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Abstract. We construct an injection from the set of r-fans of Dyck paths of length n
into the set of chord diagrams on [n] that intertwines promotion and rotation. This is
done in two different ways, namely as fillings of promotion matrices and in terms of
Fomin growth diagrams. Our analysis uses the fact that r-fans of Dyck paths can be
viewed as highest weight elements of weight zero in crystals of type Br, which in turn
can be analyzed using virtual crystals. On the level of Fomin growth diagrams, the
virtualization process corresponds to the Roby–Krattenthaler blow up construction.
Our construction generalizes to vacillating tableaux as well. We give a cyclic sieving
phenomenon on r-fans of Dyck paths using the promotion action.
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1 Introduction

Interest in invariant subspaces goes back to Rumer, Teller and Weyl [22], who studied
the quantum mechanical description of molecules. In particular, they devised diagram-
matic bases for the invariant spaces. For SL(n), a diagrammatic basis for the invariant
space was constructed by Cautis, Kamnitzer and Morrison [2], generalizing Kuperberg’s
webs [11] for SL(2) and SL(3).

The dimension of the invariant subspace of a tensor product V⊗N of an irreducible
representation V of a Lie algebra g is equal to the number of highest weight elements of
weight zero in B⊗N, where B is the crystal basis associated to V [25, 19]. The symmetric
group acts on V⊗N by permuting tensor positions. By Schur–Weyl duality, this action
commutes with the action of the Lie group. In particular, the symmetric group acts
on the invariant space of V⊗N. It was shown by Westbury [25] that the action of the
long cycle corresponds to the action of promotion on highest weight elements of weight
zero in B⊗N. In this setting promotion is defined using Henriques’ and Kamnitzer’s
commutor [5], see [4, 25, 26].
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In general, it is desirable to have a correspondence between highest weight elements
of weight zero in B⊗N and diagram bases, such as chord diagrams, which intertwine
promotion and rotation. For Kuperberg’s webs [11], this was achieved by Petersen,
Pylyavskyy, Rhoades [18] and Patrias [17] by showing that the growth algorithm of Kho-
vanov and Kuperberg [8] intertwines promotion with rotation. For the vector represen-
tation of the symplectic group and the adjoint representation of the general linear group,
such a correspondence between highest weight elements of weight zero and chord dia-
grams which intertwines promotion and rotation was given in [19].

In this paper, we construct an injection from the set of r-fans of Dyck paths of length
n into the set of chord diagrams on [n] that intertwines promotion and rotation. There
is a natural correspondence between r-fans of Dyck paths and highest weight elements
in the tensor product of the spin crystal of type Br. We present this injection in two
different ways: (1) as fillings of promotion matrices [13] (see Section 3.1); (2) in terms of
Fomin growth diagrams [3, 10] (see Section 3.2).

While the first description shows that the map intertwines promotion and rotation,
the second description shows injectivity. Our proof strategy uses virtualization of crys-
tals (see for example [1]) and results of [19] for oscillating tableaux of weight zero (or
equivalently highest weight words of weight zero for the vector representation type Cr):

1. Find a virtual crystal morphism for the spin crystals of type Br into the r-th tensor
power of the crystal of the vector representation of type Cr (Section 2.1).

2. Use virtualization to map a fan of Dyck paths to an oscillating tableau (Section 2.2).

3. Show that this virtualization commutes with promotion and the filling rules.

4. Show that blowing up the filling of the growth diagram corresponds to the filling
of the oscillating tableau. In this sense, the blow up on growth diagrams is the
analogue of the virtualization on crystals.

An overview of our strategy is shown in Figure 1. Our analysis also generalizes to
vacillating tableaux, details of which appear in the long version of this paper [16].

Having the injective map to chord diagrams gives a first step towards a diagrammatic
basis for the invariant subspaces. In addition, Fontaine and Kamnitzer [4] as well as
Westbury [25] tied the promotion action on highest weight elements of weight zero to the
cyclic sieving phenomenon introduced by Reiner, Stanton and White [20]. In Section 4.2,
we make this cyclic sieving phenomenon more concrete by providing the polynomial in
terms of the energy function. We also conjecture another polynomial, which is the q-
deformation of the number of r-fans of Dyck paths, to give a cyclic sieving phenomenon.

The paper is organized as follows. In Section 2, we give a brief review of crystal
bases and virtual crystals and provide the virtual crystals for the spin representation of
type Br into type Cr. We also define promotion on crystals via the crystal commutor.
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Figure 1: Overview of strategy and results for r-fans of Dyck paths

In Section 3, we give the various filling rules to construct the map to chord diagrams.
Section 4 is reserved for the statements of our main results. The long version [16] of this
extended abstract contains all proofs and more details on vacillating tableaux.

We thank S. Hopkins, V. Reiner, M. Rubey and B. Westbury for discussions.

2 Crystal bases

Crystal bases form a combinatorial skeleton of representations of quantum groups as-
sociated to Lie algebras. They were first introduced by Kashiwara [7] and Lusztig [14].
Axiomatically, for a given root system Φ with index set I and weight lattice Λ, a crystal is
a nonempty set B together with maps ei, fi : B → B t {∅}, εi, ϕi : B → Z, wt : B → Λ for
i ∈ I, satisfying certain conditions (see for example [1, Definition 2.13]). The operators ei
and fi are called raising and lowering operators. The map wt is the weight map. The map
εi (resp. ϕi) measures how often ei (resp. fi) can be applied to the given crystal element.
For all crystals considered in this paper, εi(b) = max{k > 0 | ek

i (b) 6= ∅} for b ∈ B and
similarly for ϕi(b). An element b ∈ B is called highest weight if ei(b) = ∅ for all i ∈ I.

Here we define certain crystals for the root systems Br and Cr explicitly. Let ei ∈ Zr

be the i-th unit vector with 1 in position i and 0 everywhere else.

Definition 2.1. The spin crystal of type Br, denoted by Bspin, consists of all r-tuples ε =
(ε1, ε2, . . . , εr), where εi ∈ {±}. The weight of ε is wt(ε) = 1

2 ∑r
i=1 εiei. The crystal

operator fr annihilates ε unless εr = +. If εr = +, fr acts on ε by changing εr from
+ to − and leaving all other entries unchanged. The crystal operator fi for 1 6 i < r
annihilates ε unless εi = + and εi+1 = −. In the latter case, fi acts on ε by changing εi
to − and εi+1 to +. The crystal operator ei is defined similarly.

The crystal Bspin of type B3 is depicted in Figure 2.
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Figure 2: Left: One component of the crystal V̂ = C⊗3
� of type C3. Middle: The virtual

crystal V inside V̂ of type B3. Right: The spin crystal Bspin of type B3.

Definition 2.2. The crystal for the vector representation C� of type Cr consists of the ele-
ments {1, 2, . . . , r, r, . . . , 2, 1}. The crystal operator fi for 1 6 i < r maps i to i + 1, maps
i + 1 to i and annihilates all other elements. The crystal operator fr maps r to r and an-
nihilates all other elements. The crystal operators ei are defined similarly. Furthermore,
wt(i) = ei and wt(i) = −ei.

A remarkable property of crystals is that they respect tensor products. Given two
crystals B and C associated to the same root system Φ, the tensor product B ⊗ C as a set
is the Cartesian product B × C. The weight of b⊗ c ∈ B ⊗ C is the sum of the weights
wt(b⊗ c) = wt(b) + wt(c). For more information, see [1, Section 2.3].

2.1 Virtual crystals

Stembridge [23] characterized crystals associated to simply-laced root systems in terms
of local rules on the crystal graph. Crystals for non-simply-laced root systems can be
constructed using virtual crystals [1, Chapter 5].

In this paper, we utilize virtual crystals to construct Fomin growth diagrams and
the promotion operators for type Br using results for type Cr. Hence let us briefly
review the set-up for virtual crystals. Let X ↪→ Y be an embedding of Lie algebras such
that the fundamental weights ωi and simple roots αi map as ωX

i 7→ γi ∑j∈σ(i) ωY
j and

αX
i 7→ γi ∑j∈σ(i) αY

j . Here γi is a multiplication factor, σ : IX → IY/ aut is a bijection and
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aut is an automorphism on the Dynkin diagram for Y.

Definition 2.3. If there is an embedding of Lie algebras X ↪→ Y, then V ⊆ V̂ is a virtual
crystal for the root system ΦX if

V1. The ambient crystal V̂ is a crystal associated to a representation for the root system
ΦY with crystal operators êi, f̂i, ε̂i, ϕ̂i for i ∈ IY and weight function ŵt.

V2. If b ∈ V and i ∈ IX, then ε̂ j(b) has the same value for all j ∈ σ(i) and that value is
a multiple of γi. The same is true for ϕ̂j(b).

V3. The subset V t {∅} ⊆ V̂ t {∅} is closed under the virtual crystal operators ei :=
∏j∈σ(i) êγi

j and fi := ∏j∈σ(i) f̂ γi
j and εi(b) = max{k > 0 | ek

i (b) 6= ∅}, ϕi(b) =

max{k > 0 | f k
i (b) 6= ∅} for b ∈ V .

The tensor product of two virtual crystals for the same embedding X ↪→ Y is again a
virtual crystal (see for example [1, Theorem 5.8]).

We will now apply the theory of virtual crystals to the embedding Br ↪→ Cr. In this
setting ICr = IBr = {1, 2, . . . , r}, σ(i) = {i}, γi = 2 for 1 6 i < r and γr = 1. We consider
as the ambient crystal V̂ = C⊗r

� . Define an ordering < on the set [r] ∪ [r̄] as follows
1 < 2 < · · · < r < r̄ < · · · < 1̄. Denote by | · | the map from [r] ∪ [r̄] to [r] that sends
letters to their corresponding unbarred values.

Definition 2.4. Let V ⊆ V̂ be given by V := {vr⊗ vr−1⊗ · · · ⊗ v1 ∈ V̂ | vi > vj and |vi| 6=
|vj| for all i > j}. Let fi = f̂ 2

i , ei = ê2
i for 1 6 i < r and fr = f̂r, er = êr.

Definition 2.5. Let Ψ : Bspin → V be the map Ψ(ε1ε2 · · · εr) = vr ⊗ vr−1⊗ · · · ⊗ v1, where
vr > vr−1 > · · · > v1 such that if εi = + then v contains an i and if εi = − then v
contains an ī for all 1 6 i 6 r.

Proposition 2.6. The map Ψ is a bijective map that intertwines the crystal operators on Bspin
and V . Furthermore, V is a virtual crystal for the embedding of Lie algebras Br ↪→ Cr.

An example of the virtual crystal construction for Bspin is given in Figure 2.

2.2 Highest weights of weight zero

A weight λ ∈ Λ is called minuscule if 〈λ, α∨〉 ∈ {0,±1} for all coroots α∨. A crystal B
is called minuscule if wt(b) is minuscule for all b ∈ B. Note that Bspin is a minuscule
crystal (see for example [1, Chapter 5.4]). A weight λ is called dominant if 〈λ, α∨i 〉 > 0 for
all i ∈ I. Except for spin weights, dominant weights can be identified with partitions.
A partition λ is a sequence λ = (λ1, λ2, . . . , λ`) such that λ1 > λ2 > · · · > λ` > 0. We
identify partitions that differ by trailing zeroes.
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Let B1,B2, . . . ,Bn be minuscule crystals. For any highest weight element u = un ⊗
· · · ⊗ u1 ∈ Bn ⊗ · · · ⊗ B1, we may bijectively associate a sequence of dominant weights
∅ = µ0, µ1, . . . , µn, where µq := ∑

q
i=1 wt(ui). If µn is zero, u is a highest weight element of

weight zero. Note that the number of highest weight elements of weight zero in a tensor
product of crystals is equal to the dimension of the invariant subspace [25, 19].

Definition 2.7 (Sundaram [24]). An r-symplectic oscillating tableau O of length n and shape
µ is a sequence of partitions O = (∅ = µ0, µ1, . . . , µn = µ) such that the Ferrers diagrams
of two consecutive partitions differ by exactly one cell, and each partition µi has at most
r nonzero parts.

Next we relate highest weight elements of weight zero in B⊗n
spin of type Br and r-fans

of Dyck paths.

Definition 2.8. An r-fan of Dyck paths F of length n is a sequence F = (∅ = µ0, µ1, . . . , µn =
∅) of partitions µi with at most r parts such that the Ferrers diagram of two consecutive
partitions differs by exactly one cell in each part. In other words, µi differs from µi+1 by
(±1,±1, . . . ,±1) for 0 6 i < n.

Since Bspin of type Br is minuscule, by the above discussion ε = εn ⊗ · · · ⊗ ε1 ∈ B⊗n
spin

is highest weight if and only if ∑
q
i=1 wt(εi) is dominant for all 1 6 q 6 n. Hence highest

weight elements of weight zero can be identified with an r-fan of Dyck paths of length
n: the j-th entry of εi is + if and only if the j-th Dyck path has an up-step at position i.
In particular, for a highest weight element ε of weight zero, the sequence of dominant
weights µq := ∑

q
i=1 2wt(εi) for 0 6 q 6 n defines an r-fan of Dyck paths consistent with

Definition 2.8.

Example 2.9. For r = 3 and n = 4, F = ((000), (111), (220), (111), (000)) is a 3-fan of
Dyck paths corresponding to ε = (−,−,−)⊗ (−,−,+)⊗ (+,+,−)⊗ (+,+,+) ∈ B⊗4

spin.

Following Definition 2.5, we obtain an embedding from the set of r-fans of Dyck
paths into the set of oscillating tableaux.

Definition 2.10. For an r-fan of Dyck paths F = (∅ = λ0, . . . , λn = ∅) define the oscil-
lating tableau ιF→O(F) = (µ0, . . . , µrn) as follows. Let vt = Ψ(λt − λt−1) for 1 6 t 6 n
with Ψ as in Definition 2.5. Then µtr+s = λt + ∑s

i=1 wt(v
t+1
i ) for 0 6 t < n, 0 6 s < r.

2.3 Promotion via crystal commutor

For finite crystals Bλ of classical type of highest weight λ, Henriques and Kamnitzer [5]
introduced the crystal commutor as follows. Let ηBλ

: Bλ → Bλ be the Lusztig involution,
which maps the highest weight vector to the lowest weight vector and interchanges the
crystal operators fi with ei′ , where w0(αi) = −αi′ under the longest element w0. This can
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be extended to tensor products of such crystals by mapping each connected component
to itself using the above. Then the crystal commutor is defined as

σBλ,Bµ : Bλ ⊗ Bµ → Bµ ⊗ Bλ with b⊗ c 7→ ηBµ⊗Bλ
(ηBµ(c)⊗ ηBλ

(b)).

Definition 2.11 ([4, 25, 26]). Let C be a crystal and u ∈ C⊗n a highest weight element.
Then promotion pr on u is defined as σC⊗n−1,C(u).

Example 2.12. Promotion is σB⊗3
spin,Bspin(ε) = (−,−,−)⊗ (−,+,+)⊗ (+,−,−)⊗ (+,+,+)

for ε in Example 2.9.

2.4 Promotion via local rules

Adapting local rules of van Leeuwen [12], Lenart [13] gave a combinatorial realization of
the crystal commutor σA,B by constructing an equivalent bijection between the highest
weight elements of A ⊗ B and B ⊗ A respectively. We define Lenart’s construction in
the case of promotion. The local rules of Lenart [13] can be stated as follows: four

weight vectors λ, µ, κ, ν ∈ Λ depicted in a square diagram

λ ν

κ µ satisfy the local rule, if
µ = domW(κ + ν− λ), where W is the Weyl group of the root system Φ for A and B and
domW(ρ) is the dominant weight in the Weyl orbit of ρ.

Let C be a minuscule crystal and (∅ = µ0, µ1, . . . , µn = µ) the sequence of partitions
corresponding to the highest weight element u ∈ C⊗n. Let (∅ =: µ̂0, µ̂1, . . . , µ̂n := µ)
be the sequence of partitions obtained by constructing a skewed grid as in (2.1) and
recursively computing µ̂1, . . . , µ̂n−1 using Lenart’s local rules.

µ0 µ1 µ2 µn−1 µn

µ̂0 µ̂1 µ̂n−2 µ̂n−1 µ̂n

(2.1)

It follows from Lenart [13, Theorem 4.4] that (∅ = µ̂0, µ̂1, . . . , µ̂n = µ) is the unique
sequence of partitions corresponding to the highest weight element pr(u).

3 Chord diagrams

3.1 Promotion-evacuation diagrams

In this section we summarize the method to obtain a map from highest weight words of
weight zero to chord diagrams that intertwines promotion and rotation.

Definition 3.1. A chord diagram of size n is a graph with n vertices depicted on a circle
labelled 1, . . . , n in counter-clockwise orientation. The rotation of a chord diagram is
obtained by rotating all edges clockwise by 2π

n around the center of the diagram.
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Step 1. Step 2. Step 3. Step 4.

λ ν
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Figure 3: Overview of the steps in our map

In our setting, chord diagrams are undirected graphs with possibly multiple edges
between the same two vertices. We can therefore identify a chord diagram with its
adjacency matrix, which is a symmetric n× n matrix M = (mij)16i,j6n with non-negative
integer entries mij equal to the number of edges between vertex i and vertex j. We denote
by rot M the adjacency matrix corresponding to the rotation of the chord diagram.

We now outline the idea to construct a rotation and promotion intertwining map for
oscillating tableaux and r-fans of Dyck paths. A visual guideline is given in Figure 3.

Construction 3.2. The construction is given as follows:
Step 1 Iteratively calculate promotion of a highest weight word of weight zero and

length n using Lenart’s schema (2.1) a total of n times.
Step 2 Group the results into a square grid, called the promotion matrix.
Step 3 Fill the cells of the square grid with certain non-negative integers according to a

filling rule Φ that only depends on the four corners of the cells in the schema (2.1).
Step 4 Regard the filling as the adjacency matrix of a graph, which is the chord diagram.

Definition 3.3. The filling rule for oscillating tableaux and fans of Dyck paths, with cells
labelled as in Step 3 of Figure 3, is Φ(λ, κ, ν, µ) = number of negative entries in κ + ν− λ.

Remark 3.4. For oscillating tableaux at most one negative entry can occur, so that
Φ(λ, κ, ν, µ) is either 0 or 1. Note that the filling rules are new even in the case of
oscillating tableaux as the proofs in [19] did not follow this construction.

Definition 3.5. Denote by MO (resp. MF) the function that maps an r-symplectic oscil-
lating tableau (resp. r-fan of Dyck paths) of length n to an n× n adjacency matrix using
Construction 3.2 and the filling rule in Definition 3.3.

Proposition 3.6. The map MX for X ∈ {O, F} intertwines promotion and rotation, that is
MX ◦ pr = rot ◦MX.

3.2 Fomin growth diagrams

Generally speaking, a Fomin growth diagram is a means to bijectively map sequences of
partitions satisfying certain constraints to non-negative integer fillings of a Ferrers shape,
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drawn in French notation [3, 10]. To map a 0/1 filling of a Ferrers shape to a sequence
of partitions, we iteratively label all corners of the cells of the shape with partitions
by certain local forward rules, F1-F6 [10, p. 4]. Conversely, given partitions labelling
the right and top corners of a cell, the local backwards rules B1-B6 determine the last
partition and the 0/1 filling of the cell [10, p. 5].

To map a non-negative integer filling of a Ferrers shape to a sequence of partitions,
we produce a “blow up" construction of the original shape for the Burge variant which
contains south-east chains of 1’s, as done by [10, Section 4.4]. If a cell is filled with
a positive entry m, we replace the cell with an m × m grid of cells with 1’s along the
diagonal. If there exist several nonzero entries in one column or row, we arrange the
grids of cells so that the 1’s form a south-east chain in each column and row.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now apply
the forward local rules F1-F6 to obtain the partition labels of all corners. We then “shrink
back" the labelled blow up growth diagram to obtain a labelling of the original Ferrers
diagram by only using the partitions labelling the intersections that occurred in the
original Ferrers diagram. The labelling from the blow up construction is given explicitly
by the local forward rules F40 - F42 and local backward rules B40 - B42 [10, p. 22].

Construction 3.7. Let F = (∅ = µ0, µ1, . . . , µn = ∅) be an r-fan of Dyck paths. The
associated triangular growth diagram is the Ferrers shape (n− 1, n− 2, . . . , 2, 1, 0). Label
the cells according to the following specification:

1. Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions in F.

2. For each i ∈ {0, . . . , n− 1} label the corner on the first subdiagonal adjacent to the
labels µi and µi+1 with the partition µi ∩ µi+1.

3. Use backwards rules Burge B40-B42 to obtain all other labels and cell fillings.

For oscillating tableaux, Construction 3.7 reduces to rules B1-B6 and F1-F6.
We denote by GF(F) (resp. GO) the symmetric n× n matrix one obtains from the filling

of the growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix. Starting from a filling of a growth diagram one
obtains the r-fan by filling the cells of a growth diagram, setting all vectors on corners
on the bottom and left border of the diagram to be the empty partition and applying the
forwards growth rules Burge F40-F42 (resp. F1-F6).

4 Main results

4.1 Results for oscillating tableaux and r-fans of Dyck paths

Our main result states that the fillings of the growth diagrams (Construction 3.7) and
the fillings of the promotion matrices (Definition 3.3) coincide. For oscillating tableaux
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this was not stated explicitly in [19], but can be deduced from the proofs.

Theorem 4.1. For an oscillating tableau of weight zero O and an r-fan of Dyck paths F, we have
GO(O) = MO(O) and GF(F) = MF(F). In particular, the maps MO and MF are injective.

Proposition 4.2. For an r-fan of Dyck paths F, ιF→O ◦ prBspin(F) = prrC� ◦ ιF→O(F). In addition,
MF(F) = blocksumr(MO(ιF→O(F))), where blocksumr(MO(ιF→O(F))) is the matrix obtained
by replacing r× r blocks in MO(ιF→O(F)) with the sum of their entries.

4.2 Cyclic sieving

The cyclic sieving phenomenon was introduced by Reiner, Stanton and White [20].

Definition 4.3. Let X be a finite set and C be a cyclic group generated by c acting on X.
Let ζ ∈ C be a |C|th primitive root of unity and f (q) ∈ Z[q] be a polynomial in q. Then
the triple (X, C, f ) exhibits the cyclic sieving phenomenon if for all d > 0 we have that the
size of the fixed point set of cd (denoted Xcd

) satisfies |Xcd | = f (ζd).

We state cyclic sieving phenomena for the promotion action on oscillating tableaux
and fans of Dyck paths. For this we need the local energy function (see for example [15])
H : B ⊗ B → Z. The local energy function is constant on connected components.

For the crystal C� of type Cr, using the ordering 1 < 2 < · · · < r < r < · · · < 2 < 1,
we have that H(a⊗ b) = 0 if a 6 b and H(a⊗ b) = 1 if a > b. The classical highest weight
elements in Bafspin⊗Bafspin are (ε1, . . . , εr)⊗ (+, . . . ,+) with εi = + for 1 6 i 6 k and εi = −
for k < i 6 r for some 0 6 k 6 r. Denoting by m(ε1, . . . , εr) the number of − in the εi,

we have H((ε1, . . . , εr)⊗ (+, . . . ,+)) =
⌊

m(ε1,...,εr)+1
2

⌋
. The energy function E : B⊗N → Z

is defined for b1 ⊗ · · · ⊗ bN ∈ B⊗N as E(b1 ⊗ · · · ⊗ bN) = ∑N−1
i=1 iH(bi ⊗ bi+1). Define a

polynomial in q using the energy function for highest weight elements in B⊗n of weight
zero

fn,r(q) = qcn,r ∑
b∈B⊗n

wt(b)=0,ei(b)=0 for 16i6r

qE(b),

where r is the rank of the root system and cn,r is a constant depending on the type.

Theorem 4.4. Let X be the set of highest weight elements in B⊗n of weight zero, where B is
minuscule. Then (X, Cn, fn,r(q)) exhibits the cyclic sieving phenomenon, where Cn is the cyclic
group of order n given by the action of promotion pr on B⊗n.

Note that C� and Bspin are minuscule, and hence Theorem 4.4 gives a cyclic sieving
phenomenon for oscillating tableaux and fans of Dyck paths. See also [4, 25]. For the
type A vector representation, the energy function is the major index and Theorem 4.4
relates to results in [21].
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Recall that highest weight elements of weight zero in B⊗2n
spin of type Br are in bijection

with r-fans of Dyck paths of length 2n. Denote by D(r)
n the set of all r-fans of Dyck

paths of length 2n. We have |D(r)
n | = ∏16i6j6n−1

i+j+2r
i+j , see [9]. Define the q-analogue

as gn,r(q) = ∏16i6j6n−1
[i+j+2r]q
[i+j]q

where [m]q = 1 + q + q2 + · · · + qm−1. The following
conjecture is equivalent to [6, Conjecture 5.9] on plane partitions and root posets.

Conjecture 4.5. The triple (D(r)
n , C2n, gn,r(q)) exhibits the cyclic sieving phenomenon, where

C2n is the cyclic group of order 2n that acts on D(r)
n by applying promotion.

Example 4.6. We have q−4 f2,2(q) = g2,2(q) = q4 + q2 + 1 and

g3,2(q) = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1,

q−6 f3,2(q) = q10 + q9 + 2q8 + q7 + 3q6 + q5 + 2q4 + q3 + q2 + 1.
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