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Abstract. We study the problem of counting lattice points of a polytope that are
weighted by an Ehrhart quasi-polynomial of a family of parametric polytopes. As ap-
plications one can compute integrals and maximum values of such quasi-polynomials.
We not only recover some known identities in representation theory and semigroup
theory but obtain new ones.
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1 Introduction

We are given a rational convex polytope P in Rn and w(x) a quasi-polynomial function
in n variables. We call w a weight function (the precise definition of the quasi-polynomials
we use here is below, but for now you can think of w as a polynomial). A computational
problem arising throughout the mathematical sciences is to compute, or at least estimate,

LP(w, t) = ∑
x∈tP∩Zn

w(x). (1.1)

Note that, for a fixed w as the polytope P is dilated by an integer factor t ∈ N we
obtain a function of t, which we call the weighted Ehrhart quasi-polynomial for the pair
(P, w). The name is natural as when w(x) = 1 then LP(1, t) yields the classical Ehrhart
quasi-polynomial. We recommend Chapter 4 of [25] or [8] and the references there for
excellent introductions to Ehrhart functions and Ehrhart quasi-polynomials.

One can prove LP(w, t) is a quasi-polynomial in the sense that it is a function in the
variable t which is a sum of monomials up to degree d + M, where M = deg w, but
whose coefficients Em are periodic functions of n ∈ N:

LP(w, t) =
d+M

∑
m=0

Emtm.
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The evaluation of Equation (1.1) at the dilation tP of P is obviously what we need in
order to understand this Ehrhart quasi-polynomial. The leading coefficient of LP(w, t) is
given by the integral of w over the polytope P. These integrals were studied in [6], [7]
and more recently in [5].

We will illustrate soon many important examples of such weighted Ehrhart problems.
For now note they appear in enumerative combinatorics [2], algebraic combinatorics [4,
10], statistics [16, 11], and in symbolic integration and optimization [5, 14], among others.

Our Contributions:

We now outline the main contributions whose details will appear in the forthcoming
full version. The main theorem is a surprisingly simple way to evaluate the function
LP(w, t) where P is a rational polytope and w(x) is a very general weight function.
The key idea is that we build a new polytope, the weight lifting polytope P∗, for which
these functions become simply LP∗(1, t), in other words, just a “standard” lattice point
counting function. This way (often) the weighted Ehrhart polynomial P is equivalent to
the (usual) Ehrhart polynomial of P∗. Clearly, P∗ will depend on both P and w:

Theorem 1.1 (The existence of weight lifting polytopes). Let P be a rational convex poly-
tope in the form {x | Ax = b, x ≥ 0}, where A ∈ Zs×n, b ∈ Zs. Let Q(x1, . . . , xn) be the
parametric family of rational convex polytopes parameterized by x1, . . . , xn, given by

Q(x1, . . . , xn) =

{
y | Cy =

n

∑
i=1

xidi + e, y ≥ 0

}
,

where C ∈ Zr×m, di, e ∈ Zr. Using Q define w(x) to be the multivariate Ehrhart quasi-
polynomial function in n variables that counts the number of lattice points in the parametric
polytope Q(x1, . . . , xn) when xi are chosen integers, i.e.,

w(x1, . . . , xn) = |Q(x1, . . . , xn) ∩ Zm|.

1. There is a weight lifting polytope P∗ ⊂ Rn+m defined by

P∗ =

{(
x
y

)∣∣∣∣ A∗
(

x
y

)
=

(
b
−e

)
, x ≥ 0, y ≥ 0

}
where

A∗ =

[
A 0

d1 d2 · · · dn −C

]
,

for which the summation of the lattice points of P weighted by w equals the number of
lattice points of P∗.
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2. Moreover, when e = 0, the construction is parametric in the sense that the weight w is a
homogeneous function, (tP)∗ = t(P∗), and

LP(w, t) = |(tP)∗ ∩ Zn+m| = |t(P∗) ∩ Zn+m| = LP∗(1, t).

Remark 1.2. To the best of our knowledge the first version of Theorem 1.1 appeared in
print in work by Ardila and Brugallé (see [4, Section 4]), but in [4] the weights w(x)
were special polynomials and in that case some of the consequences we show were not
possible. In Section 2, we present a direct constructive/algorithmic proof of Theorem 1.1
and describe several interesting special cases depending on the type of Ehrhart quasi-
polynomials (in particular, we recover the results of [4]).

Remark 1.3. The second half of Theorem 1.1 uses special weights that are by construction
non-negative. But we note that most of the proof of the theorem works even when w(x)
takes negative or zero values over P. The function LP(w, t) still makes sense, but what
we obtain is not a traditional Ehrhart polynomial, because, for example, the leading
coefficient could be negative, and volumes are never negative.

Remark 1.4. Theorem 1.1 says the weight w(x) can be any Ehrhart quasi-polynomial.
In Section 2, we carefully discuss many ways to express polynomials in terms of these
quasi-polynomial weights. A key point of our paper is that Theorem 1.1 is more versatile
and expressive because it applies to more functions than just polynomial weights. In
fact, Section 2 shows w can have many different representations (e.g., polynomials),
some more efficient than others. To demonstrate the power in Section 3 we present
applications to Combinatorial Representation Theory and Number Theory.

Corollary 1.5 below is a notable new consequence of Theorem 1.1 that can be applied
to many problems of interest. For example, these ideas can be applied to integration and
maximization of Kostka numbers, Littlewood–Richardson coefficients, and any other
combinatorial invariant that is given by an Ehrhart quasi-polynomial.

Corollary 1.5. Let w be weight obtained from an Ehrhart quasi-polynomial function of a para-
metric polyhedron Q, whose parameters are defined over the lattice points of a polytope P. Here
P, Q, w are just as in Theorem 1.1. Using the weight lifting polytope construction of Theorem 1.1
one can integrate and maximize w over P as follows:

• One can compute the integral
∫

P w(x)dx reformulated as a volume computation of the
weight lifting polytope P∗.

• One can solve the maximization problem and determine maxα∈P∩Zn w(α). It reduces to
counting the lattice points of a finite sequence of weight lifting polytopes which contain
each other and can be read from P∗ efficiently.

We sketch the proof of Corollary 1.5 in Section 2. In the forthcoming full version we
will include computational experiments with LattE [13].
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2 Proofs of Theorem 1.1 and sketch of other results

Here we present proofs of Theorem 1.1 and some variations of it.

Proof of Theorem 1.1. Note that there is a natural projection map π : P∗ → P via (x, y) 7→
x. It suffices to show that for any fixed x ∈ P ∩ Zn, w(x) = |π−1(x) ∩ Zn+m|. Recall that
(x, y) ∈ π−1(x) if and only if Ax = b and Cy = ∑n

i=1 xibi + e where x ≥ 0, y ≥ 0. Given
x ∈ P ∩ Zn, we see that (x, y) ∈ π−1(x) ∩ Zn+m if and only if y ∈ Q(x1, . . . , xn) ∩ Zm.
Hence, for a fixed x ∈ P ∩ Zn, |π−1(x) ∩ Zn+m| = |Q(x) ∩ Zm| = w(x).

We now consider second part of Theorem 1.1. We show that P∗ is parametric with
respect to b in the following sense. If P = {x : Ax = b, x ≥ 0}, then

P∗ =

{(
x
y

)∣∣∣∣ A∗
(

x
y

)
=

(
b
−e

)
, x ≥ 0, y ≥ 0

}
.

Therefore, tP = {x : Ax = tb, x ≥ 0} and

(tP)∗ =
{(

x
y

)∣∣∣∣ A∗
(

x
y

)
=

(
tb
−e

)
, x ≥ 0, y ≥ 0

}
.

Given e = 0, we can see that (tP)∗ = t(P∗). By the first part of the proof we conclude

LP(w, t) = |(tP)∗ ∩ Zn+m| = |t(P∗) ∩ Zn+m| = LP∗(1, t).

Now we outline more results and corollaries of Theorem 1.1. From now on we deal
with the most general quasi-polynomial weighted case, i.e., w(x) is a non-constant quasi-
polynomial as in the statement of Theorem 1.1.

Definition 2.1. Let Q = {y | Cy = d, y ≥ 0} ⊆ Rm where C ∈ Zr×m, d ∈ Zr be a
rational polytope. For every integer t, we define tQ = {y | Cy = td, y ≥ 0}.

Example 2.2. Consider the (m − 1)-dimensional standard simplex

∆m−1 = {y | y1 + · · ·+ ym = 1, yi ≥ 0}.

Then −2∆m−1 = {y | y1 + · · ·+ ym = −2 · 1, yi ≥ 0}.

Definition 2.3. A function w(t) is a late-dilated Ehrhart quasi-polynomial if

w(t) = |(t − c)Q ∩ Zm|,

where c ∈ Z and Q is a rational polytope of the form given in Definition 2.1.

Example 2.4. The function ( t
m−1) is a late-dilated Ehrhart polynomial in the variable t,

because ( t
m−1) = |(t − m + 1)∆m−1 ∩ Zm|.
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Corollary 2.5. Let w1, w2, · · · , wn be n late-dilated Ehrhart quasi-polynomials, i.e., wi(t) =
|(t − ci)Qi ∩ Zmi | where Qi = {yi | Ciyi = di, yi ≥ 0} and Ci ∈ Zri×mi , di ∈ Zri , ci ∈ Z.
Consider a rational polytope of the form P = {x | Ax = b, x ≥ 0} ⊆ Rn where A ∈ Zs×n, b ∈
Zs and the multivariate function w(x) = ∏n

i=1 wi(xi). There exists a weight lifting polytope
P∗ ⊆ Rn∗

of P, where n∗ = n + m1 + · · ·+ mn, such that

∑
x∈P∩Zn

w(x) =
∣∣∣P∗ ∩ Zn∗

∣∣∣ .

Proof. We need only show that there is a rational polytope Q(x1, . . . , xn) of the form
given in Theorem 1.1 for which w(x) = |Q(x1, . . . , xn) ∩ Zm1+···+mn | and then apply
Theorem 1.1. Let Q(x1, . . . , xn) = ∏n

i=1(xi − ci)Qi. Specifically, Q(x1, . . . , xn) has the
form 

y1
...

yn


∣∣∣∣∣∣∣∣∣
C1 · · · 0

... . . . ...
0 · · · Cn


y1

...
yn

 = x1


d1
0
...
0

+ · · ·+ xn


0
...
0

dn

+ e, y ≥ 0

 .

Corollary 2.6. For every monomial w(x) = xα = xα1
1 xα2

2 · · · xαn
n , there exists a weight lifting

polytope P∗ ⊆ Rn∗
where n∗ = n + 2|α| = n + 2 ∑n

i=1 αi such that

∑
x∈P∩Zn

w(x) =
∣∣∣P∗ ∩ Zn∗

∣∣∣ .

Proof. By Corollary 2.5, we just need to show that xαi
i is a late-dilated Ehrhart polynomial.

It is well known that (k + 1)αi is the Ehrhart polynomial of the αi-dimensional hypercube
of length k. In particular, the hypercube has the form

tQi =





y1
...

yαi

z1
...

zαi



∣∣∣∣∣∣∣∣∣∣∣∣∣∣


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1





y1
...

yαi

z1
...

zαi


= t

1
...
1

 , yi ≥ 0, zi ≥ 0


.

Corollary 2.7. For every polynomial w(x) = ∑α∈I cαxα = ∑α∈I cαxα1
1 xα2

2 · · · xαn
n , there exist

|I| weight lifting polytopes P∗
α indexed by the exponents of monomials such that

∑
x∈P∩Zn

w(x) = ∑
α∈I

cα

∣∣∣P∗
α ∩ Zn∗

∣∣∣ .

Proof. This follows directly from Corollary 2.6
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Remark 2.8. Corollary 2.7 implies that if w(x) is a polynomial with |I| nonzero mono-
mials, then we can compute the sum of lattice points of P weighted by w by counting
integral points in |I| weight lifting polytopes.

We give another two corollaries of Theorem 1.1.

Corollary 2.9. Consider the polynomial w(x) = ∏n
i=1 (

xi+αi−1
αi−1 ). There exists a weight lifting

polytope P∗ ⊆ Rn∗
where n∗ = n + |α| such that

∑
x∈P∩Zn

w(x) =
∣∣∣P∗ ∩ Zn∗

∣∣∣ .

Proof. Recall that (xi+αi−1
αi−1 ) is the Ehrhart polynomial of the standard (αi − 1)-simplex

1 = y1 + · · ·+ yαi with yi ≥ 0. In particular, the simplex has the form

tQi =


 y1

...
yαi


∣∣∣∣∣∣∣
[
1 · · · 1

] y1
...

yαi

 = t · 1, yi ≥ 0

 .

Applying Corollary 2.5 gives the weight lifting polytope from the statement.

Corollary 2.10. Consider the polynomial w(x) = ∏n
i=1 (

xi
αi−1). There exists a weight lifting

polytope P∗ of the dimension n∗ = n + |α| such that ∑x∈P∩Zn w(x) =
∣∣∣P∗ ∩ Zn∗

∣∣∣ .

Proof. The function ( xi
αi−1) is a late-dilated Ehrhart polynomial because (xi+αi−1

αi−1 ) is the
Ehrhart polynomial of the standard (αi − 1)-simplex. Applying Corollary 2.5 gives the
weight lifting polytope from the statement.

Note that {(x+k−1
k−1 ) | k = 1, 2, . . . } and {( x

k−1) | k = 1, 2, . . . } are two well-known bases
of the vector space of polynomials in x.

Corollary 2.11. For every monomial w(x) = xα = xα1
1 · · · xαn

n , there exist at most α1 · · · αn
weight lifting polytopes P∗

β indexed by the vector β and P∗
β ⊂ Rn∗

where n∗ = n + |β| such that

∑
x∈P∩Zn

w(x) = ∑
β≤α

cβ

∣∣∣P∗
β ∩ Zn∗

∣∣∣ .

Proof. Let vk(x) be one of the two binomial bases described above. We can transform the
monomial basis {xk | k = 0, 1, 2, . . .} into the binomial basis,

xα1
1 xα2

2 · · · xαn
n = ∑

β≤α

c(α, β) · vβ1(x1)vβ2(x2) · · · vβn(xn).

By Corollaries 2.9 and 2.10, for each β and each polynomial vβ1(x1)vβ2(x2) · · · vβn(xn),
there exists a corresponding weight lifting polytope P∗

β ⊂ Rn+|β|.
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Remark 2.12. In Corollary 2.6 we express the weighted sum of lattice points of P using a
single P∗ ⊂ Rn+2|α|, but in Corollary 2.11 we express this sum using at most α1α2 · · · αn
polytopes of lower dimension P∗

β ⊂ Rn+|β|.

Proof of Corollary 1.5. Applying Theorem 1.1 to P gives a weight lifting polytope P∗ for
which LP(w, t) = LP∗(1, t). Applying a classical result relating the volume and lead
coefficient of the Ehrhart quasi-polynomial of P∗ completes the proof. Both LP(w, t) and
LP∗(1, t) are quasi-polynomial functions of t, and concretely, this equality implies that
their leading coefficients are the same.

We can then replace integration of w(x) over P with computation of the leading
coefficient of LP∗(1, t), which is equivalent to computing the volume of P∗. Note that
this transformation can be carried out in a number of steps that is polynomial in the size
of the inputs describing P∗.

For the second claim, we start by recalling an elementary fact. Let S = {s1, . . . , sr}
be a set of non-negative real numbers. Then max{si | si ∈ S} = limk→∞

k
√

∑r
j=1 sk

j . The
arithmetic mean of S is at most its maximum value, which in turn is at most as big as
∑i si. We apply these ideas to the set S = {w(α) | α ∈ P ∩ Zn}. This gives upper and
lower bounds for each positive integer k:

Lk =
k

√√√√ ∑
α∈P∩Zn

w(α)k

|P ∩ Zd|
≤ max{w(α) : α ∈ P ∩ Zn} ≤ k

√
∑

α∈P∩Zn
w(α)k = Uk.

As k → ∞, Lk and Uk approach this maximum value monotonically (from below and
above, respectively). Trivially, if the difference between the (rounded) upper and lower
bounds becomes strictly less than 1, we have determined max{w(x) | x ∈ P ∩ Zn} =
⌈Lk⌉. Thus the process terminates with the correct value. Finally, the key value in the
sequences Lk and Uk is the term LP(wk, t) = ∑

α∈tP∩Zn
w(α)k. Corollary 2.5 describes how

to construct the weight lifting polytope P∗ corresponding to the pair P and w(α)k.

3 Applications

Theorem 1.1 has applications beyond integration and maximization of Ehrhart quasi-
polynomials. In this section we discuss how to use it to find new algebraic combinatorial
identities by carefully choosing the polytope P and reinterpreting the weight function w
in terms of Ehrhart quasi-polynomials of some polytopes Qi.

3.1 Weighted Ehrhart in number theory

Simultaneous Core Partitions. We first describe an area in which weighted Ehrhart
machinery has already been applied to prove a significant result. Let λ be a partition
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and H(λ) denote its multiset of hook lengths. The partition λ is called an a-core partition
if no element of H(λ) is divisible by a. If λ is both an a-core partition and a b-core
partition, then we say that it is an (a, b)-core partition. There is an extensive literature
about statistical properties of sizes of simultaneous core partitions [12, 22]. Anderson
proved that if a and b are relatively prime positive integers then the number of (a, b)-
core partitions is 1

a+b (
a+b

a ) [1]. Johnson proved a conjecture of Armstrong, showing that
the average size of an (a, b)-core partition is (a + b + 1)(a − 1)(b − 1)/24 [18]. Johnson’s
proof fits into the framework of weighted Ehrhart theory.

Suppose that a and b are relatively prime positive integers. It is not hard to show that
a-core partitions are in bijection with elements of Λa = {(c0, . . . , ca−1) ∈ Za : ∑i ci = 0}.
Let ra(x) be the remainder when x is divided by a. We use cyclic indexing for elements
c ∈ Λa, that is, for k ∈ Z we set ck = cra(k). Simultaneous (a, b)-core partitions are in

bijection with the elements of Λa satisfying the inequalities ci+b − ci ≤
⌊

b+i
a

⌋
for each

i ∈ {0, 1, . . . , a − 1} [18, Lemma 23]. In this way, we see that (a, b)-core partitions are
in bijection with integer points in a rational polytope SCa(b). The size of the a-core
partition corresponding to c = (c0, . . . , ca−1) is ha(c) = a

2 ∑a−1
i=0

(
c2

i + ici
)

[18, Theorem
22]. Therefore, Anderson’s theorem is equivalent to computing the number of integer
points in SCa(b), and Johnson’s theorem is equivalent to computing ∑c∈SCa(b) ha(c).

Johnson computes this weighted sum of lattice points by relating it to a sum over
the subset of integer points (z0, . . . , za−1) of the dilation of the standard simplex b∆a−1
that satisfy ∑ izi ≡ 0 (mod a). Johnson then shows that the sum he needs to compute
is equal to 1/a times the sum of a quadratic function w taken over all integer points of
b∆a−1. In order to conclude, he applies a result from Euler–Maclaurin theory, which is a
version of the first part of Corollary 1.5, and also applies a version of weighted Ehrhart
reciprocity that appears in [4].

By Corollary 2.7, there exists a family of weight lifting polytopes P∗
α ⊂ Rn∗

such that

∑
x∈b△a−1∩Za

w(x) = ∑
α∈I

cα

∣∣∣P∗
α ∩ Zn∗

∣∣∣ .

It seems likely that further study of these kinds of weight lifting polytopes can lead to
new techniques in the study of simultaneous core partitions.

Numerical Semigroups. A numerical semigroup S is an additive submonoid of N0 =
{0, 1, 2, . . .} with finite complement. The elements of N0 \ S are the gaps of S, denoted
G(S) = {h1, . . . , hg}. The weight of S is defined by w(S) = (h1 + · · ·+ hg)− (1+ 2+ · · ·+
g). The motivation for studying w(S) comes from the theory of Weierstrass semigroups
of algebraic curves [3, Chapter 1, Appendix E].

Numerical semigroups containing m are in bijection with integer points (x1, . . . , xm−1)
in the Kunz polyhedron Pm ⊂ Rm−1, which is defined via bounding inequalities

xi + xj ≥ xi+j if i + j < m, xi + xj + 1 ≥ xi+j−m if i + j > m.
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Let NS(m, g) be the set of numerical semigroups containing m with genus g. These
semigroups are in bijection with the integer points of Pm,g, the polytope we get from Pm
by adding the additional constraint ∑ xi = g. For a more extensive discussion of the
connection between numerical semigroups containing m and integer points in the Kunz
polyhedron, see [19, Section 4]. If (k1, . . . , km−1) is the integer point corresponding to a
semigroup S of genus g, then w(S) = m

2 ∑m−1
i=1 ki(ki − 1) + ∑m−1

i=1 iki − g(g + 1)/2. There
has been recent interest in statistical properties of weights of families of semigroups, see
for example [21, Section 5] and [20].

By Corollary 2.7, there exists a family of weight lifting polytopes P∗
α ⊂ Rn∗

such that

∑
S∈NS(m,g)

w(S) = ∑
S∈Pm,g∩Zm−1

w(S) = ∑
α∈I

cα

∣∣∣P∗
α ∩ Zn∗

∣∣∣ .

Studying this family of polytopes and applying a version of Corollary 1.5 suggests an
approach to the following two questions:

1. What is the maximum of w(S) for S ∈ NS(m, g)?
2. For fixed m, what is the main term in the expression for ∑S∈NS(m,g) w(S) as g → ∞?

3.2 Weighted Ehrhart in combinatorial representation theory

There is a long tradition of using lattice points of polytopes in representation theory (see
[15] and the references there). Here, as an application of Theorem 1.1, we provide new
connections.

Maximizing Kostka numbers. Fix a partition λ ⊢ n and let SSYT(λ) denote the set of
semi-standard Young tableaux of shape λ. The Schur function sλ is

sλ(x) = ∑
T∈SSYT(λ)

xT = ∑
α∈comp(n)

Kλαxα,

where comp(n) is the set of weak compositions n and Kλα is the Kostka number that
counts the number of tableaux in SSYT(λ) with content α. Evaluating sλ at x1 = 1, x2 =
1, . . . , xN = 1, xN+1 = 0, xN+2 = 0, . . . yields

|SSYT(λ, N)| = ∑
α∈N-comp(n)

Kλα,

where SSYT(λ, N) is the set of semi-standard Young tableaux of shape λ and entries
bounded by N and N-comp(n) is the set of weak composition of n with N parts.

A weak composition of n with N parts is a lattice point in the scaled standard (N − 1)-
simplex n△N−1. The Kostka number Kλα equals the number of lattice points in the
Gelfand–Tsetlin polytope GT(λ, α) (see e.g., [15]), so w(α) = Kλα is a weight function.
There have been contributions to understanding the behavior of Kλα as (λ, α) vary and
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an example is [17] in which it is shown that they are log-concave. Applying the method
in Corollary 1.5 one can use the weight lifting polytope given by Theorem 1.1 to compute
maxα∈N-comp(n)Kλα and we will include generated data in the full version of this paper.

Robinson–Schensted–Knuth (RSK) identity. Fix partitions µ, ν ⊢ n and recall the fa-
mous RSK identity (for details see e.g., [23]):

∑
λ⊢n

KλµKλν = Nµ,ν.

The left sum is over partitions of n and the summands are products of Kostka numbers.
In fact, the left side of the identity is a weighted sum over the lattice points of

P = {x ∈ Rn | x1 + · · ·+ xn = n, x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}. (3.1)

This is because the weight function w(λ) = KλµKλν is the number of lattice points in
the Cartesian product GT(λ, µ)× GT(λ, ν) of two Gelfand–Tsetlin polytopes. The right-
hand side of RSK, Nµν, is the number of lattice points in the transportation polytope

Matn,n(µ, ν) =

{
(zij)1≤i,j≤n | ∑

j
zij = µi, ∑

i
zij = νj, zij ≥ 0

}
.

While RSK provides more information (e.g., a bijection), Theorem 1.1 gives a new
polytope whose number of lattice points is the sum ∑λ⊢n KλµKλν.

Corollary 3.1 (A new RSK-like identity). There exists a weight lifting polytope P∗(µ, ν) ⊆
Rn2+2n which is combinatorially different from Matn,n(µ, ν) such that

∑
λ⊢n

KλµKλν = |P∗(µ, ν) ∩ Zn2+2n|.

Littlewood–Richardson Coefficients. Schur functions are central objects in representa-
tion theory and combinatorics. The skew Schur function for partitions λ, µ ⊢ n is

sλ/µ(x) = ∑
α∈comp(n)

Kλ/ν,αxα,

where the sum is over all compositions of n and Kλ/ν,α counts the number of skew semi-
standard Young tableaux of shape λ/ν and weight α. The Littlewood–Richardson rule
(see e.g., [24]) expresses the skew Schur functions in terms of Schur functions,

sλ/µ(x) = ∑
ν⊢n

cλ
µνsν(x).

Comparing the expression of the coefficient of the monomial xα yields

Kλ/ν,α = ∑
ν⊢n

cλ
µνKνα.
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The Littlewood–Richardson coefficient cλ
µν counts the number of lattice points in the

hive polytope Hλ
µν (see e.g., [9]). Applying Theorem 1.1 to the simplex in (3.1) and

w(ν) = cλ
µνKνα, which counts the number of lattice points in Hλ

µν × GT(ν, α), we ob-
tain the following corollary.

Corollary 3.2. There exists a weight lifting polytope P∗(λ/µ, α) ⊆ Rn2+2n such that

∑
λ⊢n

cλ
µνKνα = |P∗(λ/µ, α) ∩ Zn2+2n|.
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