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Chromatic quasisymmetric functions and
noncommutative P-symmetric functions
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Abstract. For a natural unit interval order P, we introduce a combinatorial operation,
called a local flip, on proper colorings of P. This operation defines an equivalence
relation on the proper colorings, and the equivalent relation refines the ascent statistic
introduced by Shareshian and Wachs. We also define analogues of noncommutative
symmetric functions. They reflect properties of P and local flips, and lead us to positive
expansions of the chromatic quasisymmetric functions into several symmetric function
bases.
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1 Introduction

1.1 Chromatic quasisymmetric functions

Chromatic quasisymmetric functions are one of the most notable objects in algebraic
combinatorics, because of their connections with other fields. In [5, 4], Stanley, and then
Shareshian–Wachs, introduced the chromatic quasisymmetric function which generalizes
the chromatic polynomial. For a graph G on vertex set [n], the chromatic quasisymmetric
function XG(x, q) of G is defined by

XG(x, q) = ∑
κ

qasc(κ)xκ,

where κ : [n] → P ranges over all proper colorings of G, asc(κ) is the number of edges
{i, j} such that i < j and κ(i) < κ(j), and xκ = ∏v∈V(G) xκ(v).

One of the most famous long-standing open problems in algebraic combinatorics is
the e-positivity conjecture, which is about chromatic quasisymmetric functions (Conjec-
ture 2.1) (the original conjecture was proposed by Stanley–Stembridge, and Shareshian–
Wachs gave a refinement of it).

The Shareshian–Wachs quasisymmetric refinement has an advantage for resolving
the e-positivity conjecture. The chromatic quasisymmetric function XG(x, q) has more

*byunghakhwang@gmail.com.

mailto:byunghakhwang@gmail.com


2 Byung-Hak Hwang

information about colorings than XG(x, 1), the chromatic symmetric function, and it is
obvious that the conjecture of Shareshian–Wachs implies the original e-positivity conjec-
ture of Stanley–Stembridge. But thanks to the quasisymmetric generalization, we can
cluster colorings of G along the ascent statistic, and this clustering makes us focus on
certain colorings instead of whole ones. In this sense, the quasisymmetric generalization
gives us a hint for the e-positivity conjecture. One can then ask for a natural way which
refines the Shareshian–Wachs refinement.

One of the goals of the abstract is to answer this question. We will introduce a
combinatorial operation, called a local flip. This operation defines an equivalence relation
on proper colorings, and this relation refines the refinement of Shareshian and Wachs.
Many results for the Shareshian–Wachs refinement still hold for our refinement.

1.2 Positivity of symmetric functions

Whenever a new class of symmetric functions is introduced, a question that naturally
arises is positivity of them with respect to various symmetric function bases. To show
positivity of a given symmetric function, numerous combinatorial and algebraic tools are
developed. One of such well developed tools is the theory of noncommutative symmetric
functions. Fomin and Greene [2] introduced noncommutative Schur functions to prove
Schur positivity for various symmetric functions. In [1], Blasiak and Fomin gave a more
general algebraic framework of this approach.

We devote the second half of this abstract to introducing analogues of noncommuta-
tive symmetric functions which reflect properties of a given natural unit interval order P.
In the same spirit of [1], these noncommutative symmetric functions provide expansions
of the chromatic quasisymmetric function of P in terms of several bases.

The full version of this extended abstract is available at arXiv:2208.09857.

2 Background

2.1 Natural unit interval orders

Fix a positive integer n, and let m = (m1, . . . , mn) be a weakly increasing integer se-
quence satisfying i ≤ mi ≤ n for each i. The natural unit interval order P = P(m)
corresponding to m is a poset on [n] = {1, 2, . . . , n} whose ordering <P is given by
i <P j if mi < j. The term “natural unit interval order” arises from the following unit
interval model: given a natural unit interval order P, one can assign a unit interval on
the real line to each i ∈ [n] such that i <P j if and only if the unit interval assigned to i
completely lies on the left of the unit interval assigned to j.

Let P be a natural unit interval order on [n]. The incomparability graph of P is the
graph whose vertex set is [n], and for i < j, i and j are adjacent if and only if j ≤ mi. By
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abuse of notation, we write the same notation P for the incomparability graph of P.
We also define some notions for words on the alphabet [n] with respect to P. For a

word w = w1w2 · · ·wd, we say that w is of type µ = (µ1, . . . , µn) if the letter i appears µi
times in w for each i. For 1 ≤ i < d, i is a P-descent of w if wi >P wi+1, and let

DesP(w) = {i ∈ [d− 1] | wi >P wi+1}.

For 1 ≤ i < j ≤ d, (i, j) is an P-inversion pair of w if wi and wj are incomparable in P, and
wi > wj in the natural order. Denote by invP(w) the number of P-inversion pairs of w.

2.2 Symmetric and quasisymmetric functions

We assume that the reader is familiar with the basics of the theory of symmetric and
quasisymmetric functions. We follow definitions and notations in [6, Chapter 7]. Here,
we only discuss some identities which we will use.

Let x = (x1, x2, . . . ) be a sequence of commuting indeterminants, and Sym ⊂ Q[[x]]
be the Q-space of symmetric functions. The following identities are well known: for
k ≥ 0 and a partition λ,

hk(x)− e1(x)hk−1(x) + · · ·+ (−1)kek(x) = δk,0, and (2.1)

sλ(x) = det(eλ′i+j−i(x))
λ1
i,j=1, (2.2)

where hk(x), ek(x) and sλ(x) are complete homogeneous, elementary symmetric function,
and Schur functions, respectively, and λ′ is the conjugate of λ.

Let y = (y1, y2, . . . ) be another sequence of commuting indeterminants. Define

C(x, y) = ∏
j≥1

∑
ℓ≥0

xℓj hℓ(y) = ∑
λ

mλ(x)hλ(y) ∈ Q[[x, y]], (2.3)

called the Cauchy product.

2.3 Chromatic quasisymmetric functions

Let G be a simple graph on the vertex set [n]. For a given sequence µ = (µ1, µ2, . . . , µn) ∈
Nn, a proper multi-coloring κ of G of type µ is a function from [n] to the collection of all
finite subsets of P such that for each i ∈ [n], |κ(i)| = µi and κ(j) ∩ κ(k) = ∅ whenever
{j, k} ∈ E(G). The (multi-)chromatic quasisymmetric function XG(x, q; µ) of G is given by

XG(x, q; µ) = ∑
κ

qascG(κ)xκ,

where the sum is over all proper multi-colorings κ of type µ, xκ = ∏n
i=1 ∏k∈κ(i) xk and

ascG(κ) = |{((i, r), (j, s)) | {i, j} ∈ E(G), i < j, r ∈ κ(i), s ∈ κ(j), r < s}|. This is a
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generalization of chromatic quasisymmetric function XG(x, q) introduced by Shareshian
and Wachs [4]. By definition, XG(x, q; (1n)) = XG(x, q).

In general, XG(x, q; µ) is a quasisymmetric function, but when P is a natural unit
interval order, XP(x, q; µ) is a symmetric function (Theorem 4.2). We close this section
with an explicit statement of the (refined) e-positivity conjecture.

Conjecture 2.1 ([7, 5, 4]). For a natural unit interval order P on [n], let

XP(x, q; (1n)) = ∑
λ⊢n

cλ(q)eλ(x).

Then cλ(q) is a polynomial with nonnegative integer coefficients.

3 Heaps and local flips

In this section, we review the definition of heaps and define an operation, called a local
flip, on heaps. This operation plays a central role in this abstract.

Fix a natural unit interval order P on [n], and a nonnegative integer sequence µ =
(µ1, . . . , µn) ∈ Nn. Let Pµ be the graph whose vertex set is {va,i | a ∈ [n], 1 ≤ i ≤ µa},
and va,i and vb,j are adjacent if either a = b or a and b are incomparable in P. A heap
H of P of type µ is an acyclic orientation of Pµ satisfying that for each a ∈ [n] and
1 ≤ i < j ≤ µa, the direction on the edge between va,i and va,j is toward va,i. Clearly a
heap of type (1n) is just an acyclic orientation of the incomparability graph of P. We call
a vertex of a heap a piece, and denote the set of heaps of P of type µ by H(P, µ). The
terminology “heap” originates from the following diagrammatic realization: take n unit
intervals described in Section 2.1. We stack blocks of unit length on top of each interval.
For each i ∈ [n], the number of blocks stacked on the i-th interval equals µi. We will
often identify heaps with their diagrammatic realizations.

Each proper multi-coloring κ of P of type µ gives us a heap of P of type µ as follows:
for each vertex a ∈ [n], list its colors κ(a) = {ca,1 < · · · < ca,µa}, and for each edge
{va,i, vb,j} assign the direction va,i ← vb,j if ca,i < cb,j. To see this diagrammatically,
consider again n unit intervals on the real line. For each a ∈ [n] and c ∈ κ(a), place a
block at the position of height c above the a-th interval. After placing all blocks, drop
them down as far as gravity takes them, and then we obtain a heap of type µ. For
example, let P = P(2, 3, 3) and κ be a proper multi-coloring of P of type (3, 1, 2) given by
κ(1) = {1, 3, 6}, κ(2) = {4}, κ(3) = {2, 6}, shown in Figure 1(a), and its corresponding
heap is shown in Figure 1(b). For a heap H, let KH(x) = ∑κ xκ where the summation
ranges over all proper colorings corresponding to H. Since heaps are acyclic orientations,
we can also regard them as posets.

Let W(µ) be the set of all words of type µ. For a heap H of P of type µ, let f : H → [d]
be a linear extension of H where d = µ1 + · · · + µn = |H|. Then define the word
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(a) (b)

Figure 1

w f = w f ,1 · · ·w f ,d by w f ,k = a if f−1(k) = va,i ∈ H for some i. Then w f is of type µ. Let

W(H) = {w f ∈W(µ) | f is a linear extension of H}.

For a heap H, an edge between va,i and vb,j is ascent if the edge is toward va,i and
a > b in the natural order. Let ascP(H) denote the number of ascent edges in H.

Theorem 3.1. We have

ωXP(x, q; µ) = ∑
H∈H(P,µ)

qascP(H)KH(x)

= ∑
w∈W(µ)

qinvP(w)Fd,DesP(w)(x),

where Fd,S(x) is a fundamental quasisymmetric function.

For any distinct pieces p, q and r in H, we call (p, q, r) a flippable triple in H if either

(i) q covers p and r, or

(ii) q is covered by p and r.

Definition 3.2. Let H be a heap of P and (p, q, r) a flippable triple in H. A local flip at
(p, q, r) is reversing the directions on the edges {p, q} and {q, r}.

Lemma 3.3. Let H be a heap and (p, q, r) a flippable triple in H. Then the orientation H′

obtained from H by local flipping at (p, q, r) is acyclic, so H′ is also a heap of the same type.

We can think of a local flip as an operation on diagrammatic realizations of heaps
acting by transposing relative positions of blocks as follows:

Using local flips, we can define an equivalence relation on the set of heaps of P of
type µ: for two heaps H, H′ ∈ H(P, µ), H ∼ H′ if and only if H′ can be obtained from
H by applying a finite sequence of local flips. For instance, we illustrate all heaps of
P(2, 3, 4, 5, 5) of type (15) and their equivalence relations in Figure 2.

The following proposition and theorem tell us why local flips are crucial.



6 Byung-Hak Hwang

Figure 2: All heaps of P(2, 3, 4, 5, 5) of type (15). A gray line between heaps means
that they can be transformed to each other via a local flip. Hence each connected
component represents an equivalence class.

Proposition 3.4. Local flips preserve the number of ascents.

Theorem 3.5. Let [H] be an equivalence class in H(P, µ)/∼. Then

K[H](x) := ∑
H′∈[H]

KH′(x) ∈ Sym.

In particular, XG(x, q; µ) is a symmetric function.

In addition, Theorem 3.5 admits a refinement of the refined e-positivity conjecture.

Conjecture 3.6. Let P be a natural unit interval order on [n], and µ ∈Nn. For any equivalence
class [H] ∈ H(P, µ)/∼, K[H](x) is h-positive. In particular, XP(x, q; µ) is e-positive.

We end this section with defining a graph Γµ for µ ∈ Nn. The vertex set of Γµ is the
set W(µ) of all words of type µ. Two words w = w1 · · ·wd and v = v1 . . . vd are adjacent
in Γµ if there exists an integer i satisfying the one of the following conditions:

(i) wj = vj for j /∈ {i, i + 1}, and {wiwi+1, vivi+1} = {ac, ca} for some a <P c.

(ii) wj = vj for j /∈ {i − 1, i, i + 1}, and either {wi−1wiwi+1, vi−1vivi+1} = {bac, acb} or
{bca, cab} for some a < b < c satisfying a ≮P b, b ≮P c and a <P c.

The second condition represents how a local flip operates on words.
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(a)

1233 1323 1332

2133 2313 2331

3123 3132

3213

3312

33213231
(b)

Figure 3: Let P = P(2, 3, 3) and µ = (1, 1, 2). (a) All heaps of P of type µ and their
equivalence relations. (b) The graph Γµ.

4 Noncommutative P-symmetric functions

In this section, we define noncommutative P-symmetric functions associated with a nat-
ural unit interval order P, and present their connection with the chromatic quasisymmet-
ric function of P. Using these, we provide positivity of XP(x, q; µ) in several symmetric
function bases.

4.1 An analogue of noncommutative symmetric functions

Let P be a natural unit interval graph on [n] and U the free associative Z-algebra
generated by {u1, . . . , un}. For simplicity we write uw = uw1uw2 · · · uwd for a word
w = w1w2 · · ·wd on the alphabet [n]. Let IP be the 2-sided ideal of U generated by
the following elements:

uauc − ucua (a <P c), (4.1)
uaucub − ubuauc (a < b < c, a ≮P b, b ≮P c and a <P c). (4.2)

The ideal is just an algebraic counterpart of the graph Γµ.
For k ≥ 1, we define the noncommutative P-elementary symmetric function ek(u) by

ek(u) = ∑
i1>Pi2>P···>Pik

ui1ui2 · · · uik ∈ U . (4.3)

By convention, let e0(u) = 1 and ek(u) = 0 for any k < 0. For a partition λ = (λ1, . . . , λℓ),
define eλ(u) = eλ1(u) · · · eλℓ

(u).
The following property plays a crucial role in the theory of noncommutative sym-

metric functions.
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Theorem 4.1. For any integers k, ℓ ≥ 0, ek(u) and eℓ(u) commute with each other modulo IP,
that is,

ek(u)eℓ(u) ≡ eℓ(u)ek(u) mod IP.

Similar to the relation (2.1), we define the noncommutative P-complete homogeneous
symmetric functions hk(u) inductively as follows:

hk(u)− e1(u)hk−1(u) + · · ·+ (−1)kek(u) = δk,0,

with h0(u) = 1, and define hλ(u) = hλ1(u) · · · hλℓ
(u) for a partition λ = (λ1, . . . , λℓ).

Then it is easy to check that

hk(u) = ∑
i1≯Pi2≯P···≯Pik

ui1ui2 · · · uik . (4.4)

By Theorem 4.1, hk(u)’s also commute with each other in U/IP.
Define

H(x, u) = ∑
ℓ≥0

xℓhℓ(u) ∈ U [[x]] and Ω(x, u) = H(x1, u)H(x2, u) · · · ∈ U [[x]].

Here, x and x commute with u. We call Ω(x, u) the noncommutative P-Cauchy product.
Since H(xi, u)H(xj, u) ≡ H(xj, u)H(xi, u) modulo IP[[x]], we can write Ω(x, u) as the
usual Cauchy product (2.3):

Ω(x, u) ≡∑
λ

mλ(x)hλ(u) mod IP[[x]]. (4.5)

Let U ∗ be the free Z-module generated by words on the alphabet [n], and ⟨ , ⟩ a canon-
ical pairing between U and U ∗ such that ⟨uw, v⟩ = δw,v for words w and v. Let I⊥P be
the orthogonal complement of IP with respect to the pair, then we have the naturally in-
duced pairing between U/IP and I⊥P . Also let U ∗q = Z[q]⊗Z U ∗ and I⊥P,q = Z[q]⊗Z I⊥P .
Then we extend the pairing to U ∗q .

Let
γH = ∑

w∈W(H)

w ∈ U ∗ and γ[H] = ∑
H′∈[H]

γH′ ∈ U ∗

for a heap H. Then one can show γ[H] ∈ I⊥P . Also let

γµ = ∑
w∈W(µ)

qinvP(w)w = ∑
[H]∈H(P,µ)/∼

qascP(H)γ[H] ∈ I⊥P,q ⊂ U ∗q .

Theorem 4.2. For a nonnegative integer sequence µ = (µ1, . . . , µn), we have

K[H](x) = ⟨Ω(x, u), γ[H]⟩ and ωXP(x, q; µ) = ⟨Ω(x, u), γµ⟩.

In particular, K[H](x) is a symmetric function, and so is XP(x, q; µ).
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Corollary 4.3. Suppose that we can write

Ω(x, u) ≡∑
λ

gλ(x)fλ(u) mod IP[[x]] (4.6)

for some symmetric function basis gλ(x) and noncommutative P-symmetric functions fλ(u). Let
ωXP(x, q; µ) = ∑λ rλ(q)gλ(x). Then for any partition λ, we have

rλ(q) = ⟨fλ(u), γµ⟩.

Corollary 4.3 offers expansions of XP(x, q; µ) in terms of various bases. As an exam-
ple, let us consider the noncommutative P-complete homogeneous symmetric functions
hλ(u), which we already defined. They provide the expansion of XP(x, q; µ) in terms of
the forgotten symmetric functions fλ(x).

Theorem 4.4. Let XP(x, q; µ) = ∑λ aλ(q) fλ(x). Then we have

aλ(q) = ∑
w

qinvP(w),

where w ranges over all words of type µ such that when we split w from left to right into consec-
utive segments of lengths λ1, λ2, . . . , λℓ, each segment has no P-descents.

4.2 Noncommutative P-Schur functions

We define noncommutative P-Schur functions via the dual Jacobi–Trudi identity (2.2).

Definition 4.5. For a partition λ, we define the noncommutative P-Schur function Jλ by

Jλ(u) = ∑
σ∈Sm

sgn(σ)eλ′1+σ(1)−1(u)eλ′2+σ(2)−2(u) · · · eλ′m+σ(m)−m(u), (4.7)

where λ′ is the conjugation of λ and m = λ1.

Proposition 4.6. We have

Ω(x, u) ≡∑
λ

sλ(x)Jλ(u) mod IP[[x]]. (4.8)

Similar to ordinary Schur functions, we will provide a combinatorial description of
noncommutative P-Schur functions.

Definition 4.7. For a partition λ, a semistandard P-tableau of shape λ is a filling of the
Young diagram of shape λ with [n] satisfying that

(i) each row is non-P-decreasing from left to right, and
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(ii) each column is P-increasing from top to bottom.

A semistandard P-tableau T is of type µ = (µ1, . . . , µn) if each i ∈ [n] appears µi times
in T. We denote the set of all semistandard P-tableaux of shape λ by TP(λ). The reading
word w(T) of T is the word obtained by reading T from bottom to top, beginning with
the leftmost column of T and working from left to right.

Theorem 4.8. We have
Jλ(u) ≡ ∑

T∈TP(λ)

uw(T) mod IP. (4.9)

Consequently, ωXP(x, q; µ) is s-positive and its coefficient of sλ counts semistandard P-tableaux
of shape λ and of type µ. In other words,

ωXP(x, q; µ) = ∑
T

qinvP(T)ssh(T)(x),

where T ranges over all semistandard P-tableaux of type µ and sh(T) denotes the shape of T.

Example 4.9. Let P = (2, 3, 3) and µ = (1, 1, 2); see Figure 3. To obtain the coefficient
a3,1(q) of s3,1(x) of ωXP(x, q; µ), it suffices to find words w such that w is a reading word
for some semistandard P-tableaux of shape (3, 1):

1233 1323 1332

2133 2313 2331

3123 3132

3213

3312

33213231

Therefore we have a3,1(q) = q2 + q.

4.3 Noncommutative P-monomial symmetric functions

Let (Nλ,µ) be the transition matrix between the monomial symmetric functions and the
elementary symmetric functions, i.e., mλ(x) = ∑µ Nλ,µeµ(x).

Definition 4.10. For a partition λ, the noncommutative P-monomial symmetric function
mλ(u) is defined by

mλ(u) = ∑
µ

Nλ,µeµ(u). (4.10)

Proposition 4.11. We have

Ω(x, u) ≡∑
λ

hλ(x)mλ(u) mod IP[[x]]. (4.11)

Stanley and Shareshian–Wachs showed that the sum of certain e-coefficients of chro-
matic quasisymmetric functions are related to acyclic orientations of the graph. For
XP(x, q; µ), we have a similar description of ∑ℓ(λ)=k cλ(q) in terms of certain heaps.
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Theorem 4.12. Let P be a natural unit interval order. Then for d, k ≥ 1, we have

∑
λ⊢d

ℓ(λ)=k

mλ(u) ≡∑
H

uwH mod IP,

where H ranges over all heaps of P consisting of d pieces with k sinks. Consequently, let
XP(x, q; µ) = ∑λ cλ(q)eλ(x). Then we have

∑
ℓ(λ)=k

cλ(q) = ∑
H

qascP(H),

where H ranges over all heaps of type µ with k sinks.

We now give a positive monomial expression of mλ(u) where λ is of 2-column shape.
Given a heap H, the rank of a piece p is the height of p in the diagrammatic realization of
H, denoted by rank(p). In particular, rank(p) = 1 if and only if p is a sink. In addition,
we define the rank of H by the maximum rank of pieces. We say that a connected heap
of rank 2 is of type W if the number of piece of rank 1 equals the number of pieces of
rank 2 minus 1.

Theorem 4.13. For k ≥ ℓ ≥ 0, we have

m(2ℓ,1k−ℓ)(u) ≡∑
H

uwH mod IP, (4.12)

where H ranges over all heaps of P such that H consists of k pieces of rank 1 and ℓ pieces of rank
2, and has no connected component of type W. Consequently, let XP(x, q; µ) = ∑λ cλ(q)eλ(x),
then

c(2ℓ,1k−ℓ)(q) = ∑
H

qascP(H),

where H ranges over such heaps of type µ.

Example 4.14. Let P = P(2, 3, 4, 5, 5) and µ = (15) (see Figure 2). There are two con-
nected heaps of type µ of rank 2; one is of type W while the other is not. Then by
Theorem 4.13, we have c2,2,1(q) = q2.

Corollary 4.15. Let P be a natural unit interval order on [n], and XP(x, q) = ∑λ cλ(q)eλ(x).
Let ne and no be the numbers of connected components of P consisting of even and odd vertices,
respectively. Then for a partition λ of 2-column shape,

cλ(q) =

{
q(n−2ne−no)/2(1 + q)ne if P is triangle-free and λ′ = ((n + no)/2, (n− no)/2),
0 otherwise.

In particular, the coefficients cλ(q) where λ are of 2-column shape are unimodal.
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We next give a recurrence relation for mλ(u), which is equivalent to Harada–Precup’s
conjecture [3, Conjecture 8.1]. For a natural unit interval order P, the height h of P the
length of longest chains in P. Then, by definition, ek(u) = 0 for all k > h.

Theorem 4.16 ([3, Conjecture 8.1]). Let P be a natural unit interval order, and h the height of
P. Then, for a partition λ of length ℓ ≥ h, we have

mλ(u) ≡
{

0 if ℓ > h,
eh(u)mλ−(u) if ℓ = h,

modulo IP, where λ− = (λ1 − 1, . . . , λℓ − 1).

By the same argument as in [3], Theorem 4.16 implies e-positivity of XP(x, q; µ) for
natural unit interval orders P of height 2.
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