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Rowmotion on 321-avoiding permutations

Ben Adenbaum*1 and Sergi Elizalde†1
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Abstract. We give a natural definition of rowmotion for 321-avoiding permutations,
by translating, through bijections involving Dyck paths and the Lalanne–Kreweras in-
volution, the analogous notion for antichains of the positive root poset of type A. We
prove that some permutation statistics, such as the number of fixed points, are ho-
momesic under rowmotion, meaning that they have a constant average over its orbits.
Finally, we show that the Armstrong–Stump–Thomas equivariant bijection between an-
tichains in types A and B and non-crossing matchings can be described more naturally
in terms of the Robinson–Schensted–Knuth correspondence on permutations.
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1 Introduction

Let Sn denote the set of permutations of {1, 2, . . . , n}. We say that π ∈ Sn is 321-avoiding
if there do not exist i < j < k such that π(i) > π(j) > π(k). Let Sn(321) denote the
set of 321-avoiding permutations in Sn. We can represent π ∈ Sn(321) as an n × n array
with crosses in squares (i, π(i)) for 1 ≤ i ≤ n; we call this the array of π. Rows and
columns are indexed using cartesian coordinates, so that (i, j) denotes the cell in the ith
column from the left and jth row from the bottom. We say that (i, π(i)) is a fixed point
(respectively excedance, weak excedance, deficiency, weak deficiency) if π(i) = i (respectively
π(i) > i, π(i) ≥ i, π(i) < i, π(i) ≤ i).

Let P be a finite poset, and let A(P) denote the set of antichains of P. Antichain
rowmotion is the map ρA : A(P) → A(P) defined as follows: for A ∈ A(P), let ρA(A)
be the minimal elements of the complement of the order ideal generated by A. See
Section 2.3 for more details and definitions.

Historically, rowmotion was first described for general posets by Brouwer and Schri-
jver [2], and then again by Cameron and Fon-der-Flaas [3] as a composition of certain
involutions called toggles. The name of rowmotion comes from the work of Striker
and Williams [17] where, for certain posets, rowmotion is described as a composition of
toggles along the rows, and related to another operation called promotion.

Restricting our attention to the poset of positive roots for the type A root system,
we will show that antichains of this poset are in bijection with Dyck paths and with
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321-avoiding permutations. This will allow us to define a natural rowmotion operation
on Sn(321).

When studying rowmotion, it is common to look for statistics that exhibit a property
called homomesy [12]. Given a set S and a bijection τ : S → S so that each orbit of the
action of τ on S has finite order, we say that a statistic on S is homomesic under this
action if its average on each orbit is constant. More specifically, the statistic is said to be
c-mesic if its average over each orbit is c. We prove that several statistics on 321-avoiding
permutations, including the number of fixed points, are homomesic under rowmotion.

Furthermore, we use the viewpoint of 321-avoiding permutations to shed new light
into a celebrated bijection of Armstrong, Stump and Thomas [1] between antichains in
root posets of finite Weyl groups (also known as nonnesting partitions) and noncrossing
partitions. We will show that, in the case of types A and B, the Armstrong–Stump–
Thomas (AST) bijection has a simple interpretation in terms of the Robinson–Schensted–
Knuth (RSK) correspondence applied to 321-avoiding permutations.

2 Background

In this section we review some notions about Dyck paths, noncrossing matchings, and
the RSK correspondence, in particular as it applies to 321-avoiding permutations. We
also provide a basic overview of rowmotion.

2.1 Dyck paths

Let Dn be the set of words over {u, d} consisting of n us and n ds, and satisfying that
every prefix contains at least as many us as ds. Elements of Dn are called Dyck paths,
and they will be drawn in three different ways as lattice paths in Z2 starting at the origin.
Replacing u and d with (0, 1) and (1, 0) (respectively, (1, 0) and (0, 1)), we obtain paths
that stay weakly above (respectively, below) the diagonal y = x. We denote these by
Dn (respectively, Dn). The sets Dn and Dn are in bijection with each other, by simply
reflecting along the diagonal. The third way to draw Dyck paths that we will use is
when u and d are replaced with (1, 1) and (1,−1), respectively. In all cases, a pair of
consecutive steps ud is called a peak, and a pair du is called a valley. Interpreting u and
d steps of D ∈ Dn as opening and closing parentheses, respectively, and matching them
in the usual way, a pair of matched steps will be called a tunnel, following [5].

Several bijections between 321-avoiding permutations and Dyck paths are known.
For π ∈ Sn(321), let Ep(π) ∈ Dn be the path whose peaks occur at the weak excedances
of π, let Ev(π) ∈ Dn be the path whose valleys occur at the excedances of π, and let
Dv(π) ∈ Dn be the path whose valleys occur at the weak deficiencies of π. The bijection
that maps Ep(π) to Dv(π) is known as the Lalanne–Kreweras involution on Dyck paths [8,
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9], which we denote by LK = Dv ◦ E−1
p ; see the examples in Figure 1.

Let Nn denote the set of noncrossing matchings of {1, 2, . . . , 2n}, i.e., perfect matchings
with the property that there do not exist i < j < k < ℓ such that i is matched with k and j
is matched with ℓ. We will draw the points 1, 2, . . . , 2n around a circle in clockwise order,
with a line segment connecting each pair of matched points. There is a straightforward
bijection between Dyck paths and noncrossing matchings.

Definition 2.1. Let Match : Dn → Nn be the bijection defined as follows. Given D ∈ Dn,
the points i and j are matched in Match(D) if the steps of D in positions i and j form a
tunnel.

Define promotion of Dyck paths to be the following map Pro : Dn → Dn. Given
D ∈ Dn, consider its first-return decomposition D = uAdB where A, B are Dyck paths,
and let Pro(D) = AuBd. The reason for this name is that, as observed by White [14, Sec.
8], applying this operation to a path D ∈ Dn is equivalent to applying promotion on
standard Young tableaux of shape (n, n).

2.2 RSK and 321-avoiding permutations

The RSK correspondence is a bijection between permutations and pairs of standard
Young tableaux of the same shape. We refer the reader to [16, Sec. 7.11] for defini-
tions. Given a permutation π ∈ Sn, we denote its image by RSK(π) = (P, Q), where P
and Q are standard Young tableaux of the same shape. In, particular, π is 321-avoiding if
and only if P and Q have at most two rows. This property is used to define the following
map from Sn(321) to Dn.

Definition 2.2. Let π ∈ Sn(321), and suppose that RSK(π) = (P, Q). Define a Dyck path
R̂SK(π) as follows. For 1 ≤ i ≤ n, let the ith step be a u if i is in the top row of P, and a d
otherwise; let the (2n + 1 − i)th step be a d if i is in the top row of Q, and a u otherwise.

2.3 Rowmotion

Let P be a finite poset. An antichain of P is a subset of pairwise incomparable elements.
An order ideal of P is a subset I with the property that if x ∈ I and y ≤ x, then y ∈ I.
Similarly, an order filter of P is a subset F with the property that if x ∈ F and x ≤ y,
then y ∈ F. Let A(P), I(P) and F (P) denote the sets of antichains, order ideals and
order filters of P, respectively. The complementation map Θ, defined on subsets S of P
by Θ(S) = P \ S, restricts to a bijection between I(P) and F (P).

Following [7], define the up-transfer map ∆ : I(P) → A(P) by letting ∆(I) be the
set of maximal elements of I ∈ I(P), and the down-transfer map ∇ : F (P) → A(P) by
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letting ∇(F) be the set of minimal elements of F ∈ F (P). The inverses of these maps are
given by

∆−1(A) = {x ∈ P : x ≤ y for some y ∈ A},

∇−1(A) = {x ∈ P : x ≥ y for some y ∈ A},

for A ∈ A(P). Antichain rowmotion is the map ρA : A(P) → A(P) defined as the
composition ρA = ∇ ◦ Θ ◦ ∆−1.

The poset of positive roots in type A, which we denote by An−1, can be described as
the set of intervals {[i, j] : 1 ≤ i ≤ j ≤ n − 1} ordered by inclusion. It is a ranked poset,
with rank function given by rk([i, j]) = j − i. The set A(An−1) is in bijection with Dn.
One such bijection consists of mapping each path P to the antichain α(P) whose elements
are at the valleys of P. This bijection allows us to define rowmotion on Dyck paths as
ρD = α−1 ◦ ρA ◦ α. A second bijection between A(An−1) and Dn consists of mapping the
antichain A to the path δ(A) whose peaks are at the elements of the antichain. Note that
ρA = α ◦ δ and ρD = δ ◦ α.

Panyushev [10, 11] considered the map on A(An) defined by mapping an antichain
given by {[i1, j1], . . . [ik, jk]} to {[i′1, j′1], . . . [i′n−k, j′n−k]} with {i′1, . . . , i′n−k} = {1, 2, . . . , n} \
{j1, . . . , jk} and {j′1, . . . j′n−k} = {1, 2, . . . , n} \ {i1, . . . , ik}. As noted in [7], this map equals
the composition α ◦ LK ◦α−1, so we will denote it by LKA. Hopkins and Joseph show in
[7, Thm. 3.5] that a certain map known as antichain rowvacuation, denoted in general by
RvacA, coincides with LKA in the case of the type A root poset.

3 A rowmotion operation on 321-avoiding permutations

To define rowmotion on 321-avoiding permutations, first consider the following bijection
to antichains of An−1.

Definition 3.1. Let Exc : Sn(321) → A(An−1) be the bijection where, for π ∈ Sn(321),
we define

Exc(π) = {[i, π(i)− 1] : (i, π(i)) is an excedance of π}.

See the left column of Figure 1 for an example of Exc : S9(321) → A(A8), which
maps the permutation 241358967 to the antichain {[1, 1], [2, 3], [6, 7], [7, 8]}.

To see that Exc is a bijection, note that it can be written as Exc = δ−1 ◦ Ep = α ◦ Ev. The
map Exc provides the following natural way to translate rowmotion into an operation
on Sn(321).

Definition 3.2. Rowmotion on 321-avoiding permutations is the map ρS : Sn(321) →
Sn(321) defined by ρS = Exc−1 ◦ρA ◦ Exc.
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An equivalent description of ρS can be given in terms of the bijections to Dyck paths,
as the composition

ρS = E−1
v ◦ Ep. (3.1)

Figure 1 gives examples of ρS computed in both ways. Note that if π ∈ Sn(321) has
upper and lower paths given by P = Ep(π) and Q = Dv(π), then σ = ρS(π) has upper
and lower paths given by ρD(P) = Ep(σ) and ρ−1

D (Q) = Dv(σ). Equivalently, at the level
of antichains, we have Exc(σ) = ρA(Exc(π)) and Exc(σ−1) = ρ−1

A (Exc(π−1)), noting
that Exc(π−1) is the antichain formed by the deficiencies of π. This follows from the fact
that

LKA ◦ρA = ρ−1
A ◦ LKA, (3.2)

which was proved by Panyushev [11, Thm. 3.5].

241358967

ρS

Exc

ρA

312569478

ρS

ρA

Exc

124673589

Exc

Figure 1: Two applications of rowmotion starting at π = 241358967 ∈ S9(321),
computed using Definition 3.2, or alternatively the composition (3.1). In the up-
per left diagram, the crosses represent π, the red path is Ep(π), the blue path is
Dv(π) = LK(Ep(π)), and the dots represent ρS (π) = E−1

v (Ep(π)) = 312569478.

A diagram of our bijections for permutations, paths and antichains, as well as their
interactions, appears in Figure 2. We can translate the Lalanne–Kreweras involution for
Dyck paths into an involution on Sn(321) by defining

LKS = E−1
p ◦ LK ◦Ep. (3.3)
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Using that LKA = α ◦ LK ◦α−1, the maps LKS and LKA are related by

LKS = E−1
p ◦ α−1 ◦ LKA ◦α ◦ Ep. (3.4)

Sn(321) Sn(321)

Dn Dn

A(An−1) A(An−1)

Sn(321) Sn(321)

Dn Dn

A(An−1) A(An−1)

LK

LKS

LKA

Dv

ρD

ρS

ρA

Ep EpEv

α α

Exc

δ

ρD

ρS

ρA

Ep Ep

α α

Figure 2: Diagram of the bijections ρS , ρD, ρA, α, δ, Ep, Ev, Dv, LKS, LKA, and LKD.
The vertical dashed arrows are various versions of the Lalanne–Kreweras involution,
and the dotted curved arrow is the map sending a permutation to its inverse.

The map LKS is closely related to the operation that sends each permutation to its
inverse, as the next lemma shows.

Lemma 3.3. If π ∈ Sn(321) then π−1 = ρS(LKS(π)) = LKS(ρ
−1
S (π)).

Finally, let us mention that rowmotion on 321-avoiding permutations provides a more
direct proof of a result of Hopkins and Joseph [7, Thm. 6.2] that the number of antichains
of An−1 that are fixed by the involution LKA ◦ρA is ( n

⌊ n
2 ⌋
), by instead reducing it to a clas-

sical result of Simion and Schmidt [15] on the enumeration of 321-avoiding involutions.

4 Statistics and homomesies

In this section we show that certain statistics on 321-avoiding permutations exhibit ho-
momesy under the action of ρS .
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4.1 The number of fixed points and the statistics hi and ℓi

The first statistic that we consider is the number of fixed points of a permutation π,
denoted by fp(π) = |{i : π(i) = i}|. Let exc(π) = |{i : π(i) > i}| and wexc(π) = |{i :
π(i) ≥ i}| denote the number of excedances and weak excedances of π, respectively.

Theorem 4.1. The statistic fp is 1-mesic under the action of ρS on Sn(321).

Proof. Let π ∈ Sn(321), and let O be the orbit of π under ρS . Then

fp(π) = wexc(π)− exc(π) = n − exc(π−1)− exc(π) = n − |Exc(π)| − |Exc(π−1)|.

Summing over the orbit,

1
|O| ∑

π∈O
fp(π) = n − 1

|O| ∑
π∈O

|Exc(π)| − 1
|O| ∑

π∈O
|Exc(π−1)|.

As noted above equation (3.2), applying ρS to π corresponds to applying ρA to Exc(π)
and ρ−1

A to Exc(π−1). It then follows by Lemma 3.3 that the sets {Exc(π) : π ∈ O}
and {Exc(π−1) : π ∈ O} are complete orbits under ρA. It is known [1] that the
antichain cardinality statistic is n−1

2 -mesic under the action of ρA on A(An−1). Thus
1
|O| ∑π∈O |Exc(π)| = 1

|O| ∑π∈O |Exc(π−1)| = n−1
2 , and we conclude that fp is 1-mesic.

See Figure 3 for a computation of fp(π) over a rowmotion orbit for n = 4. As
Theorem 4.1 asserts, the average of this statistic is 1 over each orbit.

Next we consider two families of statistics on 321-avoiding permutations, and show
that they are also homomesic under rowmotion. The first family are the statistics hi
introduced by Hopkins and Joseph [7]. For 1 ≤ i ≤ n − 1, they define hi on antichains
A ∈ A(An−1) as

hi(A) =
i

∑
j=1

1[j,i](A) +
n−1

∑
j=i

1[i,j](A),

where 1[i,j](A) is the indicator function that equals 1 if [i, j] ∈ A and 0 otherwise. For
π ∈ Sn(321), we now define hi(π) by hi(Exc(π)). In terms of the array of π ∈ Sn(321),
hi(π) counts the number of crosses of the form (j, i + 1) with 1 ≤ j ≤ i, or (i, j) with
i + 1 ≤ j ≤ n.

Hopkins and Joseph prove in [7, Thm. 4.3] that the statistics hi on antichains are
1-mesic under ρA. This result can be translated in terms of 321-avoiding permutations
as follows.

Theorem 4.2 ([7]). For 1 ≤ i ≤ n − 1, the statistic hi is 1-mesic under the action of ρS on
Sn(321).
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7→

111

7→

102

7→

121

7→

210

7→

011

7→

102

7→

221

7→

010

Figure 3: The rowmotion orbit containing 1423. The numbers below each diagram are
the values fp(π), h2(π) and ℓ2(π), from left to right.

Next we define a new family of permutation statistics, that we denote by ℓi for 1 ≤
i ≤ n. For π ∈ Sn(321), let ℓi(π) be the number of crosses in the array of π of the form
(j, i) with 1 ≤ j ≤ i, plus the number of crosses of the form (i, j) with i < j ≤ n. It turns
out that the statistics ℓi are homomesic as well, see Figure 3 for an example.

Theorem 4.3. For 1 ≤ i ≤ n, the statistic ℓi is 1-mesic under the action of ρS on Sn(321).

4.2 The sign statistic

In this subsection we describe how rowmotion interacts with the sign of a 321-avoiding
permutation.

Theorem 4.4. For all π ∈ Sn(321),

sgn(ρS(π)) = sgn(LKS(π)) =

{
sgn(π) if n is odd,
− sgn(π) if n is even.

It is a classical result of Simion and Schmidt [15, Prop. 2] that, when n is even, the
set Sn(321) contains the same number of odd and even permutations. A bijective proof
of this fact was given by Reifegerste [13]. Theorem 4.4 gives two new bijections, ρS and
LKS , between the subsets of odd and even permutations in Sn(321). Furthermore, LKS
has the additional property of being a sign-reversing involution on Sn(321).

Finally, we note the following two immediate consequences of Theorem 4.4.

Corollary 4.5. For even n, the statistic sgn on Sn(321) is 0-mesic under the action of ρS .

Corollary 4.6. For even n, the map LK on Dn has no fixed points.

Corollary 4.6 is equivalent to [10, Thm. 4.6] for even n.
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5 The Armstrong–Stump–Thomas bijection as a map on
permutations

In [1], Armstrong, Stump and Thomas constructed a bijection between antichains in
root posets of finite Weyl groups and noncrossing matchings, having the property that it
translates rowmotion on antichains into rotation of noncrossing matchings. In type A, we
can interpret antichains as 321-avoiding permutations via the bijection Exc. It turns out
that, with this interpretation, the Armstrong–Stump–Thomas bijection is equivalent to
the well-known Robinson–Schensted–Knuth correspondence restricted to 321-avoiding
permutations. This fact extends to the root poset in type B.

5.1 AST in type A

The Armstrong–Stump–Thomas bijection is described in [1] in much more generality,
but for our purposes we will be restricting exclusively to the cases of type A and B.
We follow the description given by Defant and Hopkins [4]. In type A, we denote this
bijection by AST.

Definition 5.1 (AST in type A [4]). Let AST : A(An−1) → Nn be the bijection where the
image of A ∈ A(An−1) is obtained as follows. For each 1 ≤ i ≤ n, the vertex 2n + 1 − i
of the matching will be denoted by i, so that the vertices are 1, 2, . . . , n, n, n − 1, . . . , 1 in
clockwise direction. For each i from 1 to n, consider two options:

• if [i, j − 1] ∈ A for some j, match the vertex j with the nearest unmatched vertex in
counterclockwise direction;

• otherwise, match the vertex i with the nearest unmatched vertex in clockwise di-
rection.

We can now state our main result in this section.

Theorem 5.2. Let Match, R̂SK, Exc and AST be the bijections from Definitions 2.1, 2.2, 3.1
and 5.1, respectively. Then

AST = Match ◦R̂SK ◦ Exc−1 .

See Figure 4 for examples of these maps. It is shown in [1] that the bijection AST is
equivariant in the sense that AST ◦ρA = Rot ◦AST.

5.2 AST in type B

Let Bm denote the positive root poset of the type Bm root system. The poset Bm is
isomorphic to the quotient of A2m−1 by the relations of [i, j] ∼ [2m − j, 2m − i] for all
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AST

A(An−1)
Sn(321)

Dn
Nn

ρA

Exc

ρS

R̂SK Match

Pro−1

1

2

3

4

56

7

8

9

10

Rot

ρA

Exc

ρS

R̂SK Match

Pro−1

1

2

3

4

56

7

8

9

10

Rot

Exc R̂SK Match

1

2

3

4

56

7

8

9

10

Figure 4: The three terms of the respective orbits of the elements of A(A4), S5(321),
D5, and N5 associated to and beginning with the permutation 35124 together with the
respective actions of ρA, ρS , Pro−1, and Rot.

[i, j] ∈ A2m−1. In type B, the Armstrong–Stump–Thomas map [1] is the map ASTB :
A(Bm) → N2m defined as follows. For A ∈ A(Bm), consider the antichain in A2m−1

given by
Â = {[i, j] : [i, j] ∈ A or [2m − j, 2m − i] ∈ A}. (5.1)

Now let ASTB(A) = AST(Â), where AST is the map from Definition 5.1.
It is shown in [1, Lemma 3.5] that the map ρn

A on A(An−1), obtained by applying
rowmotion n times, sends an antichain {[i1, j1], . . . , [ik, jk]} to the antichain {[n − j1, n −
i1], [n − j2, n − i2], . . . , [n − jk, n − ik]}. The antichains that are invariant under this map
are those that are symmetric under vertical reflection. When n = 2m, these are the
antichains in the image of the embedding A 7→ Â from A(Bm) into A(A2m−1) given
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by (5.1). Thus the image of ASTB consists of the matchings in N2m that are invariant
under applying Rot2m, i.e., under rotation by 180◦. Denoting by N S

n the set of centrally
symmetric matchings in Nn, one concludes that ASTB is a bijection between A(Bm) and
N S

2m.
Our alternative description of AST in terms of RSK allows us to give a new proof

of this property of ASTB. Unlike the proof in [1], which relies on the properties of
rowmotion, ours uses well-known properties of the RSK correspondence.

For π ∈ Sn, its reverse complement is the permutation πrc such that πrc(i) = n + 1 −
π(n+ 1− i) for all i. The array of πrc is obtained by rotating the array of π by 180◦. Thus,
the array of (πrc)−1 is obtained by reflecting the array of π along the secondary diagonal,
i.e., the one passing through the bottom-left and upper-right corners of the array. The
map Exc from Definition 3.1 restricts to a bijection between permutations π ∈ Sn(321)
such that π = (πrc)−1, and antichains in A(A2m−1) that are invariant under vertical
reflection, which in turn are in bijection with A(Bm). The behavior of RSK under these
symmetries is well understood.

Theorem 5.3 ([16, Thm. A1.2.10]). Suppose that RSK(π) = (P, Q). Then RSK(πrc) =
(Evac(P), Evac(Q)), and RSK((πrc)−1) = (Evac(Q), Evac(P)).

These properties allow us to show the following without use of AST.

Theorem 5.4. For π ∈ Sn(321), the matchings Match(R̂SK((πrc)−1)) and Match(R̂SK(π))
are 180◦ rotations of each other. Thus, the map Match ◦R̂SK restricts to a bijection between
{π ∈ Sn(321) : π = (πrc)−1} and N S

n .

Finally, another byproduct of our permutation perspective is that we can enumerate
antichains of Bn which are fixed under the action of LKA ◦ρA, answering a question of
Hopkins and Joseph [6, Remark 6.7].

Proposition 5.5.
#{A ∈ A(Bn) : LKA(ρA(A)) = A} = 2n.
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