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A Realization of Poset Associahedra
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Abstract. Given any connected poset P we give a simple realization of Galashin’s
poset associahedron A (P) as a convex polytope in RP. The realization is inspired
by the description of A (P) as a compactification of the configuration space of order-
preserving maps P → R. In addition, we discuss several combinatorially interesting
examples of poset associahedra.
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1 Introduction

Given a finite connected poset P, the poset associahedron A (P) is a simple, convex
polytope of dimension |P| − 2 introduced by Galashin [5]. Poset associahedra arise as a
natural generalization of Stasheff’s associahedra [6, 12, 17, 18], and were originally dis-
covered by considering compactifications of the configuration space of order-preserving
maps P → R. These compactifications are generalizations of the Axelrod–Singer com-
pactification of the configuration space of a line [1, 8, 15]. Galashin constructed poset
associahedra by performing stellar subdivisions on the polar dual of Stanley’s order poly-
tope [16], but did not provide an explicit realization.

Poset associahedra bear resemblance to graph associahedra, where the face lattice of
each is described by a tubing criterion. However, neither class is a subset of the other.
When Carr and Devadoss introduced graph associahedra in [3], they distinguish be-
tween bracketings and tubings of a path, where the idea of bracketings does not naturally
extend to any simple graph. In the case of poset associahedra, the idea of bracketings
does extend to every connected poset.

In this paper, we provide a simple realization of A (P) as an intersection of half
spaces, inspired by the compactification description and by a similar realization of graph
associahedra due to Devadoss [4]. In independent work [10], Mantovani, Padrol, and
Pilaud found a realization of poset associahedra as sections of graph associahedra. The
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authors of [10] also generalize from posets to oriented building sets (which combine a
building set with an oriented matroid).

Various poset associahedra have already been studied including permutohedra, associa-
hedra, and operahedra [9]. We study two more classes of posets that give rise to previously
unstudied polytopes with intriguing combinatorics.

2 Tubes and tubings

2.1 Background

We start by defining the poset associahedron.

Definition 2.1. Let (P,⪯) be a finite poset. We make the following definitions:

• A subset τ ⊆ P is connected if it is connected as an induced subgraph of the Hasse
diagram of P.

• τ ⊆ P is convex if whenever a, c ∈ τ and b ∈ P such that a ⪯ b ⪯ c, then b ∈ τ.

• A tube of P is a connected, convex subset τ ⊆ P such that 2 ≤ |τ|.

• A tube τ is proper if |τ| ≤ |P| − 1.

• Two tubes σ, τ ⊆ P are nested if σ ⊆ τ or τ ⊆ σ. Tubes σ and τ are disjoint if
τ ∩ σ = ∅.

• For disjoint tubes σ, τ we say τ ≺ σ if there exists a ∈ τ, b ∈ σ such that a ≺ b.

• A proper tubing T of P is a set of proper tubes of P such that any pair of tubes is
nested or disjoint and the transitive closure of the relation ≺ is a partial order on
T. That is, whenever τ1, . . . , τk ∈ T with τ1 ≺ · · · ≺ τk then τk ̸≺ τ1. This is referred
to as the acyclic tubing condition.

• A proper tubing T is maximal if adding any tube to T is not a proper tubing.

Figure 1 shows examples and non-examples of proper tubings.

Definition 2.2. For a finite poset P, the poset associahedron A (P) is a simple, convex poly-
tope of dimension |P| − 2 whose face lattice is isomorphic to the set of proper tubings
ordered by reverse inclusion. That is, if FT is the face corresponding to T, then FS ⊂ FT
if one can make S from T by adding tubes. Vertices of A (P) correspond to maximal
tubings of P.
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Figure 1: Examples and non-examples of proper tubings.

2.2 Realization

We realize A (P) as an intersection of half-spaces. We work in the ambient space RP
Σ=0,

the space of real functions on P that sum to 0. For a subset τ ⊆ P, define a linear function
ατ on RP

Σ=0 by
ατ(p) := ∑

i≺·j
i,j∈τ

pj − pi.

Here the sum is taken over all covering relations contained in τ. We define the half-space
hτ and the hyperplane Hτ by

hτ :=
{

p ∈ RP
Σ=0 | ατ(p) ≥ n2|τ|

}
and

Hτ :=
{

p ∈ RP
Σ=0 | ατ(p) = n2|τ|

}
.

The following is our main result:

Theorem 2.3. If P is a finite, connected poset, the intersection of HP with hτ for all proper tubes
τ gives a realization of A (P).

2.3 An interpretation of tubings

When P is a chain, A (P) recovers the classical associahedron. There is a simple interpre-
tation of proper tubings that explains all of the conditions above in terms of generalized
words.

We can understand the classical associahedron as follows: Let P = ([n],≤) be a chain.
We can think of the chain as a word we want to multiply together with the rule that two
elements can be multiplied if they are connected by an edge. A maximal tubing of P is
a way of disambiguating the order in which one performs the multiplication. If a pair of
adjacent elements x and y have a pair of brackets around them, they contract along the
edge connecting them and replace x and y by their product.

Similarly, we can understand the Hasse diagram of an arbitrary poset P as a gener-
alized word we would like to multiply together. Again, we are allowed to multiply two
elements if they are connected by an edge, but when multiplying elements, we contract
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Figure 2: Multiplication of a word and of a generalized word

along the edge connecting them and then take the transitive reduction of the resulting
directed graph. That is, we identify the two elements and take the resulting quotient
poset. A maximal tubing is again a way of disambiguating the order of the multipli-
cation. See Figure 2 for an illustration of this multiplication order. This perspective is
discussed in relation to operahedra in [9, Section 2.1] when the Hasse diagram of P is a
rooted tree.

3 Configuration spaces and compactifications

We turn our attention to the relationship between poset associahedra and configuration
spaces. For a poset P, the order cone

L (P) :=
{

p ∈ RP
Σ=0 | pi ≤ pj for all i ⪯ j

}
is the set of order preserving maps P → R whose values sum to 0.

Fix a constant c ∈ R+. The order polytope, first defined by Stanley [16] and extended
by Galashin [5], is the (|P| − 2)-dimensional polytope

O(P) := {p ∈ L (P) | αP(p) = c} .

Remark 3.1. When P is bounded, that is, has a unique maximum 1̂ and minimum 0̂, this
construction is projectively equivalent to Stanley’s order polytope where we replace the
conditions of the coordinates summing to 0 and αP(p) = c with p0̂ = 0 and p1̂ = 1,
see [5, Remark 2.5].
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Figure 3: A vertex in O(P) vs. A (P)

Galashin [5] obtains the poset associahedra by an alternative compactification of
O◦(P), the interior of O(P). We describe this compactification informally, as it serves
as motivation for the realization in Theorem 2.3.

A point is on the boundary of O(P) when any of the inequalities in the order cone
achieve equality. The faces of O(P) are in bijection with proper tubings of P such that
all tubes are disjoint. Let T be such a tubing. If p is in the face corresponding to T and
τ ∈ T then pi = pj for i, j ∈ τ.

We can think of the point p in the face corresponding to T as being “what happens
in O(P)” when for each τ ∈ T, the coordinates are infinitesimally close. However, by
taking all coordinates in τ to be equal, we lose information about their relative ordering.
In A (P), we still think of the coordinates in τ as being infinitesimally close, but we are
still interested in their configuration. Upon zooming in, this is parameterized by the
order polytope of the subposet (τ,⪯). We iterate this process, allowing points in τ to be
infinitesimally closer, and so on. We illustrate this in Figure 3. This idea is a common
explanation of the Axelrod–Singer compactification of O◦(P) when P is a chain, see [1,
8, 15].

The idea of the realization in Theorem 2.3 is to replace the notions of infinitesimally
close and infinitesimally closer with being exponentially close and exponentially closer. For
p ∈ L (P), ατ acts a measure of how close the coordinates of p|τ are. We can make this
precise with the following definition and lemma.

Definition 3.2. For S ⊆ P and p ∈ RP, define the diameter of p relative to S by

diamS(p) = max
i,j∈S

|pi − pj|.

That is, diamS(p) is the diameter of {pi : i ∈ S} as a subset of R.

Lemma 3.3. Let τ ⊆ P be a tube and let p ∈ L (P). Then

diamτ(p) ≤ ατ(p) ≤ n2

4
diamτ(p).
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In particular, for p ∈ L (P), if p ∈ Hτ, then {pi | i ∈ τ} is clustered tightly together
compared to any tube containing τ. If p ∈ hτ, then {pi | i ∈ τ} is spread far apart
compared to any tube contained in τ.

4 Realizing the poset associahedron

We are now prepared to sketch the proof of Theorem 2.3. Define

A (P) :=
⋂

σ⊂P
hσ ∩ HP

where the intersection is over all tubes of P. Theorem 2.3 follows as a result of three
lemmas:

Lemma 4.1. If T is a maximal tubing, then

vT :=
⋂

τ∈T∪{P}
Hτ

is a point.

Lemma 4.2. If T is a collection of tubes that do not form a proper tubing, then⋂
τ∈T

Hτ ∩A (P) = ∅.

Lemma 4.3. If T is a maximal tubing and τ /∈ T is a proper tube, then ατ(vT) > n2|τ|. That is,
vT lies in the interior of hτ.

Lemma 4.1 follows from a standard induction argument.

Proof sketch of Lemma 4.2. If T is not a proper tubing, then there are two cases:

(1) There is a pair of non-nested and non-disjoint tubes τ1, τ2 in T.

(2) There is a sequence of disjoint tubes τ1, ..., τk such that τ1 ≺ · · · ≺ τk ≺ τ1.

For S ⊆ P, define the convex hull of S as

conv(σ) := {b ∈ P | ∃a, c ∈ S : a ≤ b ≤ c}.

Take σ = conv(τ1 ∪ · · · ∪ τk). One can show that σ is a tube, so Lemma 3.3 tells us that
for each τi, diamτi(p) is very small compared to n2|σ|. As the tubes either intersect or are
cyclic, one can show this forces diamσ(p) to also be small, so ασ(p) < n2|σ|.
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is large.

Proof sketch of Lemma 4.3. Define the convex hull of τ relative to T by

convT(τ) := min{σ ∈ T | τ ⊂ σ}.

T partitions σ into a lower set A and an upper set B where A and B are either tubes
or singletons. Furthermore, A and B both intersect τ. See Figure 4 for an example
illustrating this.

By Lemma 3.3, diamA(vT) and diamB(vT) are both very small compared to diamσ(vT).
Then for any a ∈ A, b ∈ B, |vT

a − vT
b | must be large. As τ intersects both A and B,

diamτ(vT) must be large and hence vT ∈ hτ. See Figure 5 for an illustration of this.

Remark 4.4. A similar approach for realizing graph associahedra is taken by Deva-
doss [4]. For a graph G = (V, E), Devadoss realizes the graph associahedron of G
by taking the supporting hyperplane for a graph tube τ to be{

p ∈ RV | ∑
i∈τ

pi = 3|τ|
}

.

One difference is that Devadoss realizes graph associahedra by cutting off slices of a
simplex whereas we cut off slices of an order polytope. When the Hasse diagram of P is
a tree, the poset associahedron is combinatorially equivalent to the graph associahedron
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Figure 6: K2,3 and A (K2,3)

of the line graph of the Hasse diagram. In this case, the two realizations have linearly
equivalent normal fans. If the Hasse diagram of P is a path graph, then both realiza-
tions have linearly equivalent normal fans to the realization of the associahedron due to
Shnider and Sternberg [17].

5 Examples

Several classes of posets produce combinatorially interesting polytopes. Recall that for a
simple d-dimensional polytope P, the f -vector, h-vector, and γ-vector of P are ( f0, . . . , fd),
(h0, . . . , hd), and (γ0, . . . , γ⌊d/2⌋), where fi is the number of i-dimensional faces and

d

∑
i=0

fiti =
d

∑
i=0

hi(t + 1)i,

d

∑
i=0

hiti =
⌊d/2⌋
∑
i=0

γiti(1 + t)d−2i.

The h-vector and γ-vector frequently encode interesting combinatorial data such as Eule-
rian numbers, Narayana numbers, and binomial coefficients. We consider all polytopes
in this section only up to combinatorial equivalence. For clarity, we write hi(P) when P
is not clear from context.

5.1 Posets with Hasse diagram Km,n

Let Km,n be the poset whose Hasse diagram is the complete bipartite graph Km,n where
for each 1 ≤ i ≤ m < j ≤ m + n we have i ≺ j. For example, A (K1,n) is the classical
permutohedron. Let Sn be the set of permutations of size n. Following the notation
of [13], we recall the following definitions. For w ∈ Sn, the descent statistic is

des(w) := #{(i, i + 1) | w(i) > w(i + 1)}.
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A double descent is a pair of consecutive descents. We say that w has a final descent if
w(n − 1) > w(n). For A (K1,n), the h-vector is given by the Eulerian numbers [12]

hi(A(K1,n)) = #{w ∈ Sn | des(w) = i}.

Let Ŝn be the set of permutations of size n without any consecutive descents or final
descent. Then

γi(A(K1,n)) = #{w ∈ Ŝn | des(w) = i}.

These properties generalize to A (Km,n). In particular,

hi(A (Km,n)) = #{w ∈ Sm+n | des(w) = i, w(1) ≤ m, w(m + n) > m} and

γi(A (Km,n)) = #{w ∈ Ŝm+n | des(w) = i, w(1) ≤ m, w(m + n) > m}.

5.2 Posets whose Hasse diagram is a path graph

When the Hasse diagram is isomorphic to the path graph Pn on n vertices, A (Pn) recov-
ers the classical associahedron. Let DPn be the set of Dyck paths with n up-steps. A peak
is an up-step immediately followed by a down-step. Here, hi is given by the Narayana
numbers [12]

hi(A (Pn)) := N(n − 1, i)

=
1

n − 1

(
n − 1

i

)(
n − 1
i − 1

)
= {w ∈ DPn−1 | # peaks(w) = i + 1}.

5.3 Cyclic fences

The fence, Fn, is the poset with n elements and alternating covering relations

1 ≺ 2 ≻ 3 ≺ 4 ≻ . . .

As the Hasse diagram is a path, A (Fn) is the classical associahedron. We define the
cyclic fence CF2n to be the fence F2n with the additional relation 1 ≺ 2n, see Figure 7.

One may expect that A (CF2n) is equivalent to the cyclohedron [2, 11, 14, 17], a cyclic
variant of the associahedron. However, this is not the case! The n-dimensional cyclo-
hedron Cn has (2n

n ) vertices, but A (CF2(n+1)) has 4n(2n
n ) vertices. Despite this, these

polytopes are related!
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Figure 8: A colored balanced path with 1 red peak and 1 blue peak.

A balanced path is a sequence of up-steps and down-steps with an equal number of
each. Let BPn be set of balanced paths with n up-steps. In [14], Simion observes that
|BPn| = (2n

n ) and for the cyclohedron,

hi(Cn) = #{w ∈ BPn | # peaks(w) = i} =

(
n
i

)2

.

We define a colored balanced path to be a balanced path where each step is colored red
or blue, and let CBPn be the set of all colored balanced paths with n up-steps. Define
a red peak to be a red up-step immediately followed by a red down-step and similarly
define a blue peak, see Figure 8. Then |CBPn| = 4n(2n

n ), and for A (CF2(n+1)),

hi(A (CF2(n+1))) = #{w ∈ CBPn | #red peaks(w)− #blue peaks(w) = i − n}

γi(A (CF2(n+1))) = 4i
(

n
i

)2

.

6 Open questions

Question 6.1. Define a colored Dyck path to be a Dyck path where each step is colored red
or blue, and let CDPn be the set of colored Dyck paths with n up-steps. We can define

hi = #{w ∈ CDPn | #red peaks(w)− #blue peaks(w) = i − n}.

and calculate γi = 4iN(n − 1, i). Observe that similarly to the case of colored balanced
paths, the γ-vector is 4i times the h-vector of non-colored paths. Is (h0, . . . , h2n) the
h-vector of a polytope related to the associahedron?

Question 6.2. Galashin conjectured that the γ-vector of a poset associahedron is always
non-negative, despite poset associahedra not being flag simple in general. We strengthen
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this by conjecturing that the polynomial ∑ fiti is real-rooted. If poset associahedra are
indeed γ-positive, it would be interesting to find a combinatorial interpretation of the
γ-vector.

Question 6.3. Postnikov, Reiner, and Williams [13] found a statistic on maximal tubings
of graph associahedra of chordal graphs where

∑
T

tstat(T) = ∑ hiti.

It would be interesting to find a similar statistic on maximal tubings of poset associahe-
dra. For a simple polytope P, one can orient the edges of P according to a generic linear
form and take stat(v) = outdegree(v) [19, §8.2]. It may be possible to use our realization
to find the desired statistic.

Question 6.4. While hi(A (CF2(n+1)) is given by a peak statistic, we do not know a bi-
jective proof of this fact. In particular, we would like a bijection that preserves stat(T)
from Question 6.3. There is a known bijection between maximal tubings of CF2(n+1) and
CDPn although it is complicated, see [7].
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