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Abstract. We introduce certain classes on permutohedral varieties which we call "tau-
tological classes of matroids" as a new framework for studying matroids. Using this
framework, we unify and extend many recent developments in matroid theory arising
from its interaction with algebraic geometry. We achieve this by establishing a coho-
mological description and a log-concavity property for a 4-variable transformation of
the Tutte polynomial, and by establishing an exceptional Hirzebruch-Riemann-Roch
formula for permutohedral varieties that bridges K-theory and cohomology theory.
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1 Introduction

Matroid theory has interacted fruitfully with algebraic geometry. See [3] for a survey
of recent developments. These developments however had a constraint: They occurred
through different geometric models of matroids that were disjoint—in the sense that the
results and techniques specific to one model could not be easily imported to another.

We introduce “tautological classes of matroids” as a unified framework that over-
comes this constraint. The key advantage of this unified approach is that powerful
techniques that were previously applicable only within different models can now be
used seamlessly in conjunction with each other. This advantage allowed us to recover
and extend various recent results in matroid theory, and to resolve open problems. For
instance, we establish the following log-concavity for the Tutte polynomial of a matroid.

Theorem 3.3.(iii). Let M be a matroid of rank r on a ground set E, and let TM(x, y) be its
Tutte polynomial. Then, the coefficients of the 4-variable transformation

(x + y)−1(y + z)r(x + w)|E|−rTM

(x + y
y + z

,
x + y
x + w

)
form a “log-concave unbroken array” (see Definition 3.2).
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Our framework also opens new doors: For instance, it has already led to the devel-
opment of the K-theory of matroids [29], the stellahedral geometry of matroids [22], the
Gromov-Witten theory of matroids [35], and the tropical geometry of “type B” general-
izations of matroids known as delta-matroids [21].

In this extended abstract of our paper [8], in order to emphasize the combinatorial
aspects, we present the framework of “tautological classes of matroids” slightly differ-
ently from the presentation in [8]. For example, not emphasized in the presentation here
is the method of localization in torus-equivariant geometry, even though it is among
crucial tools in our proofs. We assume familiarity with the fundamentals of matroids
theory, and point to [34, 37] as standard references. We also assume some familiarity
with polyhedral geometry, and point to [38] as a reference.

In Section 2, we review in a purely combinatorial manner some previous studies of
matroids via algebraic geometry. In Section 3, we construct the “tautological classes” of
a matroid, and explain our main results arising from the framework. In Section 4, we
explain the underlying algebraic geometry.

Notations. Let E = {1, . . . , n} be a finite set of cardinality n, and let SE the permutation
group on E. For a subset S ⊆ E, we denote by eS = ∑i∈S ei ∈ RE the sum of the
standard basis vectors indexed by S. Denote by ⟨·, ·⟩ the standard inner-product on RE.
Let T = (C∗)E = {(x1, . . . , xn) ∈ CE : x1 · · · xn ̸= 0} be the standard torus, and let
PT = T/C∗ be the projectivization of T. All algebraic varieties are over C.

2 Background

Many previous studies of matroids via algebraic geometry fall broadly into one of two
camps: the “K-theoretic” camp and the “cohomological” camp. More precisely, these
correspond to two well-studied geometric rings attached a smooth projective variety
X, namely, the Grothendieck K-ring K(X) of vector bundles on X, and the singular
cohomology ring H•(X) of X.

When X is a smooth projective toric variety, these two rings admit purely combinato-
rial descriptions, reviewed in Section 2.1. Specializing to the case of the permutohedral
varieties, we highlight in Section 2.2 some previous studies of matroids via these rings.

2.1 A tale of two rings

Let Σ be the normal fan of a simple lattice polytope in RE that is unimodular with
respect to the lattice ZE. A deformation of Σ is a lattice polytope P ⊂ RE such that the
normal fan of P coarsens Σ. We write P ∈ Def(Σ) in this case. Let XΣ be the smooth
projective toric variety associated to Σ. In this case, the two rings K(XΣ) and H•(XΣ)
have purely combinatorial descriptions as follows.
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For a subset P ⊆ RE, define the function 1P : RE → Z by 1P(x) = 1 if x ∈ P and
1P(x) = 0 if otherwise. Let

I(Σ) = the subgroup of Z(RE) generated by {1P : P ∈ Def(Σ)}.

Let I(Σ) be the quotient of I(Σ) by the subgroup generated by {1P − 1P+v : P ∈
Def(Σ) and v ∈ ZE}. This group is closely related to McMullen’s polytope algebra
[31], and has a ring structure with multiplication determined by 1P · 1P′ = 1P+P′ , where
P + P′ denotes the Minkowski sum of polytopes. It has the unit 1 = 1the origin. See [22,
Appendix A] for details.

Theorem 2.1. [22, Theorem A.9] (cf. [33]) The ring K(XΣ) is isomorphic to I(Σ).

For P ∈ Def(Σ), let [P] denote the class of 1P in I(Σ) ≃ K(XΣ). One can show that
1 − [P] is nilpotent in I(Σ), and hence [P] admits an inverse. That is, we may consider
[P]−1 = 1

1−(1−[P]) = 1 + (1 − [P]) + (1 − [P])2 + · · · .

On the other hand, let PP•(Σ) be the ring of piecewise polynomial functions in the
n-variables t1, . . . , tn with integral coefficients. That is, on each cone of Σ we have a
polynomial in Z[t1, . . . , tn] such that at an intersection of any two cones, the polynomials
agree. It is a graded ring with the i-th graded piece PPi(Σ) consisting of homogeneous
degree i piecewise polynomial functions. Let PP•

(Σ) be the quotient of PP•(Σ) by the
ideal generated by the global polynomials (i.e. a piecewise polynomial that is the same
polynomial on all cones).

Theorem 2.2. [18, 13] The ring H•(XΣ) is isomorphic to PP•
(Σ) as graded rings.1

For P ∈ Def(Σ), let [hP] denote the class in PP1
(Σ) of the piecewise polynomial (in

fact, piecewise linear) function hP ∈ PP1(Σ) defined by hP(x) = miny∈P⟨x, y⟩.
The two rings K(XΣ) and H•(XΣ) have two natural geometric maps to Z, namely, the

sheaf Euler characteristic map χ : K(XΣ) → Z, and the degree map degΣ : H•(XΣ) → Z.
Under the isomorphisms in Theorems 2.1 and 2.2, these two maps have the following
combinatorial characterizations [24]: For any P ∈ Def(Σ), the maps χ and degΣ satisfy

χ([P]) = |P ∩ ZE| and degΣ([hP]
n) = volume(P).

Volumes are normalized such that a unit n-dimensional simplex in RE has volume 1.

1The isomorphism doubles the grading, in the sense that H2i(XΣ) ≃ PPi
(Σ) for all i.
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2.2 The permutohedral fan and matroids

We now specialize to the permutohedral fan ΣE, the normal fan of the permutohedron

ΠE = convex hull of {w · (1, . . . , n) : w ∈ SE} ⊂ RE.

In this case, a lattice polytope P ⊂ RE is a deformation of ΣE if and only if each edge of
P is parallel to ei − ej for some i ̸= j ∈ E. Consequently, we have −P ∈ Def(Σ) if and
only if P ∈ Def(Σ). (Note that [−P] ̸= −[P]). Two notable deformations are

∆ = convex hull of {ei : i ∈ E} and ∇ = convex hull of {−ei : i ∈ E}.

The ring PP•
(ΣE) has the following explicit presentation.

PP•
(ΣE) =

Z[xS : S a nonempty proper subset of E]
⟨xSxS′ : S ̸⊆ S′ and S ̸⊇ S′⟩+ ⟨∑S∋i xS − ∑S′∋j xS′ : i ̸= j ∈ E⟩ .

We now review some studies of matroids via the rings I(Σ) and PP•
(Σ). We highlight

only a small portion of such studies, focusing the Tutte polynomial [36, 17], one of the
most famous invariant of matroids. A more extensive review can be found in [8, §1.1] or
[3]. Throughout, let M be a matroid of rank r on the ground set E.

Model I: Base polytopes

On the “K-theoretic” camp, the classical result of [26] showed that the base polytope

P(M) = convex hull of {eB : B ⊆ E a basis of M} ⊂ RE

is a deformation of ΣE. Hence, we may consider [P(M)] in the ring I(Σ). We highlight
the following “K-theoretic” manifestation of the Tutte polynomial of a matroid. To state
it, note that χ([P(M) + u∆ + t∇]), the number of lattice points in P(M) + u∆ + t∇ for u
and t nonnegative integers, is a polynomial in u and t by standard Ehrhart theory.

Theorem 2.3. [14, 10] Let Ψ : Q[t, u] → Q[x, y] be defined as the invertible linear map
sending (t

i)(
u
j) 7→ xiyj for all i, j ≥ 0. Let TM(x, y) denote the Tutte polynomial of the

matroid M. Then, we have

Ψ
(

χ([P(M) + u∆ + t∇])
)
= (x + y + 1)−1(y + 1)r(x + 1)|E|−rTM

(x + y + 1
y + 1

,
x + y + 1

x + 1
)
.

For another “K-theoretic” manifestation of the Tutte polynomial that also involves
lattice point counting, see [23]. A powerful technique in the study of matroids in this
“K-theoretic” way is that one can exploit the special polytopal properties of P(M), such
as the Hopf monoid structure [2] and valuativity [5, 7].
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Model II: Bergman classes

On the “cohomological” camp, a matroid M defines a class [ΣM] ∈ PPn−r
(ΣE), called the

Bergman class of M, defined as follows. If M has loops, we set [ΣM] = 0. Suppose now M
is loopless. One shows via the theory of Minkowski weights that the assignment

xS1 · · · xSr−1 7→
{

1 if S1 ⊊ · · · ⊊ Sr−1 is a chain of nonempty proper flats of M
0 otherwise

gives a well-defined element wM ∈ Hom(PPr−1
(ΣE), Z) [25, 6]. The dual element

wM then defines the class [ΣM] ∈ PPn−r
(ΣE), since as a cohomology ring, PP•

(ΣE)

is equipped with the Poincaré duality perfect pairing PPn−r
(ΣE)× PPr−1

(ΣE) → Z de-
fined by (a, b) 7→ degΣ(ab).

We highlight the following “cohomological” manifestation of a specialization of the
Tutte polynomial known as the characteristic polynomial of a matroid.

Theorem 2.4. [28] Let M be a loopless matroid (of rank r), and TM(x, y) the Tutte poly-
nomial of M. Then, we have

r−1

∑
i=0

(
degΣ([ΣM][h∆]

r−i[h∇]i)
)

qr−1−i = TM(q + 1, 0)/(q + 1).

For other “cohomological” manifestations of the characteristic polynomial that also
involves the degree map, see [32] and [4]. A powerful technique in the study of matroids
in this “cohomological” way is the major breakthrough known as the “Hodge theory of
matroids,” paraphrased in the following theorem.

Theorem 2.5. [1, 4] Rings derived from Bergman classes of matroids satisfy the Hodge-
Riemann relations. Consequently, the values of degΣ involving the Bergman class [ΣM]
display a log-concavity behavior.

The authors of [1, 4] combined this Hodge theory of matroids with formulas like
Theorem 2.4 to resolve several log-concavity conjectures in matroid theory. For a history
and a survey of this development see [20].

Question 2.6. Having reviewed these previous geometric studies of matroids, either
through base polytopes in K-theory, or through Bergman classes in cohomology theory,
one may naturally ask the following questions:

• The formulas in Theorems 2.3 and 2.4 have a remarkable resemblance to one an-
other. How are they actually related? More generally, how do various manifesta-
tions of the Tutte polynomial or its specializations in the theorems and in [23, 32,
4] relate to each other?
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• Is there a “cohomological” manifestation of the whole Tutte polynomial itself,
rather than its specialization? Moreover, is there a log-concavity behavior for the
whole Tutte polynomial?

We fully answer both questions by introducing the tautological classes of matroids.

Remark 2.7. To answer the questions, one may attempt to use the classical Hirzebruch-
Riemann-Roch theorem, which in our language states the following. There exist a unique
ring isomorphism ch : I(Σ)⊗ Q → PP•

(Σ)⊗ Q satisfying [P] 7→ exp([hP]) for all P ∈
Def(Σ), and a class Td(Σ) ∈ PP•

(Σ)⊗ Q called the Todd class of Σ, such that

χ(ξ) = degΣ
(
ch(ξ) · Td(Σ)

)
for all ξ ∈ I(Σ)⊗ Q.

However, the Todd class often does not admit sufficiently explicit description for com-
binatorial computations. In fact, the study of Todd classes of permutohedral fans is
a research direction of its own [15]. We will instead introduce an exceptional Hirze-
bruch-Riemann-Roch formula to bridge the K-theory and cohomology theory (Theo-
rem 3.3.(iv)).

3 Main construction and results

We now introduce the tautological classes of matroids and explain the main results.
We will follow the construction in [8, Appendix III], which is equivalent to but looks
different from the more geometric description in [8, §3]. Geometric motivation behind
the constructions and the main results is explained in Section 4.

Let M be a matroid of rank r on ground set E. Define matroids Mi for i = 0, . . . , n by

the set bases of Mi = {B ⊆ E : |B| = i and B contains or is contained in a basis of M}.

The sequence (M0, . . . , Mn) is sometimes called the Higgs factorization of M.

Definition 3.1. The tautological classes of a matroid M are elements in I(ΣE) defined as

SM =
r

∑
i=1

[−P(Mi−1)][−P(Mi)]
−1 and QM =

n

∑
i=r+1

[−P(Mi−1)][−P(Mi)]
−1.

The k-th Chern class ck(SM) ∈ PPk
(ΣE) is defined as

ck(SM) = k-th elementary symmetric polynomial in {[h−P(Mi−1)
]− [h−P(Mi)

]}i=1,...,r

and similarly for ck(QM).
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To state the main results, we will need the following definition. Recall that a nonneg-
ative sequence (a0, a1, . . . , am) is log-concave if a2

k ≥ ak−1ak+1 for all 1 ≤ k ≤ m − 1, and
has no internal zeros if aiaj > 0 =⇒ ak > 0 for all 0 ≤ i ≤ k ≤ j ≤ m.

Definition 3.2. For a homogeneous polynomial f ∈ R[x1, . . . , xN] of degree d with
nonnegative coefficients, we say that its coefficients form a log-concave unbroken array
if, for any 1 ≤ i < j ≤ N and a monomial xm of degree d′ ≤ d, the coefficients of
{xk

i xd−d′−k
j xm}0≤k≤d−d′ in f form a log-concave sequence with no internal zeros.

We now state the main results [8, Theorems A, B, C, D].

Theorem 3.3. Let M be a matroid of rank r on ground set E, and TM its Tutte polynomial.

(i) We have c1(QM) = [h−P(M)] and cn−r(QM) = [ΣM].

(ii) Define a polynomial tM(x, y, z, w) by

tM(x, y, z, w) = (x + y)−1(y + z)r(x + w)|E|−rTM

(x + y
y + z

,
x + y
x + w

)
.

Then, we have an equality

∑
i+j+k+ℓ=n

(
degΣE

(
[h∆]

i[h∇]jck(SM)cℓ(QM)
))

xiyj(−z)kwℓ = tM(x, y, z, w).

(iii) The coefficients of the polynomial tM(x, y, z, w) form a log-concave unbroken array.
(In fact, it is a denormalized Lorentzian polynomial in the sense of [12]).

(iv) There is a unique ring isomorphism ζ : I(ΣE)
∼→ PP•

(ΣE) satisfying ζ([−P(M)]) =

∑k≥0(−1)kck(SM) for all matroids M on E. Moreover, the map ζ satisfies

χ(ξ) = degΣE

(
ζ(ξ) · (1 + [h∆] + · · ·+ [h∆]

n−1)
)

for all ξ ∈ I(ΣE).

Some remarks about the main results and their implications follow:

• By appropriately combining parts (i), (ii), and (iv), one easily recovers the vari-
ous geometric manifestations of the Tutte polynomial such as Theorem 2.3, Theo-
rem 2.4, [23, Theorem 5.2], [32, Theorem 5.4], and [4, Theorem 1.2]. This answers
the first question in Question 2.6. The proof of the key formula (ii) does not depend
on any of these previous results.

• Part (iii) answers the second question in Question 2.6, and in fact contains as special
cases the log-concavity results previously proven in [1] and [4]. See [8, Discussion
after Theorem B] for details. The proof of (iii) is an illustration of how our frame-
work can exploit powerful tools in both of the models of matroids reviewed in
Section 2.2, since the two key tools in the proof are valuativity (from model I) and
the Hodge theory of matroids (from model II).
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• Part (iv) differs from the classical Hirzebruch-Riemann-Roch theorem (Remark 2.7)
despite the resemblance: The isomorphism in ζ is over integral coefficients and
differs from the Chern character map ch, and the class (1 + [h∆] + · · · + [h∆]

n−1)
differs from the Todd class Td(ΣE).

4 Underlying geometry

We explain the underlying algebraic geometry for those familiar with toric geometry.
Let XE be the projective smooth toric variety associated to the fan ΣE. It contains the
projectivized torus PT as its open dense torus, and thus the standard torus T acts on
XE. Let the inverse standard action of T on CE be given by (t1, . . . , tn) · (x1, . . . , xn) =
(t−1

1 x1, . . . , t−1
n xn).

A realization of a matroid M of rank r is an r-dimensional subspace L ⊆ CE such that
the set of bases of M equals

{B ⊆ E : the composition L ↪→ CE ↠ CB is an isomorphism}.

When M has a realization L ⊆ CE, the two models of matroids reviewed in Section 2.2
arise geometrically in the following way.

(I) Let Gr(r; E) be the Grassmannian of r-dimensional subspaces in CE, with T acting
via the inverse standard action. The moment polytope of the torus-orbit-closure
T · L ⊆ Gr(r; E) is exactly the polytope −P(M). As −P(M) ∈ Def(ΣE), we have a
canonical map XE → T · L. Pulling back to XE the line bundle O(1) on Gr(r; E) via
the composition XE → T · L ↪→ Gr(r; E), we obtain the line bundle whose K-class
is equal to [−P(M)] under the isomorphism of Theorem 2.1.

(II) The wonderful compactification, studied in [19], is the closure WL of PL ∩ PT inside
XE. As a subvariety of XE, the variety WL defines a cohomology class [WL] ∈
H•(XE), which equals the Bergman class [ΣM] under the isomorphism of Theo-
rem 2.2.

Tautological classes of matroids are modeled after the following vector bundles con-
structed from realizations of matroids. Let CE denote the T-equivariant vector bundle
XE × CE, where T acts on CE via the inverse standard action.

Definition 4.1. Given a realization L ⊆ CE of M, define two T-equivariant vector bundles
SL and QL on XE by

SL = T-equivariant subbundle of CE whose fiber at the identity of PT is L, and

QL = T-equivariant quotient bundle of CE whose fiber at the identity of PT is CE/L.
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Equivalently, consider the map XE → T · L ↪→ Gr(r; E) in (I). Pulling back the tautolog-
ical subbundle S and the quotient bundle Q of Gr(r; E) to XE along this map gives the
vector bundles SL and QL.

The K-classes of these vector bundles only depend on the matroid M that L realizes.
More precisely, as elements in K(XE), we have [SL] = SM and [QL] = QM [8, Proposition
3.7]. The description of the classes SM and QM given here arises as follows. Given a
realization L ⊆ CE of M, we may consider a flag (0 = L0 ⊊ L1 ⊊ · · · ⊊ Ln = CE) of
subspaces where Li is a general i-dimensional subspace containing L. This gives rise to
filtrations of the vector bundles SL and QL. The resulting description of their K-classes
constitute Definition 3.1.

We now discuss the geometry behind some of the main results listed in Theorem 3.3.

Among the most important invariants of vector bundles are their Chern classes,
which loosely speaking measure the dependency loci of global sections. When M has a
realization L ⊆ CE, the statement cn−r(QM) = [ΣM] in Theorem 3.3.(i) is the reflection of
the following geometric statement [8, Theorem 7.10].

Theorem 4.2. Let s1 be the constant (1, 1, . . . , 1) global section of CE, which defines a
section s of QL via CE ↠ QL. Then, the wonderful compactification WL is exactly the
vanishing locus of the section s.

The theorem implies that the normal bundle NWL/XE is isomorphic to the restriction
QL|WL . Using this, one can further relate the restriction SL|WL to the log-tangent sheaf
TWL(− log ∂WL) of the wonderful compactification, and consequently recover the results
of [32]. See [8, Section 8] for details.

When a vector bundle is globally generated, like the bundle QL, one expects the
Chern classes of QL to display “positivity behaviors” in the sense of [30]. The log-
concavity statement of Theorem 3.3.(iii), when M has a realization L, is a manifestation
of such expectation.

A geometric way to characterize the map ζ in Theorem 3.3.(iv) is that ζ([OWL ]) = [WL]
for any subspace L ⊆ CE, where OWL denotes the structure sheaf of the wonderful
compactification WL [8, Corollary 10.6]. However, phrased in this way, it is not even
clear why such a ring map ζ should be well-defined. One geometric explanation for
Theorem 3.3.(iv) in this light, as well as a generalization to wonderful compactifications,
is given in [29].

Updates and outlook

Let us list some works that the framework of tautological classes of matroids has led to
since the appearance of [8]. Theorem 4.2 is a central observation behind the development
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of the Gromov-Witten theory of matroids in [35]. A generalization of Theorem 3.3.(iv)
can be found in [29], where the authors use the generalization to develop the K-theory
of matroids. An “augmented” variant of the tautological classes of matroids was intro-
duced and studied in [22], leading to a new log-concavity property of matroids and a
better understanding of matroid Schubert varieties studied in [11]. For “type B” gen-
eralizations of matroids known as delta-matroids, an “isotropic” variant of tautological
classes was introduced and studied in [21], leading to a log-concavity result for delta-
matroids.

We speculate that many interesting properties of SM and QM remain undiscovered.
For instance, one may replace “elementary symmetric polynomials” in Definition 3.1 by
Schur polynomials, yielding Schur classes of tautological classes of matroids. Do these
have nice numerical or combinatorial properties as did the Chern classes in Theorem 3.3
[8, Question 1.4]? See also [9, Conjecture 9.13, Remark 9.15] for a related conjecture
about their positivity, as well as generalizations to double Grothendieck polynomials
and equivariant K-theory.
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