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Triangular-Grid Billiards and Plabic Graphs
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Abstract. Given a polygon P in the triangular grid, we obtain a permutation πP via
a natural billiards system in which beams of light bounce around inside of P. The
different cycles in πP correspond to the different trajectories of light beams. We prove
that

area(P) ≥ 6 cyc(P)− 6 and perim(P) ≥ 7
2

cyc(P)− 3
2

,

where area(P) and perim(P) are the (appropriately normalized) area and perimeter of
P, respectively, and cyc(P) is the number of cycles in πP. The inequality concerning
area(P) is tight, and we characterize the polygons P satisfying area(P) = 6 cyc(P)−
6. These results can be reformulated in the language of Postnikov’s plabic graphs
as follows. Let G be a connected reduced plabic graph with essential dimension 2.
Suppose G has n marked boundary points and v (internal) vertices, and let c be the
number of cycles in the trip permutation of G. Then we have

v ≥ 6c − 6 and n ≥ 7
2

c − 3
2

.

We end with a discussion of numerous ideas for future work.

Keywords: triangular grid, billiards, plabic graph, essential dimension, trip permuta-
tion, cycle

1 Introduction

In this extended abstract of the article [2], we introduce a natural class of billiards sys-
tems that surprisingly appear to be new. While traditional billiards systems exhibit
continuous behavior that is best analyzed from a geometric or analytic point of view,
our systems are constrained so that they are essentially combinatorial. Indeed, we will
reformulate these systems in terms of trip permutations of Postnikov’s plabic graphs.
Nevertheless, our proof methods require a heavy dose of Euclidean geometry. These
new billiards systems lead to several promising open problems and ideas for future
work, some of which we will discuss.
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2 Triangular-Grid Billiards

Consider the infinite triangular grid in the plane, scaled so that each equilateral triangu-
lar grid cell has side length 1 and oriented so that some of the grid lines are horizontal.
We refer to the sides of these grid cells as panes because we will imagine that each pane
either allows light to pass through it (like a window pane) or reflect off of it (like a mirror
pane). Define a grid polygon to be a (not necessarily convex) polygon whose boundary is
a union of panes. We assume that the boundary of a grid polygon (viewed as a closed
curve) does not intersect itself. Suppose P is a grid polygon whose boundary panes are
b1, . . . , bn, listed clockwise. Pick some boundary pane bi, and emit a colored beam of
light from the midpoint of bi into the interior of P so that the light beam forms a 60◦ an-
gle with bi and travels either northeast, southeast, or west (depending on the orientation
of bi). The light beam will travel through the interior of P until reaching the midpoint
of a different boundary pane bπ(i), which it will meet at a 60◦ angle. This defines a
permutation π = πP : [n] → [n] (where [n] := {1, . . . , n}) called the billiards permutation
of P. For example, if P is the grid polygon in Figure 1, then the cycle decomposition of
πP is

(1 3 32 26 6 30 2 33 25 12 14 9 21 19 29 28 4 31)(5 24 13 10 20 27)(7 22 23 15 17)(8 11 18 16).

Figure 1: A grid polygon P with 33 boundary panes. The billiards permutation πP has
4 cycles. We have colored the 4 different trajectories with different colors.

Let us imagine that the boundary panes of P are mirrors (and all other panes are
transparent windows). When the light beam emitted from bi reaches bπ(i), it will bounce
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off in such a way that the reflected beam forms a 60◦ angle with bπ(i). This reflected
beam will then travel to bπ2(i), where it will bounce off at a 60◦ angle and continue on to
bπ3(i), and so on. We will be interested in the cycles of π. Given points p and p′ in the
plane, let us write [p, p′] for the line segment whose endpoints are p and p′. Let mid(s)
denote the midpoint of a line segment s. If c = (i1 i2 · · · ir) is a cycle of π, then we define
the trajectory of c to be

traj(c) =
r⋃

j=1

[mid(bij), mid(bπ(ij)
)].

The description of π in terms of light beam billiards is convenient because we can imag-
ine that the beams of light corresponding to different cycles have different colors; thus,
we will use different colors to draw different trajectories (see Figure 1).

The investigation of billiards in planar regions is a classical and much-beloved topic
in both dynamical systems and recreational mathematics. However, the typical questions
considered in previous works concern systems where the beams of light can have arbi-
trary initial positions and arbitrary initial directions. In contrast, our setup imposes a
great deal of rigidity by requiring each beam of light to start at the midpoint of a bound-
ary pane and begin its journey in a direction that forms a 60◦ angle with that bound-
ary pane. Although several traditional dynamically-flavored billiards problems (such
as determining the existence of periodic trajectories) become trivial or meaningless un-
der our rigid conditions, our setting affords some fascinating combinatorial/geometric
questions.

The major players in our story are the following quantities associated with a grid
polygon P. The perimeter of P, denoted perim(P), is simply the number of boundary
panes of P. We define the area of P, denoted area(P), to be the number of triangular
grid cells in P.1 We write cyc(P) for the number of cycles in the associated permutation
πP, which is the same as the number of different light beam trajectories in the associated
billiards system. Our main theorems address the following extremal question concerning
the possible relationships between these quantities: How big must area(P) and perim(P)
be in comparison with cyc(P)?

Theorem 1 ([2]). If P is a grid polygon, then

area(P) ≥ 6 cyc(P)− 6.

Theorem 2 ([2]). If P is a grid polygon, then

perim(P) ≥ 7
2

cyc(P)− 3
2

.

The inequality in Theorem 1 is tight, and we can characterize the grid polygons that
achieve equality. Define a unit hexagon to be a grid polygon that is a regular hexagon of

1Thus, our area measure is just the Euclidean area multiplied by the normalization factor 4/
√

3.
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side length 1. Let us construct a sequence of grid polygons (Pk)k≥1 as follows. First, let
P1 be a unit hexagon. For k ≥ 2, let Pk = Pk−1 ∪ Qk, where Qk is a unit hexagon such
that Pk−1 ∩ Qk is a single pane. We call a grid polygon Pk obtained in this manner a tree
of unit hexagons; see Figure 2 for an example with k = 9. It is not difficult to prove by
induction that cyc(Pk) = k + 1 for all k ≥ 1. Thus, area(Pk) = 6k = 6 cyc(Pk)− 6.

Figure 2: A tree of unit hexagons P9 with cyc(P9) = 10, area(P9) = 54, and perim(P9) =

38.

Theorem 3 ([2]). If P is a grid polygon, then area(P) = 6 cyc(P)− 6 if and only if P is a tree
of unit hexagons.

On the other hand, we believe that Theorem 2 is not tight. After drawing several
examples of grid polygons, we have arrived at the following conjecture.

Conjecture 1 ([2]). If P is a grid polygon, then

perim(P) ≥ 4 cyc(P)− 2.

If Conjecture 1 is true, then it is tight. Indeed, if Pk is a tree of unit hexagons as
described above, then perim(Pk) = 4k + 2 = 4 cyc(Pk)− 2.

Of fundamental importance in our analysis of the billiards system of a grid polygon P
are the triangular trajectories of P, which are just the trajectories of the 3-cycles in πP. One
of the crucial ingredients in the proofs of Theorems 1–3 is the following result, which we
deem to be noteworthy on its own.

Theorem 4 ([2]). Let P be a grid polygon, and let c be a cycle of size m in πP. Then the trajectory
traj(c) intersects at most m − 2 triangular trajectories of P (excluding traj(c) itself if m = 3).
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Suppose we take a single trajectory in the billiards system of a grid polygon P. This
trajectory is a union of several line segments. If we delete the points where two of these
line segments intersect, then we will cut the trajectory into several open line segments
that we call the fragments of the trajectory. Fragments end up being crucial in our proofs
of the above theorems. After writing the article [2], we proved that the number of frag-
ments of a trajectory is always divisible by 3. The challenge to prove this divisibility
result will appear soon in the Problems and Solutions section of the American Mathemat-
ical Monthly, so we will not spoil the solution here.

3 Plabic Graphs

A plabic graph is a planar graph G embedded in a disc such that each vertex is colored
either black or white. We assume that the boundary of the disc has n marked points
labeled clockwise as b∗1 , . . . , b∗n so that each b∗i is connected via an edge to exactly one
vertex of G. Following [6], we will also assume that every vertex of G is incident to
exactly 3 edges, including edges connected to the boundary of the disc (the study of
general plabic graphs can be reduced to this case). In his seminal article [9], Postnikov
introduced plabic graphs—along with several other families of combinatorial objects—in
order to parameterize cells in the totally nonnegative Grassmannian. These graphs have
now found remarkable applications in a variety of fields such as cluster algebras, knot
theory, polyhedral geometry, scattering amplitudes, and shallow water waves [1, 3, 4, 5,
6, 7, 8, 10].

Imagine starting at a marked boundary point b∗i and traveling along the unique edge
connected to b∗i . Each time we reach a vertex, we follow the rules of the road by turning
right if the vertex is black and turning left if the vertex is white. Eventually, we will
reach a marked boundary point b∗

π(i). The path traveled is called the trip starting at b∗i .
Considering the trips starting at all of the different marked boundary points yields a
permutation π = πG : [n] → [n] called the trip permutation of G. We say G is reduced
if it has the minimum number of faces among all plabic graphs with the same trip
permutation. Figure 3 shows a reduced plabic graph G whose trip permutation is the
cycle πG = (1 3 5 2 4).

Given a grid polygon P, one can obtain a reduced plabic graph G(P) via a planar
dual construction. Let us say an equilateral triangle with a horizontal side is right-side
up (respectively, upside down) if its horizontal side is on its bottom (respectively, top).
We refer to this property of a triangle (right-side up or upside down) as its orientation.
Place a black (respectively, white) vertex at the center of each right-side up (respectively,
upside down) equilateral triangular grid cell inside of P. Whenever two such grid cells
share a side, draw an edge between the corresponding vertices. Finally, encompass P
in a disc, draw a marked point b∗i on the boundary of the disc corresponding to each
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Figure 3: A reduced plabic graph whose trip permutation is the cycle (1 3 5 2 4). The
fact that πG(1) = 3 is illustrated by the red trip starting at b∗1 and ending at b∗3 . Simi-
larly, πG(5) = 2 because the green trip starting at b∗5 ends at b∗2 .

boundary pane bi of P, and draw an edge from b∗i to the vertex drawn inside the unique
grid cell that has bi as a side. (See Figure 4.)

It is immediate from the relevant definitions that the trip permutation πG(P) is equal
to the billiards permutation πP. For example, if P and G(P) are as in Figure 4, then
πP = πG(P) is the permutation with cycle decomposition (1 7 4 3 5 9)(2 6 8).

In the recent paper [6], Lam and Postnikov introduced membranes, which are certain
triangulated 2-dimensional surfaces embedded in a Euclidean space. The definition of a
membrane relies on a choice of an irreducible root system, and most of the discussion
in [6] centers around membranes of type A. They discussed how type A membranes
are in a sense dual to plabic graphs, and they further related type A membranes to the
theory of cluster algebras. A membrane is minimal if it has the minimum possible surface
area among all membranes with the same boundary; Lam and Postnikov showed how to
associate a reduced plabic graph G(M) to each minimal type A membrane M. They then
defined the essential dimension of a reduced plabic graph G0 to be the smallest positive
integer d such that there exists a minimal membrane M of type Ad with G(M) = G0.
They proved that if G0 has n marked boundary points, then the essential dimension of
G0 is at most n − 1, with equality holding if and only if there exists k ∈ [n − 1] such that
πG0(i) = i + k (mod n) for all i ∈ [n] (this is equivalent to saying that G0 corresponds to
the top cell in the totally nonnegative Grassmannian Gr≥0

k,n). Other than this result, there
is essentially nothing known about essential dimensions of plabic graphs. Our original
motivation for this project was to initiate the investigation of essential dimensions by
studying plabic graphs of essential dimension 2 in detail.
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Figure 4: On the left is a grid polygon P overlaid with the corresponding plabic graph
G(P). The middle image shows the trajectories in the billiards system of P to illustrate
that its billiards permutation is πP = (1 7 4 3 5 9)(2 6 8). The right image shows the
trips of G(P) to illustrate that its trip permutation is πG(P) = (1 7 4 3 5 9)(2 6 8).

Consider the class of triangulated surfaces in the triangular grid that can be obtained
by iteratively wedging grid polygons. In other words, Q is in this class if there are grid
polygons P1, . . . , Pk such that Pi+1 ∩ (P1 ∪ · · · ∪ Pi) is a single point for all i ∈ [k − 1] and
such that Q = P1 ∪ · · · ∪ Pk. In this case, we call the grid polygons P1, . . . , Pk the compo-
nents of Q. See Figure 5. As mentioned in [6], the class we have just described is the same
as the class of membranes of type A2. Such a membrane M is automatically minimal
(since it is determined by its boundary). In order to understand these membranes and
their associated reduced plabic graphs, it suffices to understand grid polygons and their
associated reduced plabic graphs. Indeed, the reduced plabic graphs associated to the
components of M are basically the same as the connected components of the reduced
plabic graph associated to M; thus, restricting our focus to grid polygons is the same
as restricting our focus to connected plabic graphs. Furthermore, if M = P is a grid
polygon, then the definition that Lam and Postnikov gave for the reduced plabic graph
G(M) associated to M (viewed as a membrane) is exactly the same as the definition that
we gave in Section 3 for the reduced plabic graph G(P) associated to P (viewed as a grid
polygon). In other words, understanding plabic graphs of essential dimension 2 and
their trip permutations is equivalent to understanding grid polygons and their billiards
permutations.

As a consequence of the preceding discussion, we can reformulate Theorems 1 and 2
in the language of plabic graphs.

Corollary 1 ([2]). Let G be a connected reduced plabic graph with essential dimension 2. Suppose
G has n marked boundary points and v vertices, and let c be the number of cycles in the trip
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Figure 5: A membrane of type A2 with 5 components.

permutation πG. Then

v ≥ 6c − 6 and n ≥ 7
2

c − 3
2

.

4 Reflections and Next Directions

We believe our work just scratches the surface of rigid combinatorial billiards systems
and their connections with plabic graphs and membranes. In this section, we discuss
several variations and potential avenues for future research.

4.1 Perimeter vs. Cycles

Recall Conjecture 1, which says that perim(P) ≥ 4 cyc(P) − 2 for every grid polygon
P. The grid polygons P satisfying perim(P) = 4 cyc(P) − 2 seem more sporadic and
unpredictable than the equality cases of Theorem 1 (see Figure 6), which are just the
trees of unit hexagons by Theorem 3. This gives a heuristic hint as to why Conjecture 1
is more difficult to prove than Theorem 1.

4.2 Other Families of Plabic Graphs

Let G be a connected reduced plabic graph with n marked boundary points and v ver-
tices, and let c be the number of cycles in the trip permutation πG. Corollary 1 provides
inequalities that say how large n and v must be relative to c in the case when G has
essential dimension 2. One can ask for similar inequalities when G is taken from some
other interesting family of plabic graphs. One natural candidate for such a family is the
collection of plabic graphs of essential dimension 3; we refer to [6] for further details
concerning the definition. It is also natural to consider plabic graphs that can be ob-
tained from polygons in other planar grids besides the triangular grid; Figure 7 shows
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Figure 6: Two grid polygons with perimeter 18, each of which has 5 cycles in its
billiards system.

some examples (in these examples, we dismiss our earlier assumption that all vertices in
a plabic graph are trivalent).

Figure 7: Plabic graphs obtained from polygons in different planar grids.

If G is a plabic graph obtained from the square grid (as on the left of Figure 7), then
it is not too difficult to prove that v ≥ 3c − 2 and that n ≥ 4c; moreover, these bounds
are tight.

4.3 Regions with Holes

Suppose Q is a region in the triangular grid obtained from a grid polygon by cutting out
some number of polygonal holes. We can define the billiards system for Q in the same
way that we defined it for a grid polygon. It would be interesting to obtain analogues
of Theorems 1, 2, 3, and 4 in this more general setting. The resulting analogues of
Theorems 1 and 2 might need to incorporate the genus of Q. Indeed, Figure 8 shows
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a region Q with genus 1 for which the inequalities in Theorems 1 and 2 are false as
written.

Figure 8: Trajectories in a triangular grid region of genus 1.

4.4 Higher Dimensions

Nathan Williams has suggested the following natural way to use algebra to extend our
billiards systems into higher dimensions.

Let H′
d be the Coxeter arrangement of type Ãd. This is the collection of hyperplanes

Hk
i,j := {(x1, . . . , xd+1) ∈ Rd+1 : xi − xj = k} such that i, j ∈ [d+ 1] are distinct and k ∈ Z.

We identify Rd+1/span{(1, . . . , 1)} with Rd and let Hd be the hyperplane arrangement in
Rd obtained by taking the images of the hyperplanes in H′

d under the natural quotient
map Rd+1 → Rd+1/span{(1, . . . , 1)}. The closures of the connected components of
Rd \⋃

H∈Hd
H are called alcoves. When d = 2, alcoves are the same as the triangular grid

cells.
For 1 ≤ i ≤ d, let si : Rd → Rd be the reflection through (the image in the quotient

of) the hyperplane H0
i,i+1. Let s0 be the reflection through (the image in the quotient

of) H1
1,d+1. Then s0, s1, . . . , sd are the simple reflections generating the affine symmetric

group S̃d+1. Note that if X is an alcove and 0 ≤ i ≤ d, then the region si · X obtained by
applying the reflection si to X is also an alcove. This defines a free transitive action of
S̃d+1 on the set of alcoves, so we can identify S̃d+1 with the set of alcoves.

Let us fix a finite set P ⊆ S̃d+1; we can think of P as a finite set of alcoves. For w ∈ P
and j ∈ Z/(d + 1)Z, let

τj(w) =

{
wsj if wsj ∈ P
w if wsj ̸∈ P.

Define φ : P × (Z/(d + 1)Z) → P × (Z/(d + 1)Z) by φ(w, j) = (τj(w), j + 1). We call an
orbit of the map φ a trajectory of P.

Each pair (w, j) ∈ P× (Z/(d+ 1)Z) encodes the alcove w together with a “direction”
given by j. Applying φ moves us one step in this direction unless doing so would take
us out of P; in the latter case, we stay at w and change direction. If d = 2 and P is a
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region in the triangular grid, then the trajectories defined using φ correspond precisely
to the trajectories in the billiards system of P.

It would be interesting to understand the relationship between the number of alcoves
in P and the number of trajectories of P when d > 2. One might hope to obtain an
inequality relating these quantities for arbitrary d. Theorem 1 relates these quantities
when d = 2 under the assumption that P is simply connected (this assumption makes
the problem different but not necessarily easier). In this more general setting, it could be
simpler to remove the hypothesis that P is simply connected (and thus consider regions
with holes, as in Section 4.3).

4.5 Random and Infinite Billiards Systems

We would like to formulate a notion of a random billiards system so that one can ask about
the expected number of trajectories. However, there are several possible random models
one could consider, and it is not clear which is the best.

One potential random model of an infinite billiards system is as follows. Fix a prob-
ability p ∈ (0, 1). Choose a random set P of grid cells in the triangular grid by adding
each grid cell into P with probability p so that all choices are independent. The set P is a
region that is almost surely disconnected and of infinite area. We can define trajectories
just as we did for polygons, except these trajectories might be infinite. It would be very
interesting to understand the distribution of trajectory lengths in this random billiards
system. Suppose we start with a specific fixed grid cell ∆. Given that ∆ ∈ P, what is the
probability that the trajectory that travels west through ∆ is infinite?

4.6 Cyclic Billiards Systems

It would be interesting to obtain estimates for the number of grid polygons P such that
cyc(P) = 1.
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