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Abstract. The K-theoretic Schur P- and Q-functions GPλ and GQλ may be concretely
defined as weight generating functions for semistandard shifted set-valued tableaux.
These symmetric functions are the shifted analogues of stable Grothendieck polynomi-
als, and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa
and Naruse specified families of dual K-theoretic Schur P- and Q-functions gpλ and
gqλ via a Cauchy identity involving GPλ and GQλ. They conjectured that the dual
power series are weight generating functions for certain shifted plane partitions. We
prove this conjecture. We also derive a related generating function formula for the
images of gpλ and gqλ under the ω involution of the ring of symmetric functions. This
confirms a conjecture of Chiu and the second author. Using these results, we verify a
conjecture of Ikeda and Naruse that the GQ-functions are a basis for a ring.
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1 Introduction

The main results of this extended abstract are explicit combinatorial generating functions
for certain families of “dual” power series that were originally defined indirectly by
Cauchy identities. The formulas that we establish were conjectured in [2, 20]. We start
by giving a summary of the power series involved and the generating functions derived.
We then explain an application of our formulas to resolve a conjecture of Ikeda and
Naruse from [8]. We also provide a comparison with the work of Lam and Pylyavskyy
in the unshifted case [9]. For the full version of these results, with proofs, see [13, 16].

2 Shifted set-valued generating functions

Throughout this section, λ = (λ1 > λ2 > · · · > λk > 0) denotes a strict integer partition.
The shifted Young diagram of λ is SDλ := {(i, i + j − 1) ∈ [k] ×Z : 1 ≤ j ≤ λi} where
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[k] := {1, 2, . . . , k}. Elements of SDλ are called positions or boxes. A shifted set-valued
tableau of shape λ is a filling T of SDλ by finite, nonempty subsets of 1

2Z. Throughout,
we let i′ := i− 1

2 for i ∈ Z and refer to half-integers as primed numbers.
Let Tij denote the entry assigned by T to box (i, j) ∈ SDλ, and write (i, j) ∈ T when

(i, j) is in the domain of T. The diagonal positions of T are the boxes (i, j) ∈ T with i = j.
A shifted set-valued tableau T is semistandard if all of the following conditions hold:

(S1) its entries Tij are nonempty finite subsets of {1′ < 1 < 2′ < 2 < . . . },

(S2) max(Tij) ≤ min(Ti+1,j) and max(Tij) ≤ min(Ti,j+1) for all relevant (i, j) ∈ T,

(S3) no unprimed number appears in different boxes within the same column, and

(S4) no primed number appears in different boxes within the same row.

We draw shifted tableaux in French notation; for example, both

345

2′ 3′

1 2′ 2 3′3

and

5

3′ 3

12 2 23′ 34

are semistandard shifted set-valued tableaux of shape (4, 2, 1).
Let β, x1, x2, x3, . . . be commuting indeterminates. Define |T| := ∑(i,j)∈T |Tij| and

xT := ∏i xai+bi
i where ai and bi are the number of times that i and i′ appear in T, respec-

tively. Our examples above both have |T| = 10 and xT = x1x3
2x4

3x4x5.

Definition 2.1. Let ShSVTQ(λ) be the set of all semistandard shifted set-valued tableaux
of shape λ and let ShSVTP(λ) be the subset of such tableaux with no primed numbers
in any diagonal positions. The K-theoretic Schur P- and Q-functions indexed by λ are the
formal power series GPλ := ∑T∈ShSVTP(λ) β|T|−|λ|xT and GQλ := ∑T∈ShSVTQ(λ)

β|T|−|λ|xT.

The functions GPλ and GQλ are sometimes defined by these formulas with β = −1.
This loses no generality since we can recover GPλ from ∑T∈ShSVTP(λ)(−1)|T|−|λ|xT by
substituting xi 7→ −βxi then dividing by β|λ|. Similar comments apply to GQλ.

Both GPλ and GQλ belong to ring Z[β]Jx1, x2, . . .K. If deg β = −1 then GPλ and GQλ

are homogeneous of degree |λ|, but if deg β = 0 then the power series have unbounded
degree. Both power series are symmetric in the xi variables [8, Thm. 9.1]. Setting β = 0
turns GPλ and GQλ into the classical Schur P- and Q-functions Pλ and Qλ. It follows that
as λ ranges over all strict partitions, the sets {GPλ} and {GQλ} are linearly independent.
While Qλ = 2ℓ(λ)Pλ, each GQλ is a more complicated (though still finite) Z[β]-linear
combination of GPµ’s [2, Thm. 1.1].



Combinatorial formulas for shifted dual stable Grothendieck polynomials 3

Ikeda and Naruse introduced GPλ and GQλ in [8] for applications in geometry. Spe-
cializations of these symmetric functions represent the structure sheaves of Schubert
varieties in the torus-equivariant K-theory of the maximal isotropic Grassmannians of
orthogonal and symplectic types [8, Cor. 8.1]; see also [19, 20, 21]. These power series
further appear as “stable limits” of K-theory classes of certain orbit closures in [17, 18].

3 Dual functions via Cauchy identities

Our main results concern the following dual forms of GPλ and GQλ.

Definition 3.1. The dual K-theoretic Schur P- and Q-functions gpλ and gqλ are the unique
elements of Z[β]Jx1, x2, . . .K indexed by strict partitions λ satisfying the Cauchy identities

∑
λ

GQλ(x)gpλ(y) = ∑
λ

GPλ(x)gqλ(y) = ∏
i,j≥1

1− xiyj

1− xiyj
where x :=

−x
1 + βx

. (3.1)

The power series gpλ and gqλ are special cases of Nakagawa and Naruse’s dual uni-
versal factorial Schur P- and Q-functions, which are defined via a more general version of
(3.1) [20, Def. 3.2]. Both {gpλ} and {gqλ} are families of linearly independent functions
that are symmetric in the xi variables [20, Thm. 3.1] and homogeneous if deg β = 1 [2,
Prop. 6.1]. These properties let one define the following conjugate symmetric functions,
which were first considered in [2].

Definition 3.2. Write ω for the Z[β]-linear involution of the ring of symmetric functions
acting on Schur functions as ω(sµ) = sµ⊤ . The conjugate dual K-theoretic Schur P- and
Q-functions of a strict partition λ are given by jpλ := ω(gpλ) and jqλ := ω(gqλ).

4 Shifted plane partition generating functions

Our first main result is a generating function formula for gpλ and gqλ that was predicted
in [20]. A shifted plane partition of strict partition shape λ is a filling of SDλ by elements
of {1′ < 1 < 2′ < 2 < . . . } with weakly increasing rows and columns. Examples include

3
2 3

1 2′ 2
1′ 1′ 1 1 5′

and

3′

2′ 2
1 2′ 2

1 1 1 1 5

which both have shape (5, 3, 2, 1). Given such a filling T, let ci be the number of distinct
columns of T containing i and let ri be the number of distinct rows of T containing i′.
Then define |wtPP(T)| = c1 + r1 + c2 + r2 + . . . and xwtPP(T) := ∏i≥1 xci+ri

i . Both examples
above have |wtPP(T)| = 9 and xwtPP(T) = x4

1x3
2x3x5.
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Theorem 4.1. Let ShPPQ(λ) be the set of all shifted plane partitions of shape λ, and let
ShPPP(λ) be the subset of such fillings with no unprimed diagonal entries. Then

gpλ = ∑
T∈ShPPP(λ)

(−β)|λ|−|wtPP(T)|xwtPP(T) and gqλ = ∑
T∈ShPPQ(λ)

(−β)|λ|−|wtPP(T)|xwtPP(T).

This result was conjectured by Nakagawa and Naruse as [20, Conj. 5.1]. These for-
mulas make it possible to compute gpλ and gqλ, which is not straightforward from (3.1).

Example 4.2. If λ = (2, 1) then ShPPP(λ) consists of

c′

a′ b
, c′

a′ b′
, b′

a′ a
, b′

a′ b′
, a′

a′ a′
, and b′

a′ a′

for all positive integers a < b < c, so Theorem 4.1 asserts that

gp21 = 2 ∑
a<b<c

xaxbxc + ∑
a<b

(x2
axb + xax2

b)− β ∑
a

x2
a − β ∑

a<b
xaxb = s21 − βs2.

When λ = (2, 1), adding primes to the diagonal is a weight-preserving 4-to-1 map
ShPPQ(λ)→ ShPPP(λ) so Theorem 4.1 also tells us that gq21 = 4s21 − 4βs2.

5 Shifted bar tableaux generating functions

Our second main result is a generating function formula for jpλ and jqλ that was pre-
dicted in [2]. Continue to let λ be a strict integer partition. Suppose V is a shifted
tableau1 of shape λ with no unprimed entries repeated in any column and no primed
entries repeated in any row. Let Π be a partition of the diagram SDλ into (disjoint,
nonempty) subsets of adjacent boxes containing the same entry in V. Each block of Π
is a contiguous “bar” of positions in the same row or column, and we refer to the pair
T = (V, Π) as a shifted bar tableau of shape λ.

If V is semistandard in the sense of having weakly increasing rows and columns,
then we say that T is also semistandard. We draw shifted bar tableaux as pictures like

2 3′

1 1 3
to represent T = (V, Π) =

(
2 2 3′

1 1 1 3′ 3
, · · ·
· · · · ·

)
.

These objects are the shifted analogues of what are called valued-set tableaux in [9]. The
word “valued-set” is just a formal transposition of “set-valued”; we believe that the name
“bar tableau” is more intuitive and descriptive.

Given a shifted bar tableau T = (V, Π) let |T| := |Π| and xT := ∏i≥1 xbi
i where bi is

the number of blocks in Π containing i or i′. In our example, |T| = 5 and xT = x2
1x2x2

3.

1That is, a shifted set-valued tableau whose entries are all singleton sets.
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Theorem 5.1. Let ShBTQ(λ) be the set of all semistandard shifted bar tableaux of shape
λ. Let ShBTP(λ) be the subset of such tableaux with no primed diagonal entries. Then

jpλ = ∑
T∈ShBTP(λ)

(−β)|λ|−|T|xT and jqλ = ∑
T∈ShBTQ(λ)

(−β)|λ|−|T|xT.

This result was conjectured by Chiu and the second author as [2, Conj. 7.2].

Example 5.2. Suppose λ = (2, 1). Then ShBTP(λ) consists of

c
a b

, c
a b′

, b
a a

, b
a b′

, and b
a

for all positive integers a < b < c, so Theorem 5.1 asserts that

jp21 = 2 ∑
a<b<c

xaxbxc + ∑
a<b

(x2
axb + xax2

b)− β ∑
a<b

xaxb = s21 − βs11 = ω(gp21).

As in Example 4.2, there is a weight-preserving 4-to-1 map ShBTQ(λ)→ ShBTP(λ); this
is given by either removing all diagonal primes or applying the map{

b
a

, b′

a
, b′

a
, b′

a′

}
7→
{

b
a

}
.

Thus Theorem 5.1 also tells us that jq21 = 4s21 − 4βs11 = ω(gq21).

6 Application to conjectures of Ikeda and Naruse

Consider the modules consisting of all infinite Z[β]-linear combinations of the functions
{GPλ} and {GQλ}, with λ ranging over all strict partitions. Ikeda and Naruse proved
that these modules are both rings [8, Props. 3.4 and 3.5]. This means concretely that
GPλGPµ (respectively, GQλGQµ) always expands as a (possibly infinite) Z[β]-linear com-
bination of GPν’s (respectively, GQν’s).

Ikeda and Naruse conjectured that these expansions are actually finite [8, Conj. 3.1
and 3.2], meaning that the finite linear spans

GP := Z[β]-span{GPλ} and GQ := Z[β]-span{GQλ} (6.1)

(with λ ranging over all strict partition) are also rings. The fact that GP is a ring follows
from results of Clifford, Thomas, and Yong in [3]; for other proofs see [7, §4], [15, §1.2],
and [22, §8]. The problem of showing GQ is a ring appears to still be open, however.

Building off [2], we are able to resolve this problem. Specifically, [2, Cor. 7.5] is exactly
the assertion that the ring property for the GQ-functions follows from Theorem 5.1 (or
more precisely from its skew version, to be given as Theorem 8.4). It follows that:
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Theorem 6.1. The Z[β]-module GQ is a subring of GP. Thus, each product GQλGQµ is
a finite Z[β]-linear combination of GQν’s.

Our proof of this theorem could be adapted to give another proof that GP is a ring,
but in either case our arguments are nonconstructive. By contrast, [3, Thm. 1.2] gives an
explicit Littlewood–Richardson rule for products of GP-functions. It is an open problem
to find such a rule for the GQ-functions, as well as for the gp- and gq-functions, which
span two other subrings of symmetric functions.

7 Comparison with unshifted versions

Our main results are shifted analogues of “classical” theorems, which we summarize
here for comparison.

Throughout this section, let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) be an arbitrary integer
partition, which is not necessarily strict. The (unshifted) diagram of λ is the set of pairs
Dλ := {(i, j) ∈ [k]×Z : 1 ≤ j ≤ λi}. A semistandard (unshifted) set-valued tableau of shape
λ is defined in the same way as the analogous shifted object, except that such a tableau
is a filling of Dλ by finite nonempty subsets of {1 < 2 < 3 < . . . }.

Definition 7.1. Let SVT(λ) be the set of semistandard set-valued tableaux of shape λ.
The stable Grothendieck polynomial of λ is the power series Gλ := ∑T∈SVT(λ) β|T|−|λ|xT.

Definition 7.2. The dual stable Grothendieck polynomials gλ are the unique formal power
series in Z[β]Jx1, x2, . . .K indexed by integer partitions λ satisfying the Cauchy identity

∑
λ

Gλ(x)gλ(y) = ∑
λ

sλ(x)sλ(y) = ∏
i,j≥1

1
1− xiyj

.

Definition 7.3. The conjugate dual stable Grothendieck polynomial of λ is jλ := ω(gλ⊤).

All three families {Gλ}, {gλ}, and {jλ} are linearly independent symmetric functions
which coincide with the usual Schur functions {sλ} when β = 0 [1, 9]. Our definition of
jλ involves a transposition of indices compared to [9, §9.8]; this ensures that jλ|β=0 = sλ.

We define plane partitions and semistandard bar tableaux of shape λ in the same way
as our shifted versions, except the relevant objects are fillings of Dλ by positive integers.
Let PP(λ) be the set of plane partitions of shape λ. Let BT(λ) be the set of semistandard
bar tableaux of shape λ; these objects are called valued-set tableaux in [9, §9].

Theorem 7.4 (Lam and Pylyavskyy [9, §9]). For all partitions λ it holds that

gλ = ∑
T∈PP(λ)

(−β)|λ|−|wtPP(T)|xwtPP(T) and jλ = ∑
T∈BT(λ)

(−β)|λ|−|T|xT.
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The stable Grothendieck polynomials Gλ were introduced in Fomin and Kirillov’s
paper [4] as certain limits of Lascoux and Schützenberger’s Grothendieck polynomials [11],
which are K-theory representatives for Schubert varieties. Buch [1, Thm. 3.1] derived the
set-valued tableaux generating function for Gλ given in Definition 7.1, and also proved
that the stable Grothendieck polynomials are a Z[β]-basis for a ring [1, Cor. 5.5]. For
another proof of this ring property, see [23].

Lam and Pylyavskyy defined gλ and jλ by the formulas in Theorem 7.4 with β = −1.
They then proved that {gλ} is the basis for the ring of symmetric functions dual to {Gλ}
via the Hall inner product [9, Thm. 9.15], and showed that jλ = ω(gλ⊤) [9, Prop. 9.25].
For other proofs of the Cauchy identity in Definition 7.2, see [6, 10, 23].

8 Skew versions

As mentioned in Section 6, there are skew generalizations of Theorems 4.1 and 5.1. We
write µ ⊆ λ if µ and λ are partitions with µi ≤ λi for all i. If µ ⊆ λ are strict partitions
then the shifted diagram of λ/µ is the set difference SDλ/µ := SDλ − SDµ.

Assume µ ⊆ λ are strict partitions. We define shifted set-valued tableaux, plane par-
titions, and bar tableaux of skew shape λ/µ in exactly the same way as above, only now
the relevant objects are fillings of SDλ/µ. The definitions of all related weight statistics
like the monomials xT are also unchanged. Here is some more relevant notation:

• Let ShPPQ(λ/µ) be the set of shifted plane partitions of shape λ/µ, and define
ShPPP(λ/µ) to be the subset of such fillings with no unprimed diagonal entries.

• Let ShBTQ(λ/µ) be the set of semistandard shifted bar tableaux of shape λ/µ, and
let ShBTP(λ/µ) be the subset of such tableaux with no primed diagonal entries.

We define these sets to be empty if µ ̸⊆ λ. These sets will index the terms in generating
functions for the skew analogues of gqλ, gpλ, jqλ, and jpλ, which we now define.

Let y1, y2, . . . be another countable set of commuting variables, and for each f ∈
Z[β]Jx1, x2, . . .K define

f (x) := f (x1, x2, . . . ) = f , f (y) := f (y1, y2, . . . ), and f (x, y) := f (x1, y1, x2, y2, . . . ).

If f is symmetric, then we think of f (x, y) as “ f (x1, x2, . . . , y1, y2, . . . )” although it is not
clear how to interpret this notation for an arbitrary power series.

Definition 8.1. For strict partitions λ and µ, let gpλ/µ and gqλ/µ be the elements of
Z[β]Jx1, x2, . . .K with gpλ(x, y) = ∑µ gpµ(x)gpλ/µ(y) and gqλ(x, y) = ∑µ gqµ(x)gqλ/µ(y),
where the sums are over all strict partitions µ.

Both gpλ/µ and gqλ/µ are symmetric and homogeneous if deg β = 1, but the families
of such functions are no longer linearly independent. These power series are defined for
all strict λ and µ but are nonzero if and only if µ ⊆ λ [2, Props. 6.4 and 6.6].
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Definition 8.2. For strict partitions λ and µ, let jpλ/µ and jqλ/µ be the elements of
Z[β]Jx1, x2, . . .K with jpλ(x, y) = ∑µ jpµ(x)jpλ/µ(y) and jqλ(x, y) = ∑µ jqµ(x)jqλ/µ(y),
where the sums are over all strict partitions µ.

Equivalently, one could define these skew analogues by the following formula:

Proposition 8.3 ([2, Eq. (7.4)]). It holds that jpλ/µ := ω(gpλ/µ) and jqλ/µ := ω(gqλ/µ).

Our main theorems extend to this skew setting as follows.

Theorem 8.4. For all strict partitions λ and µ, one has

gpλ/µ = ∑
T∈ShPPP(λ/µ)

(−β)|λ/µ|−|wtPP(T)|xwtPP(T),

gqλ/µ = ∑
T∈ShPPQ(λ/µ)

(−β)|λ/µ|−|wtPP(T)|xwtPP(T),

jpλ/µ = ∑
T∈ShBTP(λ/µ)

(−β)|λ/µ|−|T|xT,

jqλ/µ = ∑
T∈ShBTQ(λ/µ)

(−β)|λ/µ|−|T|xT.

There are also skew versions of GPλ and GQλ, which are symmetric by results in [12].

9 Proof ideas

The most difficult part of our proofs of Theorems 4.1, 5.1 and 8.4 is showing that the
desired generating functions are symmetric. We derive this explicitly for jpλ and jqλ

by constructing Bender–Knuth involutions for semistandard shifted bar tableaux. We
briefly sketch this construction, which may be of independent interest.

The ith Bender–Knuth involution applied to a semistandard bar tableau T produces
a new semistandard bar tableau U in which the number of bars filled with i or i′ in T is
equal to the number of bars filled with i + 1 or (i + 1)′ in U, and vice versa. It is enough
to consider the case i = 1. The involution proceeds in three steps, using an intermediate
object called sorted bar tableaux.

Essentially, these intermediate objects appear to be semistandard bar tableaux if the
order on the entries were 1′ < 2′ < 1 < 2 (rather than 1′ < 1 < 2′ < 2); however, some
special configurations that violate this description may occur near the diagonal. The
first step, converting a semistandard shifted bar tableau to a sorted shifted bar tableau,
consists of a number of moves of the form

2′

1
7→

2′

1
or

2′

1
7→

1
2′

and
1 2′

7→
1

2′ or 1 2′ 7→ 2′ 1
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in an appropriate order.
In the second stage, one performs a weight-reversing involution on sorted tableaux.

This map is straightforward to describe away from the diagonal. For example, for a
collection of bars filled with 1s and 2s forms a configuration like the ones below, we
form another two-row-group occupying the same boxes that has a bar division between
columns j and j + 1 in row l (respectively, l + 1) if and only if a bar division occurs
between columns j and j + 1 in row l + 1 (respectively, l) in the starting group:

2 2 2
1 1

←→ 2 2 2
1 1 1

.

If, instead, a collection of bars filled with 1s and 2s forms a configuration like the ones
below, then we form another one-row-group by swapping the number of 1-blocks and
2-blocks (but leaving the bar divisions untouched):

1 1 1 2 ←→ 1 2 2 2 .

One applies similar moves to the column bars filled with 1′ and 2′. These maps obviously
reverse the weight, but it is necessary to consider numerous special cases that occur near
the diagonal.

Finally, in the third step, one reverses the process from the first step to produce a
semistandard shifted bar tableau, whose weight is reversed from the original tableau.

Once symmetry is established, we are able to prove Theorem 8.4 (and so in particular
Theorems 4.1 and 5.1) by an inductive algebraic argument. The first step in this argument
is to verify Theorem 8.4 when λ = (r) has a single nonzero part. This is carried out in
[2, §7] by a direct computation.

For the inductive step, it turns out to be sufficient to show that both sides of the iden-
tities in Theorem 5.1 satisfy the same Pieri rule when multiplied by jq(r). The Cauchy
identity (3.1) lets us derive Pieri rules expanding jpλ jq(r) and jqλ jq(r) from the tableau
generating functions for GPλ and GQλ. Our proof that the same rules apply to the de-
sired combinatorial formulas for jpλ and jqλ relies on the symmetry of those generating
functions: we restrict to a finite number of variables, and interpret a single variable x as
recording on one hand the smallest number appearing in the tableaux (corresponding
to an inner shape an a skewing operation) but also (on the other hand, by symmetry) as
recording the largest number appearing in the tableau (corresponding to a border strip
on the outer boundary).

10 Hopf algebras

The power series GPλ, GQλ, gpλ/µ, gqλ/µ, jpλ/µ and jqλ/µ arise when studying certain
Hopf algebras of symmetric functions. We discuss these objects here for more context.
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Let R be a commutative ring. Write ⊗ = ⊗R for the corresponding tensor product.
We have a familiar notion of an (associative, unital) R-algebra: this is an R-module A
with an R-linear map ∇ : A ⊗ A → A (called the product) and another R-linear map
ι : R→ A (called the unit) satisfying a few compatibility axioms.

Dually, an R-coalgebra is an R-module with an R-linear map ∆ : A → A⊗ A, (called
the coproduct) and a linear map ε : A → R (called the counit) subject to a similar set of
axioms; see [5, §1] for the complete definitions. An R-algebra that is also a coalgebra is
an R-bialgebra if the coproduct and counit maps are algebra homomorphisms.

If A is an R-bialgebra then the set End(A) of R-linear maps f : A → A is itself an
R-algebra for the product f ∗ g := ∇ ◦ ( f ⊗ g) ◦ ∆. The unit element of this convolution
algebra is the composition ι ◦ ϵ. The bialgebra A is a Hopf algebra if the identity map
A→ A has a two-sided inverse S : A→ A (called the antipode) in End(A) relative to ∗.

We specialize to the case when R = Z[β]. The objects of interest to us are bialgebras
of formal power series in Z[β]Jx1, x2, . . .K. In this setting, the counit ε will always be
the map setting x1 = x2 = · · · = 0, and the product and unit will always be the ones
inherited from Z[β]Jx1, x2, . . .K. The only maps left to specify are ∆ and S (if it exists).

For example, let Sym = Z[β]-span{sλ : λ is any partition} be the Z[β]-algebra of
bounded-degree symmetric functions. Write cν

λµ ∈ Z≥0 for the Littlewood–Richardson
coefficients such that sλsµ = ∑ν cν

λµsν. It is well-known [5, §2] that Sym is a Hopf algebra
for the coproduct ∆ and antipode S satisfying

∆(sν) = ∑
λ,µ⊆ν

cν
λµsµ ⊗ sλ and S(sν) = (−1)|ν|sν⊤ = sν⊤(−x), (10.1)

where in the sum λ and µ range over all partitions. It also holds that sν(x, y) =

∑λ,µ cν
λµsµ(x)sλ(y), so the map ∆ is the composition of f 7→ f (x, y) with the isomor-

phism Sym(x)⊗ Sym(y) ∼−→ Sym⊗ Sym.
Define gp = Z[β]-span{gpλ} and gq = Z[β]-span{gqλ}where λ ranges over all strict

partitions. These are both submodules of Sym, with gq ⊆ gp by results in [2]. The skew
and conjugate versions of gpλ and gqλ are motivated algebraically by the following:

Theorem 10.1. Both gp and gq are Hopf subalgebras of Sym. It holds that

∆(gpν) = ∑
λ⊆ν

gpλ ⊗ gpν/λ and ∆(gqν) = ∑
λ⊆ν

gqλ ⊗ gqν/λ,

where the sums are over strict partitions. Also, S(gpν) = jpν(−x) and S(gqν) = jqν(−x).

Recall the definitions of GP ⊆ GQ from (6.1). Although GPλ and GQλ are infinite
Z[β]-linear combinations of Schur functions, the formula for ∆ in (10.1) extends by “con-
tinuous linearity” to a well-defined map GP→ GP⊗GP, and the following holds:

Theorem 10.2. Both GP and GQ are bialgebras, but neither is a Hopf algebra.
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Finally, let ⟨·, ·⟩ : Sym⊗ Sym→ Z[β] be the Z[β]-linear form with ⟨sλ, sµ⟩ = δλµ for all
partitions λ and µ. This extends to a bilinear form on Sym⊗Sym with ⟨ f1⊗ f2, g1⊗ g2⟩ :=
⟨ f1, g1⟩⟨ f2, g2⟩. The formulas (10.1) imply that Sym is self-dual with respect to this form,
in the sense that ⟨ f g, h⟩ = ⟨ f ⊗ g, ∆(h)⟩ for all f , g, h ∈ Sym. Analogously:

Theorem 10.3. There is a unique Z[β]-bilinear form [·, ·] : gp⊗GP→ Q[β] such that

[gpλ, GQµ] = [gqλ, GPµ] = δλµ, [ f g, H] = [ f ⊗ g, ∆(H)], and [ f , HK] = [∆( f ), H ⊗ K]

for all strict partitions λ, µ and all elements f , g ∈ gp and H, K ∈ GP.

Despite this result, GP and GQ are not the duals of gq and gp, because the restricted
forms [·, ·] : gq⊗GP → Z[β] and [·, ·] : gp⊗GQ → Z[β] are technically degenerate.
Instead, the duals of gq and gp are the “completions” ĜP and ĜQ, which respectively
consist of all infinite Z[β]-linear combinations of GP- and GQ-functions.

These objects are too large to be Hopf algebras (at least, in the category of Z[β]-
modules), but are examples of what are called linearly compact Hopf algebras in [12, 14,
16]. The reason why GP and GQ are not Hopf algebras is that the adjoints of the
antipodes of gq and gp under [·, ·] only make sense as maps ĜP→ ĜP and ĜQ→ ĜQ.

There are still many open questions related to the symmetric functions in this ab-
stract. For example, Theorems 10.1 and 10.2 imply that products of gp-/gq-/GP-/GQ-
functions respectively expand as finite Z[β]-linear combinations of gp-/gq-/GP-/GQ-
functions. It is expected that the coefficients in these expansions are all actually in
Z≥0[β] ⊊ Z[β]. At present, however, this is conjectural outside the case of GP-functions;
in the GP case, combinatorial interpretations for the coefficients expanding GPλGPµ in⊕

ν Z≥0[β]GPν appear in [3, 7, 22]. For a list of related open problems, see [16, §4.6].
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