d and d + 1 ≤ v ≤ n. We define a linear transformation ψ :

⊕d
i=2

∧1 Rn → ∧d Rn

given by

ψ(m2, . . . , md) =
d

∑
i=2

f[d]\{i} ∧ mi.

Lemma 2.4. The image of ψ is spanned by { fτ : τ ∈ B}, and its kernel is (d2 − d − 1)-
dimensional.

Proof. The fact that fτ ∈ im(ψ) for every τ ∈ B can be shown directly. Indeed, we have
ψ(0, ..., 0, fd) = f[d] and by taking mi = fv, mi′ = 0 ∀i′ ̸= i we have that ψ(0, ..., fv, ..., 0) =
f[d]\{i}∪{v} for 2 ≤ i ≤ d and d + 1 ≤ v ≤ n. To show that these 1 + (n − d)(d − 1)
linearly independent vectors span the image of ψ, we will construct d2 − d − 1 linearly
independent vectors in ker ψ which actually completes the proof by the rank-nullity
theorem since (1 + (n − d)(d − 1)) + (d2 − d − 1) = n(d − 1).

First, for every 2 ≤ i ≤ d and j ∈ [d] \ {i} consider the vector defined by setting
mi = f j and mi′ = 0 for every i′ ̸= i. Then,

ψ(m2, ..., md) = f[d]\{i} ∧ f j = 0

since j ∈ [d] \ {i}. This amounts to (d − 1)2 vectors in ker ψ, and the remaining d − 2
are given by vectors of the form mi = ai fi, 2 ≤ i ≤ d, where the scalars a2, ..., ad satisfy
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∑d
i=2(−1)iai = 0. Indeed,

ψ(m2, ..., md) =
d

∑
i=2

ai f[d]\{i} ∧ fi =
d

∑
i=2

ai(−1)d−i f[d] = 0 .

The linear independence of these d2 − d − 1 vectors follows directly from the linear
independence of f1, ..., fd.

Proof of Theorem 1.2. Identify the vertices of K with the set [n]. Without loss of generality,
assume that fd−1(K) ≥ (d − 1)n − (d2 − d − 1), as otherwise K is not volume-rigid and
{1, 3, 4, ..., d, n} /∈ ∆p(K). In addition, suppose that the generic embedding p : V(K) →
Rd−1 is obtained from the vectors f2, ..., fd in the generic basis of Rn by taking ( fi)v =
p(v)i−1 for every 2 ≤ i ≤ d and v ∈ [n].

Consider the (i, v)-unit vector ei,v = (m2, ..., md) in the domain of ψ, for 2 ≤ i ≤ d and
v ∈ [n], defined by mi = ev and mi′ = 0, ∀i′ ̸= i. Then,

ψ(ei,v) = f[d]\{i} ∧ ev

= (−1)d−i f1 ∧ · · · ∧ fi−1 ∧ ev ∧ fi+1 ∧ · · · ∧ fd

= (−1)d−i+d−1 f2 ∧ · · · ∧ fi−1 ∧ ev ∧ fi+1 ∧ · · · ∧ fd ∧ f1.

Let σ = {v1, ..., vd} ⊂ [n]. Clearly, for the inner product on
∧

Rn with orthonormal basis
{eσ : σ ⊂ [n]}, we have ⟨eσ, ψ(ei,v)⟩ = 0 if v /∈ σ. Otherwise, by the identification of p
with f2, ..., fd above and f1 = 1, if v = vj then ⟨eσ, ψ(ei,v)⟩ is equal to (−1)i−1 times the
determinant of the matrix that is obtained from Mp,σ by replacing its (i − 1)-th row with
the j-th d-dimensional all-ones row vector. Consequently,

⟨eσ, ψ(ei,v)⟩ = (−1)i−1Ci−1,j(Mp,σ).

Thus, by letting q :
∧

Rn −→ ∧
K be the natural quotient map, and by choosing the

basis {eσ : σ ∈ K} for
∧

K, we find that the fd−1(K)× (d − 1)n matrix representation of
q ◦ ψ is equal — up to multiplying some of its columns by −1 and reordering them —
to the transpose of the volume-rigidity matrix V(K, p). Therefore, K is volume-rigid if
and only if dim ker(q ◦ ψ) = d2 − d − 1. In other words, K is not volume-rigid if and only
if there exists a non-zero f ∈ im(ψ) such that q( f ) = 0. By the characterization of ψ’s
image in Lemma 2.4, f can be written as a non-trivial linear combination f = ∑τ∈B λτ fτ.

To conclude the proof we claim that q( f ) = 0 for some f ∈ span{ fτ : τ ∈ B} if and
only if σ0 /∈ ∆p(K). Indeed, on one direction, q(∑τ∈B λτ fτ) = 0 implies that for some
τ ∈ B, q( fτ) is a linear combination of its predecessors in <p. By (1.1), τ /∈ ∆p(K) and
since ∆p(K) is shifted then σ0 /∈ ∆p(K). On the other hand, by manipulating the linear
combination which asserts that σ0 /∈ ∆p(K), we obtain a non-zero vector f = ∑τ∈B λτ fτ

satisfying q( f ) = 0.
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3 Volume rigidity, local moves and homology

We turn to study the effect of local combinatorial moves on volume rigidity. We start by
proving a volume-rigidity analog of Whiteley’s vertex splitting [23], by which he showed
that every triangulation of the 2-sphere has a 3-rigid 1-skeleton.

Lemma 3.1 (Edge contraction). Let K be a pure (d − 1)-dimensional simplicial complex, e =
{u, w} ∈ K such that at least (d − 1) facets in K contain e. Let K′ to be the simplicial complex
obtained from K by contracting the edge e, i.e. by identifying the vertex u with w, and removing
duplicates. If K′ is volume rigid then so is K.

Sketch of proof. Without loss of generality assume that u < w are the first among the n
vertices of K, as the vertex labels do not affect volume-rigidity. We will construct an
auxiliary (d − 1)n × fd−1(K) matrix A such that

rankV(K, p) ≥ rank(A) = (d − 1)n − (d2 − d − 1).

First, we replace the position of the vertex w, i.e. p(w), by the position of the vertex u,
i.e. p(u). Formally we define a new (non-generic) placement of vertices p′ that coincides
with p on all vertices except w on which we set it to equal to p(u). Clearly, since p
is generic, there holds rankV(K, p) ≥ rankV(K, p′). To obtain A, we add the rows in
V(K, p′) corresponding to the vertex u to the rows corresponding to the vertex w, an
operation that does not change the rank. We first claim that the submatrix of A which
corresponds to the columns of the facets L containing e = {u, w} is supported on the
rows corresponding to u. Second, we claim that the submatrix Au,L of A corresponding
to the d − 1 rows of u and the columns of L has a full rank of d − 1. Third, we consider
the complement submatrix A′ := A{u}c,Lc whose rows correspond to all the vertices
except u, and columns to all the facets that are not in L. We observe that A′ contains as
a submatrix the generic volume rigidty matrix V(K′, p) — where p is viewed here as a
generic embedding of V(K′) = V(K) \ {u} into Rd−1. In the end the matrix A takes the
form

A =

( L Lc

u Au,L ∗
{u}c 0 A′

)
.

Combining the assumption that K′ is volume-rigid and the claim that Au,L has full rank
we obtain

rank(V(K, p) ≥ rank(A) = rank(Au,L) + rank(A′) = n(d − 1)− (d2 − d − 1),

as claimed.
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The next two lemmas are direct analogs of basic results in graph rigidity [3] asserting
that gluing preserves volume-rigidity.

Lemma 3.2. Let K be (d − 1)-volume-rigid, v /∈ V(K) and S ⊆ V(K) such that |S| ≥ d, then
K ∪ (v ∗ ( S

d−1)) is (d − 1)-volume-rigid.

Lemma 3.3 (Union of volume-rigid complexes). Let K and L be (d − 1)-volume-rigid com-
plexes such that |V(K) ∩ V(L)| ≥ d. Then K ∪ L is (d − 1)-volume-rigid.

3.1 Proof of Corollary 1.3

Barnette and Edelson [5, 6] proved that every compact surface without boundary admits
only finitely many irreducible triangulations, namely, triangulations where every edge
contraction would result in a simplicial complex not homeomorphic to the given sur-
face. Thus, by Lemma 3.1, in order to conclude that for a given surface S every simplicial
complex that triangulates it is volume-rigid, it is enough to verify if for the irreducible
triangulations of S. Those are known for the surfaces indicated in Corollary 1.3: one for
the 2-sphere (namely the boundary of a tetrahedron), two for the projective plane [4], 21
for the torus [13] and 29 for the Klein bottle [14, 22]. Clearly the boundary of the tetrahe-
dron is volume-rigid, and we verified by computer that the irreducible triangulations K
of the other surfaces mentioned above are volume-rigid – for this it was enough to find
some embedding pK : V(K) −→ R2 such that rank(V(K, pK) = 2|V(K)| − 5.

Remark 3.4. The fact that every triangulation K of the 2-sphere is volume-rigid follows
also from combining the 3-hyperconnectivity of its graph with the Cohen-Macaulay
property. Indeed, the first property says that {3, |V(K)|} ∈ ∆lex(K), and as K is Cohen-
Macaluay then ∆lex(K) is pure and hence {1, 3, |V(K)|} ∈ ∆lex(K) as ∆lex(K) is shifted,
which implies, by Claim 2.2, that {1, 3, |V(K)|} ∈ ∆p(K), and we are done by Theo-
rem 1.2.

To prove the second part of Corollary 1.3 we are left to show that removing one
triangle from a triangulated 2-sphere or torus preserves volume-rigidity, done next. A
pure simplicial complex is a minimal cycle (over some coefficients commutative ring F)
if there exists an F-linear combination of its facets whose boundary vanishes, and no
proper nonempty subset of its facets has this property. For example, every triangulation
of a compact connected surface (resp. and orientable) is a minimal cycle over Z2 (resp.
Z).

Lemma 3.5. If K is a (d − 1)-dimensional volume rigid minimal cycle over Z, then K \ σ is
volume rigid for every σ ∈ K.

We first give short proof for the special case d = 3 and conclude the proof of Corol-
lary 1.3. The proof for the general case can be found in the full version of this article [7].
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Proof of Lemma 3.5 (d = 3). As K is a minimal cycle over Z, its 2-dimensional homol-
ogy with R-coefficients is one dimensional, and for each facet σ of K, for K \ σ this
homology vanishes. By the translation of homology in terms of algebraic shifting,
∆lex(K) ∋ {2, 3, 4} /∈ ∆lex(K \ σ), and as shifting preserves containment we conclude

∆lex(K \ σ) = ∆lex(K) \ {{2, 3, 4}}.

Note that in this dimension3 τ <p {1, 3, n} iff τ <lex {1, 3, n}, and thus: {1, 3, n} ∈
∆p(K) (by Theorem 1.2), hence {1, 3, n} ∈ ∆lex(K), and by the displayed equality above
also {1, 3, n} ∈ ∆lex(K \ σ), so finally {1, 3, n} ∈ ∆p(K \ σ), equivalently, K \ σ is volume-
rigid.

Proof of Corollary 1.3. This is immediate from Lemma 3.1, Lemma 3.5 for the case d = 3,
and the discussion in the beginning of Section 3.1.

4 Volume rigidity and sparsity

Proof of Corollary 1.4. Let d ≥ 3 and K be the (d − 1)-dimensional simplicial complex
obtained from the graph K3,3 by iterating the cone operation d − 2 times. Then K is
(d − 1, d2 − d − 1)-sparse. (Indeed, K3,3 is (2, 3)-sparse, and if a pure (k − 1)-dimensional
simplicial complex is (k − 1, k2 − k − 1)-sparse then its cone is (k, (k + 1)2 − (k + 1)− 1)-
sparse.) Thus, by completing it to a basis in the (d − 1, d2 − d − 1)-sparsity matroid, we
find a basis K′ containing K, so K′ is (d − 1, d2 − d − 1)-tight.

In order to show that K′ is not volume-rigid, by Theorem 1.2 it is enough to show
that

{1, 2, . . . , d − 2, d + 1, d + 2} ∈ ∆p(K′),

as {1, 2, . . . , d − 2, d + 1, d + 2} ≰p {1, 3, 4, . . . , d, n} and using tightness.
The displayed equation above follows from basic properties of this shifting operator,

proved in the same way as for exterior shifting w.r.t. the lex-order:

• If K is a subcomplex of K′ then ∆p(K) ⊆ ∆p(K′).

• Cone and ∆p commute, namely, if K = v ∗ L for a simplicial complex L then
∆p(K) = 1 ∗ (∆p(L) + 1).

Here for a family F of subsets of [m], F + 1 := {B + 1 : B ∈ F}, and B + 1 := {i + 1 :
i ∈ B} (so ∅ + 1 = ∅). To conclude the proof it is left to note that {3, 4} ∈ ∆lex(K3,3) and
hence, by Claim 2.2, also {3, 4} ∈ ∆p(K3,3).

3For d > 3, {τ : τ <p {1, 3, 4, . . . , d, n}} is smaller than {τ : τ <lex {1, 3, 4, . . . , d, n}}.
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5 Concluding remarks

We end up with some related open problems. An obvious one is to extend Corollary 1.3
to include all surface triangulations.

Conjecture 5.1. Every triangulation of a compact connected surface without boundary, minus a
single triangle, is volume-rigid.

The problem we face in applying Fogelsanger’s decomposition [9] (see also [8, Sec.
3.3]) to volume rigidity of surfaces is that the pieces in the decomposition include triangle
faces not existing in the original triangulation, and thus the gluing lemmas we could
prove, e.g. Lemma 3.3, are not strong enough to settle Conjecture 5.1.

Higher dimensions: It is known that for every triangulation K of the 2-sphere on n
vertices, minus a single triangle, its exterior shifting ∆lex(K) = ∆p(K) consists exactly of
the triangle 13n and all the triangles that are smaller than it in the lex-order, and their
subsets. This is a sufficient condition for volume rigidity by Theorem 1.2. The following
conjecture deals with a higher-dimensional counterpart of this fact.

Conjecture 5.2. For every d ≥ 3, every triangulation K of the (d − 1)-sphere minus a single
(d − 1)-simplex is volume rigid.

It is also natural to ask whether the stronger property of {1, 3, 4, . . . , d, n} ∈ ∆lex(K)
holds true. This is known, and tight, for stacked spheres [17] (also [18, Example 2.1.8]).
Let us remark that the conclusion {1, 3, 4, . . . , d, n} ∈ ∆s(K) for Kalai’s symmetric shifting
operator ∆s(·) is equivalent to the hard-Lefschetz isomorphism from degree 1 to degree
d − 1 in a generic Artinian reduction of the Stanley-Reisner ring of K over the field of
reals; the later isomorphism was proved recently by Adiprasito [1].

Back to general complexes,

Problem 5.3. For every dimension, find a combinatorial characterization of the corresponding
volume-rigidity matroid.

The combinatorial characterization problem is important for the d-rigidity matroid
(and is open for d ≥ 3). The d-rigidity of a graph G on n vertices is equivalent to
{d, n} ∈ ∆s(G). In view of this fact, we ask:

Problem 5.4. Define a version of symmetric shifting ∆sp(·) and find a matroid on ([n]d ) such that
its bases K are exactly those satisfying ∆sp(K) = {τ : τ ≤p {1, 3, 4, . . . , d, n}}.
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