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The distribution of descents on nonnesting
permutations
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Abstract. Motivated by recent results about descents on Stirling and quasi-Stirling
permutations, we consider permutations of the multiset {1, 1, 2, 2, . . . , n, n} that avoid
the patterns 1221 and 2112. We call these nonnesting permutations, as they can be
viewed as nonnesting matchings with labeled arcs. We show that the polynomial de-
scribing the distribution of the number of descents is a product of an Eulerian polyno-
mial and a Narayana polynomial. It follows that, rather unexpectedly, this polynomial
is palindromic. We provide bijective proofs of these facts by composing various trans-
formations on Dyck paths, including the Lalanne–Kreweras involution.
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1 Introduction

1.1 Permutations of multisets and descents

Given a sequence of positive integers π = π1π2 . . . πm, we say that i is a descent of π

if πi > πi+1, that it is a plateau if πi = πi+1, and that it is a weak descent if πi ≥ πi+1.
Denote by des(π), plat(π) and wdes(π) = des(π) + plat(π) the number of descents,
plateaus and weak descents of π, respectively.

The distribution of descents on the set Sn of permutations of [n] := {1, 2, . . . , n} is
given by the Eulerian polynomials

An(t) = ∑
σ∈Sn

tdes(σ),

whose generating function is

A(t, z) = ∑
n≥0

An(t)
zn

n!
=

t − 1
t − e(t−1)z

. (1.1)

Note that the Eulerian polynomials are palindromic, in the sense that

An(t) = tn−1An(1/t), (1.2)
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since
des(σR) = n − 1 − des(σ), (1.3)

where σR = σnσn−1 . . . σ1 denotes the reversal of σ.
In 1978, Gessel and Stanley [9] introduced Stirling permutations, defined as permu-

tations π1π2 . . . π2n of the multiset [n] ⊔ [n] := {1, 1, 2, 2, . . . , n, n} satisfying that, if
i < j < k and πi = πk, then πj > πi. In pattern avoidance terminology, this condi-
tion is equivalent to avoiding the pattern 212. They showed that the distribution of the
number of descents on such permutations is related to the Stirling numbers of the second
kind. There is an extensive literature on these permutations and their generalizations to
other multisets.

In 2019, Archer et al. [1] introduced a variation of Stirling permutations, which they
call quasi-Stirling permutations. These are permutations π1π2 . . . π2n of [n]⊔ [n] that avoid
1212 and 2121, meaning that there do not exist i < j < ℓ < m such that πi = πℓ and
πj = πm. The number of such permutations is n! Catn = (2n)!

(n+1)! , where Catn is the nth
Catalan number. The generating function for these permutations with respect to the
number of descents and plateaus was later found in [6].

Theorem 1.1 ([6]). Denote by Qn the set of quasi-Stirling permutations of [n] ⊔ [n], and let

Q(t, u, z) = ∑
n≥0

∑
π∈Qn

tdes(π)uplat(π) zn

n!
.

Then this generating function satisfies the implicit equation

Q(t, u, z) = A(t, z(tQ(t, u, z)− t + u)),

where A(t, z) is given by Equation (1.1).

In particular, it is shown that the number of π ∈ Qn with n − 1 descents is equal to
(n+ 1)n−1. Further generalizations of these results to multisets with an arbitrary number
of copies of each element have recently been obtained by Yan et al. [18]and by Fu and
Li [8].

1.2 Nonnesting permutations

A permutation π of [n] ⊔ [n] can be viewed as a labeled matching of [2n], by placing an
arc with label k between i with j if πi = πj = k. The condition that π avoids 1212 and
2121 is equivalent to the fact that this matching is noncrossing; see [16, Exer. 60]. With
this perspective, it is natural to also consider permutations for which this matching is
nonnesting; see [16, Exer. 64].
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Figure 1: The matchings corresponding to the quasi-Stirling (noncrossing) permutation
4431152253 and the nonnesting permutation 3532521414 ∈ C5.

Definition 1.2. A permutation π of the multiset [n] ⊔ [n] is called nonnesting if it avoids
the patterns 1221 and 2112; equivalently, if there do not exist i < j < ℓ < m such that
πi = πm and πj = πℓ. Denote by Cn the set of nonnesting permutations of [n] ⊔ [n].

The above condition on π is equivalent to the requirement that the subsequence of π

determined by the first copy of each entry coincides with the subsequence determined
by the second copy of each entry. This subsequence, which is a permutation in Sn, will
be denoted by s(π). For example, if π = 3532521414 ∈ C5, then s(π) = 35214 ∈ S5.

As in the noncrossing case, the number of nonnesting matchings of [2n] is again the
nth Catalan number [16, Exer. 64]. Since there are n! ways to assign labels to the arcs of
a nonnesting matching to form a nonnesting permutation, it follows that

|Cn| = n! Catn =
(2n)!

(n + 1)!
.

Motivated by the results on the distribution of the number of descents and plateaus
on Stirling and quasi-Stirling permutations, here we describe the distribution of these
statistics on nonnesting permutations. We are interested in the polynomial

Cn(t, u) = ∑
π∈Cn

tdes(π)uplat(π). (1.4)

1.3 Dyck paths and Narayana numbers

Let Dn be the set of lattice paths from (0, 0) to (2n, 0) with steps u = (1, 1) and d =
(1,−1) that do not go below the x-axis. Elements of Dn are called Dyck paths. A peak in
a Dyck path is an occurrence of two adjacent steps ud. A peak is called a low peak if these
steps touch the x-axis, and a high peak otherwise. Denote the number of low peaks and
the number of high peaks of D ∈ Dn by lpea(D) and hpea(D), respectively. Sometimes
it will be convenient to instead draw Dyck paths with steps e = (1, 0) and n = (0, 1)
playing the role of u and d, respectively. Consider the Narayana polynomials

Nn(t, u) = ∑
D∈Dn

thpea(D)ulpea(D).
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From the usual decomposition of Dyck paths by the first return, one can deduce that

∑
n≥0

Nn(t, u)zn =
2

1 + (1 + t − 2u)z +
√

1 − 2(1 + t)z + (1 − t)2z2
.

A consequence of the above expression is that, for n ≥ 1,

tNn(t, 1) = Nn(t, t), (1.5)

that is, the number of paths in Dn with r − 1 high peaks equals the number of those
with r peaks, for all r ∈ [n]. A bijective proof of this fact was given by Deutsch [5].
Another simple bijection ρ : Dn → Dn with the property that hpea(D) = pea(ρ(D))− 1
is obtained by applying the inverse of the rowmotion map on order ideals of the poset of
positive roots in type A; see [17] for details.

An interesting property of the polynomial (1.5) is that it is palindromic, i.e.,

N(t, t) = tn+1N(1/t, 1/t); (1.6)

equivalently, the number of paths in Dn with r peaks equals the number of those with
n + 1 − r peaks, for all r ∈ [n]. This can be proved bijectively using an involution
κ̂ : Dn → Dn due to Lalanne [13] and Kreweras [11], which has the property that

pea(D) = n + 1 − pea(κ̂(D)). (1.7)

This extended abstract is structured as follows. In Section 2 we present our main
results. The proof of the formula giving the distribution of the number of descents and
plateaus on nonnesting permutations can be found in the full version [7]; here we only
give an overview of the bijections in the proof. In Section 3 we use these bijections,
along with the Lalanne-Kreweras involution, to prove some symmetry properties of the
distributions of the number of descents and weak descents on nonnesting permutations.
Finally, Section 4 discusses some generalizations of our results to permutations of the
multiset with k copies of each entry, for any fixed k.

2 Main results

Our main result is the following strikingly simple expression for the polynomial Cn(t, u)
from Equation (1.4), as a product of an Eulerian polynomial and a Narayana polynomial.

Theorem 2.1. For n ≥ 1,
Cn(t, u) = An(t) Nn(t, u).
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Example 2.2. Here are the polynomials Cn(t, u) for n ∈ {2, 3}, along with the factoriza-
tions given by Theorem 2.1:

C2(t, u) = u2 + (1 + u2)t + t2 = (1 + t)
(

u2 + t
)

,

C3(t, u) = u3 + (1 + 2u + 4u3)t + (5 + 8u + u3)t2 + (5 + 2u)t3 + t4

=
(

1 + 4t + t2
) (

u3 + (1 + 2u)t + t2
)

.

As a consequence, we obtain the following two statements about the symmetry of the
distribution of descents and weak descents on nonnesting permutations.

Corollary 2.3. The distribution of the number of weak descents on Cn is symmetric: for all r,

|{π ∈ Cn : wdes(π) = r}| = |{π ∈ Cn : wdes(π) = 2n − r}|.

Proof. This follows from Theorem 2.1 and the fact that both An(t) and Nn(t, t) are palin-
dromic. Indeed, Equations (1.2) and (1.6) imply that

Cn(t, t) = An(t)Nn(t, t) = t2n A(1/t)Nn(1/t, 1/t) = t2nCn(1/t, 1/t).

Corollary 2.4. The distribution of the number of descents on Cn is symmetric: for all r,

|{π ∈ Cn : des(π) = r}| = |{π ∈ Cn : des(π) = 2n − 2 − r}|.

Proof. In addition to Equation (1.2), we now use the fact that Nn(t, 1) = tn−1Nn(1/t, 1),
which follows from Equations (1.5) and (1.6). We obtain

Cn(t, 1) = An(t)Nn(t, 1) = t2n−2A(1/t)Nn(1/t, 1) = t2n−2Cn(1/t, 1).

Example 2.5. Setting u = 1 in Example 2.2, we obtain the following palindromic expres-
sions:

C2(t, 1) = 1 + 2t + t2 = (1 + t)(1 + t),

C3(t, 1) = 1 + 7t + 14t2 + 7t3 + t4 = (1 + 4t + t2)(1 + 3t + t2).

It is interesting to note that, in contrast to the symmetry of the Eulerian polynomials,
there seems to be no obvious explanation for the symmetries described by Corollaries 2.3
and 2.4. We remark that the analogous statements for quasi-Stirling permutations do not
hold [6]. Bijective proofs of Corollaries 2.3 and 2.4 will be provided in Section 3.

To establish Theorem 2.1, we prove a slightly stronger statement. For σ ∈ Sn, define

Cσ
n = {π ∈ Cn : s(π) = σ},

which can be used to partition the set of nonnesting permutations as Cn =
⊔

σ∈Sn C
σ
n .

Letting
Cσ

n(t, u) = ∑
π∈Cσ

n

tdes(π)uplat(π), (2.1)

we have the following refinement.
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Theorem 2.6. For all σ ∈ Sn,

Cσ
n(t, u) = tdes(σ)Nn(t, u).

Note that Theorem 2.1 follows immediately from Theorem 2.6, since

Cn(t, u) = ∑
σ∈Sn

Cσ
n(t, u) = ∑

σ∈Sn

tdes(σ)Nn(t, u) = An(t)Nn(t, u).

The proof of Theorem 2.6 is omitted in this extended abstract but can be found in the
full version [7]. Here we give an overview. A nonnesting permutation π ∈ Cn is uniquely
determined by the underlying nonnesting matching mat(π) and the subsequence of
first (equivalently, second) copies s(π) ∈ Sn. We denote by d(π) the Dyck path that
corresponds to mat(π) via the standard bijection between nonnesting matchings and
Dyck paths. This path is obtained by reading π from left to right and taking an e step
for each first copy of an element, and an n step for each second copy; see Figure 2. Under
this representation, plateaus of π correspond to low peaks of D, namely, occurrences of
adjacent steps en that touch the diagonal, and so

plat(π) = lpea(D). (2.2)
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Figure 2: Representation of the permutation π = 25253163741674 ∈ C7 as a matching
(left) and as Dyck path D = d(π) in a labeled grid (right), where s(π) = 2531674.

The map π 7→ (s(π), d(π)) is a bijection between Cn and Sn ×Dn. Given σ ∈ Sn and
D ∈ Dn, we denote by π = π(σ, D) the unique permutation in Cn such that s(π) = σ

and d(π) = D. The first step is to prove the theorem when σ is the identity permutation,
which we denote by ι = 12 . . . n ∈ Sn. In this special case, all the descents of π come
from high peaks, namely, occurrences of en that do not touch the diagonal. Thus,

des(π) = hpea(D) (2.3)
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in this case, and it follows that

Cι
n(t, u) = ∑

π∈C ι
n

tdes(π)uplat(π) = ∑
D∈Dn

thpea(D)ulpea(D) = Nn(t, u).

The computation of Cσ
n(t, u) for arbitrary σ is done in two stages. We first prove that,

for fixed n, the polynomial Cσ
n(t, u) depends only on the descent set of σ, by showing

that swapping any two non-adjacent entries of σ with consecutive values does not change
this polynomial. For any S ⊆ [n − 1], this allows us to define define CS

n(t, u) = Cσ
n(t, u),

where σ is any permutation in Sn with descent set S, and to reduce the problem to the
case where σ has a very specific form. We then prove bijectively that if S′ is obtained
from S by removing its largest element, then CS

n(t, u) = tCS′
n (t, u), so one can repeatedly

apply this fact to remove all the elements from the descent set of σ, reducing the problem
to the case of the identity permutation. Our construction produces a bijection

ϕσ : Cσ
n → C ι

n (2.4)

satisfying that

des(ϕσ(π)) = des(π)− des(σ) and plat(ϕσ(π)) = plat(π) (2.5)

for all π ∈ Cσ
n .

For example, if

σ = 281375496 and π = 228183175437954696 ∈ Cσ
9 , (2.6)

then ϕσ(π) = 112324354657896789, where des(σ) = 4, des(π) = 9, and des(ϕσ(π)) = 5.
The details of the construction can be found in [7].

We conclude this section with two statements about the symmetry of the distributions
of descents and weak descents on the set of nonnesting permutations having a fixed
underlying σ. These are simple consequences of Theorem 2.6 and the palindromicity of
Nn(t, t) and Nn(t, 1), respectively.

Corollary 2.7. For each σ ∈ Sn, the distribution of the number of weak descents on Cσ
n is

symmetric: for all r,

|{π ∈ Cσ
n : wdes(π)− des(σ) = r}| = |{π ∈ Cσ

n : wdes(π)− des(σ) = n + 1 − r}|.

Corollary 2.8. For each σ ∈ Sn, the distribution of the number of descents on Cσ
n is symmetric:

for all r,

|{π ∈ Cσ
n : des(π)− des(σ) = r}| = |{π ∈ Cσ

n : des(π)− des(σ) = n − 1 − r}|.
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3 Bijective proofs of symmetry

Combining the bijection ϕσ from Equation (2.4) with the involution κ̂ from Section 1.3,
one can give bijective proofs of Corollaries 2.3, 2.4, 2.7 and 2.8.

The Lalanne–Kreweras involution κ̂ can be interpreted as an involution on permuta-
tions κ : C ι

n → C ι
n, by identifying each π ∈ C ι

n with its associated Dyck path d(π) ∈ Dn.
Specifically, given π ∈ C ι

n with associated Dyck path D = d(π), define κ(π) ∈ C ι
n to be

the permutation whose associated Dyck path is κ̂(D).
If π = π(ι, D) ∈ C ι

n, Equations (2.2) and (2.3) imply that

wdes(π) = des(π) + plat(π) = hpea(D) + lpea(D) = pea(D).

Thus, the behavior of κ̂ on the number of peaks described in Equation (1.7) translates to
the fact that, for any π ∈ C ι

n,

wdes(π) = n + 1 − wdes(κ(π)). (3.1)

Bijective proof of Corollary 2.7. Define an involution Φσ = ϕ−1
σ ◦ κ ◦ ϕσ from Cσ

n to itself.
Adding the two equalities in Equation (2.5),

wdes(ϕσ(π)) = wdes(π)− des(σ) (3.2)

for every π ∈ Cσ
n . Using this property twice and applying Equation (3.1), it follows that

wdes(π)− des(σ) = wdes(ϕσ(π)) = n + 1 − wdes(κ(ϕσ(π)))

= n + 1 − (wdes(Φσ(π))− des(σ)) (3.3)

for every π ∈ Cσ
n . Thus, the map Φσ provides the desired bijection.

For example, for σ and π as in Equation (2.6), we have Φσ(π) = 281372581347549966.
Note that wdes(π) = 10 and wdes(Φσ(π)) = 8, satisfying Equation (3.3).

Bijective proof of Corollary 2.3. Consider now the composition Ψσ = ϕ−1
σR ◦ κ ◦ ϕσ, which is

a bijection from Cσ
n to CσR

n . By definition, the inverse of Ψσ is simply ΨσR . Equation (3.2)
for σ and σR, together with Equation (3.1), imply that

wdes(π)− des(σ) = n + 1 − (wdes(Ψσ(π))− des(σR)).

Using Equation (1.3), it follows that

wdes(π) = 2n − wdes(Ψσ(π)). (3.4)

Thus, the involution Ψ : Cn → Cn defined by Ψ(π) = Ψσ(π) whenever π ∈ Cσ
n provides

the desired bijection.
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Bijective proof of Corollary 2.8. Denote by R the reversal map that takes π to πR, and de-
fine the composition Φσ = R ◦ ΦσR ◦ R, which is an involution from Cσ

n to itself.
Let π ∈ Cσ

n . Using the fact that

des(πR) = 2n − 1 − wdes(π), (3.5)

together with Equation (1.3), we have

des(π)− des(σ) = n − (wdes(πR)− des(σR)). (3.6)

Using Equation (3.3) with πR and σR playing the roles of π and σ, respectively, together
with Equation (3.6) applied twice, we get

des(π)− des(σ) = n − 1 − (des(Φσ(π))− des(σ)),

and so Φσ gives the desired bijection.

Bijective proof of Corollary 2.4. Consider the composition Ψσ = R ◦ ΨσR ◦ R, which is a
bijection from Cσ

n to CσR
n . The inverse of Ψσ is ΨσR . Using Equation (3.4) with πR and σR

playing the roles of π and σ, together with Equation (3.5) applied twice, we get

des(π) = 2n − 1 − wdes(πR) = −1 + wdes(ΨσR(πR)) = 2n − 2 − des(Ψσ(π)).

Thus, the involution Ψ : Cn → Cn defined by Ψ(π) = Ψσ(π) whenever π ∈ Cσ
n provides

the desired bijection.

It might be possible to find simpler bijections proving our results about symmetry of
the distributions.

Problem 3.1. Give direct bijections proving Corollaries 2.3, 2.4, 2.7 and 2.8 that do not require
passing through the case where σ is the identity permutation.

4 Generalizations

Denote by
⊔k[n] the multiset consisting of k copies of each number in [n], so that⊔2[n] = [n] ⊔ [n]. Generalized Stirling permutations, often called k-Stirling permuta-

tions, are permutations of
⊔k[n] that avoid the pattern 212. This generalization, origi-

nally proposed by Gessel and Stanley [9], has been studied for example in [14, 10, 12].
Similarly, k-quasi-Stirling permutations were defined by the author [6] as those per-

mutations of
⊔k[n] that avoid the patterns 1212 and 2121. Permutations of

⊔k[n] can be
viewed as ordered set partitions on [kn] into n blocks of size k, where block b consists of
those i ∈ [kn] such that πi = b, for each b ∈ [n]. With this interpretation, a permutation
avoids 1212 and 2121 if the underlying set partition is noncrossing, meaning that there
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are no i < j < ℓ < m so that i, ℓ are in one block and j, m are in another block; see [16,
Exer. 159]. The distribution of the number of descents and plateaus in k-quasi-Stirling
permutations is given in [6].

There are several ways to generalize nonnesting permutations of [n] ⊔ [n], as given
by Definition 1.2, to permutations of

⊔k[n]. Next we describe three different general-
izations, which arise from distinct ways to view elements of Cn: as pattern-avoiding
multipermutations, as labeled nonnesting matchings, and as multipermutations where
the subsequences of first copies and of second copies of each entry coincide.

4.1 Permutations avoiding 1221 and 2112

First we consider permutations π of
⊔k[n] that avoid the patterns 1221 and 2112, that

is, there do not exist i < j < ℓ < m such that πi = πm ̸= πj = πℓ. Let Ak
n denote this

set of permutations. For example, A3
2 = {111222, 112122, 221211, 222111}. When k ≥ 3,

this definition is quite restrictive. The distribution of descents and plateaus is relatively
simple in this case, see [7] for the proof of the next result.

Theorem 4.1. For k ≥ 3 and n ≥ 1, we have

∑
π∈Ak

n

tdes(π)uplat(π) = u(k−3)n+2(u2 + t)n−1An(t).

Setting u = 1 and u = t in Theorem 4.1, respectively, it follows easily that the
distribution of the number of descents (respectively, weak descents) on Ak

n is symmetric.
Our proof provides a bijective explanation of these symmetries.

4.2 Nonnesting permutations

A second way to generalize Definition 1.2 to permutations of
⊔k[n] is to require that the

underlying set partition is nonnesting; see [3, 2, 4] and [16, Exer. 164]. In this case, a block
{i1, i2, . . . , ik}< of the partition is represented by k − 1 arcs (i1, i2), (i2, i3), . . . , (ik−1, ik),
and the partition is nonnesting if this representation does not contain any pair of nested
arcs, i.e., two arcs (i, m) and (j, ℓ) such that i < j < ℓ < m. In terms of the permutation
π of

⊔k[n], an arc is placed between i and j if πi = πj and there is no other copy of this
value between positions i and j of π. Following Athanasiadis [2], who first considered
such permutations in a geometric context, we call these nonnesting permutations. Let Bk

n
denote the set of nonnesting permutations of

⊔k[n]. Clearly, Ak
n ⊆ Bk

n, but the converse
is not true in general. For example, B3

2 = Ak
n ⊔ {121212, 212121}.

A bijection between noncrossing and nonnesting partitions that preserves the sizes
of the blocks was given by Athanasiadis [3]. It follows that the number of nonnesting
permutations of

⊔k[n] equals the number of those where the underlying partition is
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noncrossing, namely, k-quasi-Stirling permutations. This number is given in [6], and so
we get

|Bk
n| =

(kn)!
((k − 1)n + 1)!

= n! Catn,k,

where

Catn,k =
1

(k − 1)n + 1

(
kn
n

)
is called a k-Catalan number [15, pp. 168–173]. Given the simple formula in Theorem 2.1
for the k = 2 case and the results in [6] on k-quasi-Stirling permutations, it is natural to
ask for the distribution of the number of descents and the number of plateaus on Bk

n for
k ≥ 3. Interestingly, unlike in the case k = 2, the distribution of the number of descents
on Bk

n fails to be symmetric for k = 3 and n = 4.

4.3 Canon permutations

A third possible generalization arises when thinking of Cσ
n as the set of permutations of

[n] ⊔ [n] where both the subsequence of first copies of each entry and the subsequence
of second copies of each entry equal σ. For σ ∈ Sn and k ≥ 1, define Ck,σ

n to be the set of
permutations π of

⊔k[n] such that, for each j ∈ [k], the subsequence of π formed by the
jth copy (from the left) of each entry is σ. Let Ck

n =
⊔

σ∈Sn C
k,σ
n . We call elements of Ck

n
k-canon permutations. By construction, A1

n = B1
n = C1

n = Sn and A2
n = B2

n = C2
n = Cn, so

the three definitions generalize the k = 1 and k = 2 cases.
It can be shown that Bk

n ⊆ Ck
n in general, but the converse does not hold. For example,

C3
2 = B3

2 ⊔ {112212, 121122, 212211, 221121}.
In forthcoming work, we will show that this definition provides the right setting to

generalize Theorems 2.1 and 2.6. We will show that, if we define

Ck
n(t, u) = ∑

π∈Ck
n

tdes(π)uplat(π) and Ck,σ
n (t, u) = ∑

π∈Ck,σ
n

tdes(π)uplat(π)

in analogy to Equations (1.4) and (2.1), then for all σ ∈ Sn and all k ≥ 1 we have

Ck,σ
n (t, u) = tdes(σ)Ck,ι

n (t, u). (4.1)

Thus, summing over all σ ∈ Sn,

Ck
n(t, u) = An(t)Ck,ι

n (t, u).

The proof extends some of the ideas in our proofs of Theorems 2.1 and 2.6 from Dyck
paths to the more general setting of standard Young tableaux of rectangular shape. In
particular, it yields certain generalizations of the notion of descents on such tableaux, as
well as bijective proofs of some equidistribution results for these new statistics.
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