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Invariant theory for the free left-regular band and
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Abstract. We examine from an invariant theory viewpoint the monoid algebras for two
monoids having large symmetry groups. The first monoid is the free left-regular band
on n letters, defined on the set of all injective words, that is, the words with at most one
occurrence of each letter. This monoid carries the action of the symmetric group. The
second monoid is one of its q-analogues, considered by K. Brown, carrying an action
of the finite general linear group. In both cases, we show that the invariant subalge-
bras are semisimple commutative algebras, and characterize them using Stirling and
q-Stirling numbers.

We then use results from the theory of random walks and random-to-top shuffling to
decompose the entire monoid algebra into irreducibles, simultaneously as a module
over the invariant ring and as a group representation. Our irreducible decompositions
are described in terms of derangement symmetric functions introduced by Désarménien
and Wachs.

Keywords: left-regular band, random-to-top, Stirling number, symmetric group, gen-
eral linear group, unipotent character.

To the memory of Georgia Benkart.

1 Introduction

Motivated by results on mixing times for shuffling algorithms on permutations, Bidigare
[2] and Bidigare, Hanlon and Rockmore [1] developed a complete spectral analysis for a
class of random walks on the chambers of a hyperplane arrangement. Their work relied
heavily on the Tits semigroup structure on the cones of the arrangement. Later, Brown
[4] generalized their analysis to random walks coming from semigroups L which form
a left-regular band (LRB), meaning that x2 = x and xyx = xy for all x, y in L. Left-regular
bands have since been studied by many others; see Margolis, Saliola, and Steinberg [10]
for extensive work along with a historical discussion in their Chapter 1.
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Some left-regular bands come equipped with natural symmetry groups. In his PhD
thesis [2], Bidigare studied the Tits semigroup algebra of a reflection arrangement un-
der the action of its corresponding reflection group. He discovered that the invariant
subalgebra is anti-isomorphic to a well-studied algebra: Solomon’s descent algebra. The
shuffling operators contained in the invariant subalgebra are random walks on the reflec-
tion group (see [4, Theorem 8]) and include interesting examples such as random-to-top
shuffling and inverse riffle shuffling. The close relationship between the Tits semigroup
algebra and the descent algebra has proved to be useful beyond shuffling; for example,
Saliola used this viewpoint of the descent algebra in his computation of its quiver [16].

This abstract is based on [3], where we study two examples of left-regular bands M,
related to those discussed by Brown, with large groups of monoid automorphisms G:

• the free LRB on n letters [4, §1.3], denoted Fn, with G the symmetric group Sn, and

• a q-analogue F (q)
n related to monoids in [4], and G the general linear group

GLn(Fq).

Inspired by Bidigare’s work, we study these left-regular bands under the action of their
symmetry groups. In particular, for both monoids M = Fn,F (q)

n , we examine the monoid
algebra R := kM with coefficients in a commutative ring k with 1, and answer the two
main questions of invariant theory for G acting on R:

Question 1.1. What is the structure of the invariant subalgebra RG?

Question 1.2. What is the structure of R, simultaneously as an RG-module and a G-repre-
sentation?

Notably, both questions are answered for the two monoids M = Fn,F (q)
n in parallel.

We answer Question 1.1 by showing that (when q ∈ k×) the invariant subalgebra
RG for both monoids is semisimple, commutative, and generated by a single element.
This generator acts semisimply on R with eigenvalues in 0, 1, · · · , n for M = Fn and
[0]q, [1]q, · · · , [n]q for M = F (q)

n . Our analysis uses the combinatorics of Stirling and
q-Stirling numbers.

Our answer to Question 1.2 involves decomposing the eigenspaces of the generator
of RG on R as G-representations (for k a field in which |G| is invertible). We do so
by (i) introducing and studying filtrations on R and (ii) inductively constructing eigen-
vectors. We describe these eigenspaces in terms of derangement symmetric functions first
introduced by Désarménien and Wachs [5]. Derangement symmetric functions have con-
nections to many well-studied objects in combinatorics such as the complex of injective
words [13], random-to-top and random-to-random shuffling [21], higher Lie characters
[21], and configuration spaces [9]; see [3, §3.3] for historical details. We add to this list
by showing they form crucial building blocks for the invariant theory of kFn and kF (q)

n .
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1.1 Outline

In Section 2 we define the two monoids of interest and their respective symmetry groups.
In Section 3 we determine the structure of the invariant subalgebras for both monoid
algebras, answering Question 1.1 with Theorem 3.4. In order to present our answer to
Question 1.2 for both monoids in parallel, we use the language of symmetric functions.
Accordingly, Section 4 reviews the famous Frobenius characteristic map and its lesser-
known q-analogue. We also give background on the derangement symmetric function here.
Finally, in Section 5 we answer Question 1.2 with Theorem 5.1.

2 The left-regular bands and their symmetry groups

Definition 2.1. The free left-regular band (or LRB) on n letters Fn (see [4, §1.3], [18, §14.3.1])
consists, as a set, of all words a = (a1, a2, . . . , aℓ) with letters ai from {1, 2, . . . , n} and no
repeated letters, that is, ai ̸= aj for 1 ≤ i < j ≤ n. The set Fn becomes a semigroup under
the following operation: if b = (b1, . . . , bm) is another word in Fn, then their product is

a · b := (a1, . . . , aℓ, b1, . . . , bm)
∧,

where we adopt the notation from Brown [4] that for a sequence c = (c1, . . . , cp), the
subsequence c∧ = (c1, . . . , cp)∧ is obtained by removing any letter ci that appears already
in the prefix (c1, c2, . . . , ci−1).

Example 2.2. In F5, one has (2, 5, 1) · (4, 2, 3, 1) = (2, 5, 1, 4, 3).

One can check that the empty word () is an identity element for this operation, and
hence Fn is not only a semigroup, but a monoid. For any word a ∈ F , the length ℓ(a) := ℓ
lies anywhere in the range 0 ≤ ℓ ≤ n. There is a left action on Fn by Sn, the symmetric
group on n letters, where w ∈ Sn acts by w(a1, . . . , aℓ) = (w(a1), . . . , w(aℓ)).

The q-analogue of Fn that we will consider will be denoted F (q)
n , defined as follows.

Definition 2.3. As a set, F (q)
n consists of all partial flags of subspaces A = (A1, . . . , Aℓ)

where Ai is an i-dimensional Fq-linear subspace of (Fq)n, and A1 ⊂ A2 ⊂ · · · ⊂ Aℓ.
Again the length ℓ(A) := ℓ lies in the range 0 ≤ ℓ ≤ n. We multiply A with another flag
B = (B1, . . . , Bm) in F (q)

n by:

A · B := (A1, . . . , Aℓ, Aℓ + B1, Aℓ + B2, . . . , Aℓ + Bm)
∧.

As before, for a sequence C = (C1, . . . , Cp) of nested subspaces C1 ⊆ C2 ⊆ · · · ⊆ Cp, the
subsequence C∧ is obtained by removing any Ci appearing in the prefix (C1, . . . , Ci−1).
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As in the q = 1 case, F (q)
n is not only a semigroup but a monoid since the empty flag

() is an identity element1. Our symmetry group in this case is GLn := GLn(Fq), and
g ∈ GLn acts on the left by g(A1, . . . , Aℓ) = (g(A1), . . . , g(Aℓ)).

Let k be a commutative ring with 1. For any finite monoid M (such as M = Fn,F (q)
n ),

the monoid algebra R = kM is the free k-module with basis elements given by the ele-
ments a of M, and multiplication extended k-linearly. A group G of monoid automor-
phisms of M (such as G = Sn, GLn) acts as ring automorphisms on kM.

Following Brown [4], we use chambers to refer to words and flags of maximum length
in Fn and F (q)

n . In kFn, the chamber subspace is kSn. In kF (q)
n , the chamber subspace

is spanned by complete flags of (Fq)n, equivalent to the coset space k[GLn/B].

3 Answer to Question 1.1

Our first goal is to answer Question 1.1 by describing the invariant rings RG. Importantly,
since the groups G permute the monoid elements M, the monoid algebra R = kM
becomes a permutation representation of G. Therefore the invariant subalgebra RG has
as a k-basis the orbit sums {∑a∈O a} as one runs through all G-orbits O on M.

For both monoids M = Fn,F (q)
n , one can easily identify the G-orbits as elements of

a fixed length. In particular, the G-invariant subalgebras RG have k-bases {xℓ}ℓ=0,1,...,n

and {x(q)ℓ }ℓ=0,1,...,n, defined by

xℓ := ∑
a∈Fn
ℓ(a)=ℓ

a, x(q)ℓ := ∑
A∈F (q)

n
ℓ(A)=ℓ

A.

Example 3.1. Let q = 2, n = 3, ℓ = 1, and let e1, e2, e3 be standard basis vectors for V = (F2)
3.

Using the notation ⟨v1, v2, . . . , vm⟩ for the Fq-span of the vectors {v1, v2, . . . , vm} in V, one has

x(2)1 =(⟨e1⟩) + (⟨e2⟩) + (⟨e3⟩) + (⟨e1 + e2⟩) + (⟨e1 + e3⟩) + (⟨e2 + e3⟩) + (⟨e1 + e2 + e3⟩).

We will show that both invariant subalgebras RG have another natural basis consist-
ing of powers of x1, x(q)1 when q ∈ k×. Henceforth, set x := x1 and x(q) := x(q)1 .

Our proof that the powers of x and x(q)1 form a basis of RG involves Stirling numbers
and one of their q-analogues2. Recall the standard q-analogue of n ∈ Z≥0 :

[n]q := 1 + q + q2 + · · ·+ qn−1.
1The authors thank an anonymous referee for pointing out that both Fn,F (q)

n are instances of the
(right-) free Rhodes expansion of the lattice semigroups for the Boolean algebra and finite vector space
lattices, using the rank one elements as generators; see [12, §4].

2See [15, §1.1, 1.2] for a history of two standard q-analogues, one being the Sq(n, k) in Definition 3.2.



Invariant theory for the free left-regular band and a q-analogue 5

Definition 3.2. Define the classical Stirling numbers S(n, k) and a q-analogue Sq(n, k) recur-
sively as follows. When n = k = 0, let S(n, k) = Sq(n, k) = 1. When n + k ≥ 1 with n = 0 or
k = 0, set S(n, k) = Sq(n, k) = 0. For n and k both at least 1, define

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k),
Sq(n, k) = qk−1 · Sq(n − 1, k − 1) + [k]q · Sq(n − 1, k).

(3.1)

The recurrences in Equation (3.1) lead to a change of basis expression in RG.

Lemma 3.3. Let k be a commutative ring with 1, and let R = kM with M = Fn or F (q)
n .

Then the (q-)Stirling numbers S(m, k), Sq(m, k) are the expansion coefficients for the powers

{xm}m=0,1,...,n and {(x(q))m}m=0,1,...,n in the k-bases {xk}k=0,1,...,n, {x(q)k }k=0,1,...,n of RG:

xm = ∑
k

S(m, k) xk,

(x(q))m = ∑
k

Sq(m, k) x(q)k .

Thus unitriangularity of {S(m, k)} shows {xk}k=0,1,...,n always gives a k-basis for RG, while
triangularity of

{
Sq(m, k)

}
shows {(x(q))k}k=0,1,...,n are a k-basis for RG if and only if q ∈ k×.

Proof Idea. The lemma follows from induction on the Stirling recurrences (3.1) after prov-
ing the following multiplication rules in RG: for ℓ = 0, 1, . . . , n,

x · xℓ = ℓxℓ + xℓ+1,

x(q) · x(q)ℓ = [ℓ]q x(q)ℓ + qℓ x(q)ℓ+1.

Note that these rules allow one to solve for each xℓ or x(q)ℓ in terms of powers of x or x(q)

inductively. The Stirling numbers just happen to be the change-of-basis coefficients.

We use Lemma 3.3, as well as properties of minimal polynomials, to describe the
structure of the invariant subalgebras, answering Question 1.1.

Theorem 3.4. Let k be any commutative ring with 1, and R = kM for either of the monoids
M = Fn,F (q)

n , with symmetry groups G = Sn, GLn. If M = F (q)
n , assume that q is in k×.

(i) The unique k-algebra map k[X]−→R defined by

X 7−→
{

x if M = Fn,

x(q) if M = F (q)
n ,

induces an algebra isomorphism k[X]/( f (X)) ∼= RG where

f (X) :=

{
X(X − 1)(X − 2) · · · (X − n) if M = Fn,

X(X − [1]q)(X − [2]q) · · · (X − [n]q) if M = F (q)
n .
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Hence RG is commutative and generated by x or x(q).

(ii) If k is a field where |G| is invertible, then x or x(q) acts semisimply on any finite-
dimensional RG-module, with eigenvalues contained in the lists{

0, 1, 2, . . . , n if M = Fn,

[0]q, [1]q, [2]q, . . . , [n]q if M = F (q)
n .

An old, but interesting, observation is that multiplication by x acts on the chamber
subspace of kFn as a (rescaled) version of the random-to-top operator, see for instance
B. Steinberg [18, Prop. 14.5]. This observation will be used in the proof of Theorem 5.1.

Example 3.5. If n = 4 and w = (3, 1, 4, 2), then

x · w = ((1) + (2) + (3) + (4)) · (3, 1, 4, 2)
= (1, 3, 4, 2) + (2, 3, 1, 4) + (3, 1, 4, 2) + (4, 3, 1, 2)

which (after scaling by 1
4 ) is the result of random-to-top shuffling on w as an element of kS4.

Remark 3.6. In unpublished notes, Garsia [7] (see also Tian [20]), studies the top-to-random
shuffling operator, which is adjoint or transpose to the random-to-top operator. There he
sketches a proof that its minimal polynomial is X(X − 1)(X − 2) · · · (X − n). In light of
the fact that an operator and its transpose have the same minimal polynomial, Garsia’s
sketch is closely related to the part of our proof of Theorem 3.4 dealing with M = kFn.

4 Symmetric function background

4.1 Symmetric functions, Sn- and unipotent GLn-representations

We review here the relation between the ring of symmetric functions Λ and representations
of Sn; see Sagan [14], Stanley [17] as references, and for undefined terminology. We then
review the parallel story for R. Steinberg’s unipotent representations of GLn; see [8, §4.2,
4.6, 4.7] as a reference.

The ring of symmetric functions Λ (of bounded degree, in infinitely many variables)
may be viewed as a polynomial algebra Z[h1, h2, . . .] = Z[e1, e2, . . .] where hn, en are the
complete homogeneous and elementary symmetric functions of degree n. One may view Λ
as a graded Z-algebra Λ =

⊕∞
n=0 Λn, which we wish to relate to the direct sum

C(S) :=
∞⊕

n=0
C(Sn),



Invariant theory for the free left-regular band and a q-analogue 7

where C(Sn) denotes the Z-module of virtual characters of Sn. That is, C(Sn) is the free
Z-module on the basis of irreducible characters {χλ} indexed by the partitions λ of n, or
alternatively, the Z-submodule of class functions on Sn of the form χ − χ′ for genuine
characters χ, χ′. One makes C(S) a graded algebra via the induction product defined by

C(Sn1)× C(Sn2) −→ C(Sn1+n2)

( f1, f2) 7−→ f1 ∗ f2 := ( f1 ⊗ f2) ↑
Sn1+n2
Sn1×Sn2

where (−) ↑G
H is the usual induction of class functions on a subgroup H to class functions

on G. One then has the Frobenius characteristic isomorphism of Z-algebras C(S)
ch−→ Λ,

mapping

C(S)
ch−→ Λ

1Sn 7−→ hn,

χλ 7−→ sλ.

Here sλ is the Schur function. For a composition α = α1, α2, · · · , αℓ, we use the standard
shorthand hα := hα1 hα2 · · · hαℓ .

There is a parallel story for a certain subset of GLn-representations. Specifically,
there is a collection of irreducible GLn-representations {χλ

q }, indexed by partitions λ of
n, which are the irreducible constituents occurring within the GLn-permutation action
on the set GLn/B of complete flags of subspaces in V = (Fq)n. They were studied by R.
Steinberg [19], and are now called the unipotent characters of GLn. Denoting by C(GLn)
the free Z-submodule of the class functions on GLn with unipotent characters {χλ

q } as a
basis, one can define the parabolic or Harish-Chandra induction product on the direct sum
C(GL) :=

⊕∞
n=0 C(GLn) as follows:

C(GLn1)× C(GLn2) −→ C(GLn1+n2)

( f1, f2) 7−→ f1 ∗ f2 :=
(
( f1 ⊗ f2) ⇑

Pn1,n2
GLn1×GLn2

)
↑GLn1+n2

Pn1,n2 .

Here Pn1,n2 is the maximal parabolic subgroup of GLn1+n2 setwise stabilizing the Fq-

span of the first n1 standard basis vectors, and (−) ⇑Pn1,n2
GLn1×GLn2

is the inflation operation
that creates a GLn1 × GLn2-representation from a Pn1,n2-representation, by precomposing
with the surjective homomorphism Pn1,n2 ↠ GLn1 × GLn2 sending

[
A B
0 C

]
7−→

[
A 0
0 C

]
.

This parabolic induction turns out to make C(GL) into an associative, commutative

Z-algebra. One then has a q-analogue of the Frobenius isomorphism C(GL)
chq−→ Λ

that sends 1GLn 7−→ hn and χλ
q 7−→ sλ. For example, the chamber subspaces kSn and

k[GLn/B] of kFn and kF (q)
n carry the same (q)-Frobenius characteristic image h1n .
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4.2 (q-)derangement numbers and representations

A central role in this story is played by the classical derangement numbers dn, and the
q-derangement numbers dn(q) of Wachs [22]:

dn := n! ∑n
k=0

(−1)k

k! = n!
(

1
1! −

1
2! +

1
3! −

1
4! + · · ·+ (−1)n

n!

)
,

dn(q) := [n]!q ∑n
k=0

(−1)k

[k]!q
.

There are two well-known combinatorial models for dn counting permutations in Sn:

• derangements, which are the fixed-point free permutations, or

• desarrangements, which are permutations w = (w1, w2, . . . , wn) whose first ascent
position i with wi < wi+1 (using wn+1 = n + 1) occurs for an even position i.

Wachs [22] and later Désarménien and Wachs [6] gave various interpretations for dn(q).
In particular, dn(q) is still closely related to derangements and desarrangements. Letting
Dn, En denote the derangements and desarrangements in Sn, and defining the major index
statistic of a permutation w = (w1, . . . , wn) as maj(σ) = ∑i:wi>wi+1

i, one has

dn(q) = ∑
σ∈Dn

qmaj(σ) = ∑
σ∈En

qmaj(σ−1).

These dn, dn(q) are the dimensions for a pair of representations of Sn and GLn, which
we call the derangement representation Dn and its (unipotent) q-analogue D(q)

n . Both have
the same symmetric function image dn under the Frobenius maps ch and chq. The
symmetric function dn was originally introduced by Désarménien and Wachs [5] and
has many equivalent descriptions (see [3, Proposition 3.1]). Here, we define dn by its
decomposition into Schur functions; this description is due to Reiner and Webb [13]. To
do so, we must define desarrangement tableaux.

A standard Young tableau Q with n cells written in English notation, has descent set

Des(w) := {i ∈ {1, 2, . . . , n − 1} : i + 1 appears south and weakly west of i in Q}.

For example, Q = 1 3
2 6
4
5

has Des(Q) = {1, 3, 4}. A desarrangement tableau is a standard

Young tableau Q with n cells for which the smallest element of {1, 2, . . . , n} \ Des(Q) is
even. Thus the example tableau Q given above is a desarrangement tableau.

Definition 4.1. dn = ∑Q sλ(Q) where Q runs through the desarrangement tableaux of size n.
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Example 4.2. We compute dn for 0 ≤ n ≤ 4.

n desarrangement tableaux Q dn

0 ∅ 1

1 (none) 0

2 1
2

s(1,1)

3 1 3
2

s(2,1)

4 1
2
3
4

1 3
2
4

1 3
2 4

1 3 4
2

s(1,1,1,1) + s(2,1,1) + s(2,2) + s(3,1)

5 Answer to Question 1.2

We are now prepared to answer Question 1.2 by examining the monoid algebras R = kM
as modules over both the symmetry groups kG and their invariant subalgebras RG. Since
R carries commuting actions of RG and of kG, we will describe R simultaneously as a
module over both. Henceforth, assume that k is a field in which |G| is invertible.

We will utilize two important features of our setting. First, since kM is finite-
dimensional over k, it is semisimple both as an RG-module from Theorem 3.4(ii), and
as a kG-module by Maschke’s Theorem. Second, by Theorem 3.4(ii), we have that RG is
generated by the single element x or x(q), which acts diagonalizably with certain eigen-
values λ all lying in k. It follows that in order to understand the simultaneous RG-
and kG-module structure of any module V, it suffices to decompose the eigenspaces
(ker((x − λ)|V) or ker((x(q) − λ)|V)) as G-representations.

Hence, we are able to answer Question 1.2 for j = 0, 1, . . . n

• when M = Fn by describing ker ((x − j)|kFn), the j-eigenspace of x acting on kFn,
as an Sn-representation, and

• when M = F (q)
n by describing ker

(
(x(q) − [j]q)|kF (q)

n

)
, the [j]q-eigenspace of x(q)

acting on kF (q)
n , as a GLn- representation.

Theorem 5.1. Let k be a field in which |G| is invertible. Then x, x(q) act diagonalizably on
kFn, kF (q)

n , and for each j = 0, 1, 2, . . . , n, their eigenspaces carry G-representations with the
same Frobenius map images

ch ker ((x − j)|kFn) =
n

∑
ℓ=j

h(n−ℓ,j) · dℓ−j = chq ker
(
(x(q) − [j]q)|kF (q)

n

)
.
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In other words, one has G-representation isomorphisms

ker ((x − j)|kFn)
∼=

n⊕
ℓ=j

1Sn−ℓ
∗ 1Sj ∗ Dℓ−j,

ker
(
(x(q) − [j]q)|kF (q)

n

)
∼=

n⊕
ℓ=j

1GLn−ℓ
∗ 1GLj ∗ D

(q)
ℓ−j.

Proof Idea. The crucial idea is to introduce a filtration on kM by length,

0 = kM≥n+1 ⊂ kM≥n ⊂ kM≥n−1 ⊂ · · · ⊂ kM≥1 ⊂ kM≥0 = kM,

where M≥ℓ is the k-span of words of length at least ℓ for M = Fn and flags of length
at least ℓ for M = F (q)

n . By semisimplicity, there is an isomorphism of both RG-modules
and G-representations:

kM ∼=
n⊕

ℓ=0

kM≥ℓ/kM≥ℓ+1. (5.1)

Our approach is to study the eigenspaces of x, x(q) on each summand in Equation (5.1).
The bottom of the filtration (when ℓ = n) is the chamber subspace of M = kFn, kF (q)

n ,
which we write as Cn, C(q)

n , respectively. We prove that

ch ker ((x − j)|Cn) = hjdn−j = chq ker
(
(x(q) − [j]q)|

C
(q)
n

)
. (5.2)

The key ingredients in proving Equation (5.2) are (i) inductive constructions of explicit j-,
[j]q-eigenvectors3 of x|Cn , x(q)|

C
(q)
n

from nullvectors of x|Cn−j , x(q)|
C
(q)
n−j

, (ii) the dimensions

of ker (x|Cn) , ker
(

x(q)|
C
(q)
n

)
following from work of Phatarfod [11], Brown [4], and (iii)

a recursive description of dn from [5]: h1n = ∑n
j=0 djhn−j.

Finally, we address the remaining summands of Equation (5.1) by reinterpreting the
action of x, x(q) on kM≥ℓ/kM≥ℓ+1 in terms of the eigenspaces of Cℓ,C

(q)
ℓ and using

properties of induced representations.

Example 5.2. We illustrate Theorem 5.1 computing the Frobenius map image for each j-eigen-
space of x on kF3, or equivalently the q-Frobenius map image for each [j]q-eigenspace of x(q) on

kF (q)
3 . The table below shows these symmetric functions in the jth row, decomposed into columns

labeled by ℓ, which index the filtration factors from Equation (5.1) that contribute a term.

3The third author is grateful to Michelle Wachs for explaining to him the constructions in the case that
M = kFn in 2002, in the context of random-to-top shuffling.



Invariant theory for the free left-regular band and a q-analogue 11

Frobenius map images for eigenspaces of x, x(q) on kF3, kF (q)
3 :

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
h3 · d0 = h2 · d1 = h1 · d2 = h0 · d3 =

j = 0 h3 · s() = h2 · 0 = h1 · s(1,1) = h0 · s(2,1) =

s(3) 0 s(2,1) + s(1,1,1) s(2,1)

h(2,1) · d0 = h(1,1) · d1 = h1 · d2 =

j = 1 h(2,1) · s() = h(1,1) · 0 = h1 · s(1,1) =

s(3) + s(2,1) 0 s(2,1) + s(1,1,1)

h(2,1) · d0 = h2 · d1 =

j = 2 h(2,1) · s() = h2 · 0 =

s(3) + s(2,1) 0

h3 · d0 =
j = 3 h3 · s() =

s(3)
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