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Abstract. We introduce balanced shifted tableaux, as an analogue of balanced tableaux
of Edelman and Greene, from the perspective of root systems of type B and C. We show
that they are equinumerous to standard Young tableaux of the corresponding shifted
shape by presenting an explicit bijection.
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1 Introduction

In their seminal paper [2], Edelman and Greene introduced balanced tableaux and showed
that they are equinumerous to standard Young tableaux of the same shape. They defined
the Edelman-Greene insertion which yields a bijective proof of the reduced words of the
longest permutation being equinumerous to standard Young tableaux of staircase shape,
a result due originally to Stanley [10]. Fomin, Greene, Reiner and Shimozono [3] later
generalized this enumeration result to diagrams and related the story to Schubert poly-
nomials.

Shifted tableaux, just as Young tableaux, are also algebraically and combinatorially
meaningful (see for example [9, 12]). In this paper, we define balanced shifted tableaux
(Definition 2.3), as an analogue to balanced tableaux, from the perspective of root sys-
tems of type B and C. The following is our main theorem, which says that balanced
shifted tableaux are equinumerous to standard shifted tableaux.

Theorem 1.1. For a shifted shape λ, the number of standard Young tableaux of shape λ equals
the number of balanced shifted tableaux of shape λ.

We prove Theorem 1.1 by presenting an explicit bijection between the two sets of
objects, SYT(λ) and BS(λ). Specifically, we have the following chain of bijections:

SYT(λ)←→ SYT(Z(d, r))|λ ←→ Red(w(d,r))|λ ←→ BS(Z(d, r))|λ ←→ BS(λ),
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where we address each step separately. We defer the definition of SYT(λ) and BS(λ) to
Section 2 and the definition of SYT(Z(d, r))|λ, wλ and BS(Z(d, r))|λ to Section 5. Here,
SYT(λ)→ SYT(Z(d, r))|λ and BS(λ)→ BS(Z(d, r))|λ are the procedures to pad a tableau
from shape λ to a large trapezoid Z(d, r), while the middle steps utilize type B Edelman-
Greene insertion defined by Kraśkiewicz [6]. Our strategy largely follows the framework
of Edelman and Greene [2], with the main difference that double staircases, which are
the analogues of staircases in type B, are no longer sufficient for padding purposes.

2 Definitions and Preliminaries

2.1 Strict partitions and shifted tableaux

A strict partition λ is a sequence of strictly decreasing positive integers (λ1 > λ2 > · · · >
λd > 0), where d is the number of (nonzero) parts of λ. We denote |λ| = ∑d

i=1 λi as
the size of λ. For a strict partition λ its corresponding shifted shape, consists of λi boxes
in row i, shifted d − i + 1 steps to the left. More specifically, the shifted shape is the
diagram

D(λ) := {(i, j−d+i−1) | 1 ≤ i ≤ d, 1 ≤ j ≤ λi}.
For simplicity of notation, we also use λ to denote its shape D(λ). Note that for a shifted
shape, its columns −(d− 1), . . . , 0 form a staircase shape of length d flipped horizontally.
For a shifted shape λ, define a shifted tableau T to be a filling of D(λ) with non-negative
integers. For any shifted tableau T, let sh(T) denote its underlying shifted shape.

Throughout the paper, we fix the number d, that is the length of all the shifted shapes
we are going to consider. We also write ī to mean −i.

Definition 2.1. A shifted tableau T of shape λ is called a standard Young tableau if it is a
filling of 1, 2, . . . , |λ| that is increasing in rows and columns.

The set of standard Young tableaux of shape λ is denote SYT(λ) and its cardinality is
denoted f λ. The number f λ can be computed via the hook length formula as we explain
here. For a box (i, j) ∈ λ with j ≥ 0, its hook H(i, j) consists of all the boxes in row i
to the right of (i, j), all the boxes in column j below (i, j) and the box (i, j) itself. For a
box (i, j̄) ∈ λ with j > 0, its hook H(i, j̄) consists of all the boxes in row i to the right of
(i, j̄), all the boxes in column j̄ below (i, j̄), the box (i, j̄) itself and all the boxes in row
d− j + 1. Let h(i, j) = |H(i, j)| be the size of the hook.

Theorem 2.2. [11] For a shifted shape λ, f λ = |λ|! / ∏x∈λ h(x).

To define an analogous notion of balanced tableaux, as in [2], for shifted shapes, we
need some more notions. For a filling B of shape λ, its extended filling B̃ is a filling of the
extended shape

λ̃ = λ ∪ {(1, d̄), (2, d−1), . . . (d, 1̄)}
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which agrees with B on λ and equals B(i, 0) on the newly added box (i,−(d+ 1− i)). The
extended hook is defined as H̃(i, j) = H(i, j) for j ≥ 0, and H̃(i, j̄) = H(i, j)∪{(d+ 1− j, j̄)}
for j > 0. See Example 2.5 for visualization.

For a box (i, j) ∈ λ, we also define its rank function rk(i, j). If j ≥ 0, let rk(i, j) be
the number of boxes in row i of H(i, j), and let rk(i, j̄) be 2 plus the number of boxes in
H(i, j) with positive column index. More formally,

rk(i, j) =

{
λi − d + i− j if j ≥ 0,
λi − d + i + λd+1+j + j + 1 if j < 0.

We can now introduce our main object of study:

Definition 2.3. A shifted tableau B of shape λ is called a balanced shifted tableau if it is a
filling of 1, 2, . . . , |λ| such that B(i, j) is the rk(i, j)-th largest entry in the extended hook
H̃(i, j) of B̃ for all (i, j) ∈ λ. Define BS(λ) to be the set of balanced shifted tableaux of
shape λ.

Remark 2.4. We remark that our definition of balanced tableaux is different from the
balanced filling in Section 6 of [4] and the standard w-tableau as in [7]. One can de-
rive a result similar to Theorem 1.1 using their definition, but we note that the two
results are fundamentally different. The difference can be interpreted loosely as study-
ing the balanced tableaux of dominant permutation v.s. Grassmannian permutation in
the framework of [3].

Example 2.5. Let λ = (6, 2, 1) and consider the balanced shifted tableau in Figure 1.
The hook H(1,−1) contains the colored boxes so h(1,−1) = 7, while the extended hook
H̃(1,−1) contains one more box at coordiante (3,−1), which is circled and filled with 1.
As this hook contains 3 boxes with positive column index, we have rk(1,−1) = 5. The
balanced condition is now satisfied at coordinate (1,−1) as 3 is indeed the 5-th largest
numbers among the numbers in the extend hook, 9, 5, 2, 4, 3, 7, 1, 1.

4 6 3 4 2 5 9

8 7 8

1 1

Figure 1: A balanced shifted tableau of shape (6, 2, 1)

2.2 Root systems and Weyl groups

Readers are referred to [5] for detailed exposition on root systems and Weyl groups.
Let Φ ⊂ V ≃ Rd be a finite crystallographic root system of rank d, with a chosen set
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of positive roots Φ+ which corresponds to a set of simple roots ∆ = {α0, α1, . . . , αd−1}.
Let sα be the reflection across the hyperplane normal to α, and write si for the simple
reflections sαi . Let W(Φ) ⊂ GL(V) be the finite Weyl group, defined to be generated by
s0, . . . , sd−1.

For w ∈ W(Φ), let ℓ(w) denote its Coxeter length, which equals the size of its (left)
inversion set Inv(w) := Φ+ ∩ wΦ−. For any sequence a = (a1, a2, . . . , aℓ(w)), we say
a is a reduced word of w if w = sa1sa2 , . . . , saℓ(w)

. Let Red(w) be the set of reduced
words of w. For each reduced word a ∈ Red(w), its (total) reflection order is an ordering
ro(a) = γ1, . . . , γℓ(w) of Inv(w) where γj = sa1 · · · saj−1αj ∈ Φ+. Let

ro(w) = {ro(a) : a ∈ Red(w)}.

The following proposition is classical and very useful, which follows immediately from
the biconvexity classification of inversion sets. See for example Proposition 3 of [1].

Proposition 2.6. Let γ = γ1, . . . , γℓ(w) be an ordering of Inv(w). Then γ ∈ ro(w) if and only
if for all the triples α, β, α + β ∈ Φ+ such that α, α + β ∈ Inv(w),

1. if β /∈ Inv(w), then α appears before α + β in this sequence;

2. and if β ∈ Inv(w), then α + β appears in the middle of α and β.

We are primarily concerned with root systems of type Bn, and adopt the following
convention, where ei is the i-th coordinate vector:

• Φ(Bn) = {±ej ± ei | 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n};

• Φ+(Bn) = {ej ± ei | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n};

• ∆ = {α0 = e1, α1 = e2 − e1, . . . , αn−1 = en − en−1};

• W(Bn) = {permutation w on 1, . . . , n, 1̄, . . . , n̄ | w(i) = −w(ī), ∀i}.

The type Bn Weyl group W(Bn) is called the group of signed permutations. For a signed
permutation w, its one-line notation is written as w(1)w(2) · · ·w(n). For example, w =
34̄21̄ ∈ W(B4) means that w(1) = 3, w(2) = −4, w(3) = 2 so that w(−3) = −2 and
w(4) = −1. A reduced word of w ∈ W(Bn) can be viewed as going from id = 12 · · · n
to w by swapping adjacent entries (and their negatives) one step at a time, while the
corresponding reflection order records ej − ei if the values j and i are swapped (and
records ei if i and ī are swapped).

Example 2.7. Consider w = 13̄42 ∈ W(B4) with a reduced word a = 21031 ∈ Red(w).
We compute its reflection order to be e3− e2, e3− e1, e3, e4− e2, e3 + e1, which can be seen
as follows:

1234 1324 3124 3̄124 3̄142 13̄42.
e3−e2 e3−e1 e3 e4−e2 e3+e1
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3 Bijection between BS(Z(d, r)) and Red(w(d,r)) via reflec-
tion order

A crucial shape for our analysis is the trapezoid

Z(d, r) := (r + 2d− 1, r + 2d− 3, . . . , r + 3, r + 1)

with height d and base lengths r + 2d− 1 and r + 1. In particular, Z(d, 0) is the double
staircase and every shifted shape is contained in some trapezoid of the same height.

Set e−j = −ej for all j > 0 and e0 = 0, and consider the labeling f : Z(d, r) −→
Φ+(Bd+r) where

f (i, j) =


ed+1−i − ej if j ≤ 0,
ed+1−i + ej+d if 0 < j ≤ r,
ed+1−i − ej−r if j > r.

(3.1)

Define the permutation w(d,r) ∈W(Bd+r) associated to Z(d, r) by

w(d,r)(i) :=

{
d + i if 0 < i ≤ r,
i− r if i > r.

(3.2)

Proposition 3.1. For all d > 0 and r ≥ 0, f (Z(d, r)) = Inv(w(d,r)).

The labeling f can also be extended to a labeling f̃ : Z̃(d, r)→ Φ+(Bd+r) where

Z̃(d, r) = Z(d, r) ∪ {(1, d̄), (2, d− 1), . . . (d, 1̄)}

is the extended shape of Z(d, r) with d extra boxes as defined in Section 2. The extended
labeling is given by

f̃ (i, j) =

{
2ed+1−i if j = d + 1− i,
f (i, j) otherwise.

Example 3.2. For d = 3 and r = 2, we have Z(d, r) = (7, 5, 3) and w(3,2) = 451̄2̄3̄ ∈
W(B5). See Figure 2 for the extended labeling f̃ in this case.

The filling of a balanced shifted tableau B ∈ BS(Z(d, r)) can be viewed as a map B :
Z(d, r)→N by sending a box to its entry. Then the composition B f−1 : Inv(w(d,r))→N

encodes an ordering of the roots in Inv(w(d,r)). We will show that this actually gives a
reflection order in ro(w(d,r)).

Proposition 3.3. The map B 7→ B f−1 is a bijection between BS(Z(d, r)) and ro(w(d,r)), and
thus induces a bijection between BS(Z(d, r)) and Red(w(d,r)).
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2e3 e3+e2 e3+e1 e3 e4+e3 e5+e3 e3−e1 e3−e2

2e2 e2+e1 e2 e4+e2 e5+e2 e2−e1

2e1 e1 e4+e1 e5+e1

Figure 2: The extended labeling f̃ of Z̃(3, 2)

Since there is a natural bijection between ro(w) and Red(w), Proposition 3.3 implies:

Corollary 3.4. The map B 7→ ro−1(B f−1) is a bijection between BS(Z(d, r)) and Red(w(d,r)).

Example 3.5. Assume we started with the following balanced tableau of shape Z(3, 2).

B = 4 8 7 10 13 5 15

3 2 6 9 1

11 12 14

The corresponding reflection order B f−1 is given as follows:

12345 21345 2̄1345 12̄345 132̄45 312̄45

3142̄5 3̄142̄5 13̄42̄5 13̄452̄ 143̄52̄

1̄43̄52̄ 41̄3̄52̄ 41̄53̄2̄ 451̄3̄2̄ 451̄2̄3̄.

e2−e1 e2 e2+e1 e3+e2 e3−e1

e4+e2 e3 e3+e1 e5+e2 e4+e3

e1 e4+e1 e5+e3 e5+e1 e3−e2

Therefore, we can read off a reduced word a of w(3,2) = 451̄2̄3̄ as

a = ro−1(B f−1) = 101213014201324 ∈ Red(w(3,2)).

4 Bijection between SYT(Z(d, r)) and Red(w(d,r)) via the
Kraśkiewicz’s insertion

We will follow the notations as recorded in Section 1.3 of [8]. For a shifted tableau T
of shape λ = (λ1, . . . , λd), define π(T) = TdTd−1, . . . , T1 to be the reading word of T
obtained by reading left to right along rows and from bottom to top, where Ti represents
the i-th row. For a unimodal sequence of integers

R = (r1 > r2 > . . . > rk < rk+1 < . . . < rm),
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we define the decreasing part of R to be R↓ = (r1 > r2 > . . . > rk), and the increasing
part of R to be R↑ = (rk+1 < rk+2 < . . . < rm). Note that we include the minimal integer
of the sequence in R↓.

Let w ∈ W(Bn) and a = a1a2 . . . aℓ(w) ∈ Red(w), we define the Kraśkiewicz’s insertion
algorithm recursively. Set (P(0), Q(0)) := (∅, ∅), for any i ∈ [ℓ(w)], define the insertion

(P(i−1), Q(i−1))← ai =: (P(i), Q(i))

as follows:
Step 1: Set R to be the first row of P(i−1) and a = ai.
Step 2: Insert a into R as follows:

• Case 1 (Ra is unimodal): Append a to the right of R to obtain P(i). Then define
Q(i) from Q(i−1) by adding i to the unique box in P(i)/P(i−1). Stop.

• Case 2 (Ra is not unimodal): Let b be the smallest number in R↑ such that b ≥ a.

– Case 2.1 (a = 0 and R contains 101 as a subsequence): We leave R unchanged
and return to start of Step 2 with a = 0 and R equals the next row.

– Case 2.2 (otherwise): Replace b with a. Set c = b if a ̸= b or c = b + 1 if a = b.

We now insert c into R↓. Let d be the largest integer such that d ≤ c. This number
always exists since R↓ contains the smallest number in the row. Replace d with c.
Set a′ = d if c ̸= d or a′ = d + 1 if c = d.

Step 3: Repeat Step 2 with a = a′ and R the next row.
Define P(a) = P(ℓ(w)) to be the insertion tableau and Q(a) = Q(ℓ(w)) to be the recording

tableau.

Example 4.1. Let w = w(3,2) = 451̄2̄3̄ as in Example 3.2. Consider the reduced word
a = 010121012342312 ∈ Red(w). Following the above insertion algorithm, we obtain

P(0) = ∅ 0−→ 0 1−→ 0 1 0−→ 1 0
0

1−→ 1 0 1
0

2−→ 1 0 1 2
0

1−→ 2 0 1 2
0 1

0−→ 2 1 0 2
1 0

0

1−→

2 1 0 1
1 0 1

0

2−→ 2 1 0 1 2
1 0 1

0

3−→ 2 1 0 1 2 3
1 0 1

0

4−→ 2 1 0 1 2 3 4
1 0 1

0

2−→ 3 1 0 1 2 3 4
1 0 1 2

0

3−→

4 1 0 1 2 3 4
1 0 1 2 3

0

1−→ 4 2 0 1 2 3 4
2 0 1 2 3

0 1

2−→ 4 3 0 1 2 3 4
3 0 1 2 3

0 1 2

.
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We then have

P(a) = 4 3 0 1 2 3 4
3 0 1 2 3

0 1 2

, Q(a) = 1 2 4 5 9 10 11
3 6 8 12 13

7 14 15

,

and the reading word π(P(a)) = 012301234301234.

Definition 4.2. For a shifted tableau T with m rows, we say T is a standard decomposition
tableau of w ∈W(Bn) if

1. π(T) = TmTm−1, . . . , T1 is a reduced word of w,

2. Ti is a unimodal subsequence of maximal length in TmTm−1 . . . Ti.

Define the set of all such tableaux to be SDT(w).

Theorem 4.3 (Theorem 5.2, [6]). The Kraśkiewicz’s insertion gives a bijection between {a ∈
Red(w)} and the pairs of tableaux (P(a), Q(a)) where P(a) ∈ SDT(w) and Q(a) is a standard
tableau of the same shape.

Lemma 4.4. SDT(w(d,r)) consists of exactly one shifted tableau. In other words, any a ∈
Red(w(d,r)) has the same P tableau.

Corollary 4.5. By restricting to the recording tableau, Kraśkiewicz’s insertion gives a bijection
a 7→ Q(a) between Red(w(d,r)) and SYT(Z(d, r)).

Combining Corollary 3.4 and Corollary 4.5, we derive Theorem 1.1 for the trapezoid
shape Z(d, r).

5 The general case

In this Section, we prove our main result, Theorem 1.1, in full generality. Fix a strict
partition λ ⊂ Z(d, r) such that λd > 0 and set N = |λ|. Let ℓ = |Z(d, r)| = ℓ(w(d,r))
and set µ0 = σ0 = 0, µi = Z(d, r)i − λi and σi = ∑i

k=1 µk for all i ∈ [d]. Recall our main
framework

SYT(λ)←→ SYT(Z(d, r))|λ ←→ Red(w(d,r))|λ ←→ BS(Z(d, r))|λ ←→ BS(λ).

The first arrow of bijection is immediate (Definition 5.1). In each of the subsequent
subsections, we prove one remaining bijection respectively. A complete example is given
at the end of this section in Example 5.11. Readers are encouraged to refer to this
example for intuition.
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5.1 Bijection between SYT(Z(d, r))|λ and Red(w(d,r))|λ
Definition 5.1. For any tableau T ∈ SYT(λ), define T+ ∈ SYT(Z(d, r)) to be the tableau
obtained from T by assigning N + 1, . . . , ℓ to the cells in Z(d, r) \ λ from left to right
along rows and from top to bottom. Define SYT(Z(d, r))|λ to be the set of all such T+

obtained from some T ∈ SYT(λ).

Example 5.2. Let λ = (6, 2, 1) ⊂ Z(3, 2) and

T = 1 2 3 5 6 9

4 7

8

, then T+ = 1 2 3 5 6 9 10

4 7 11 12 13

8 14 15

.

Definition 5.3. Define the word aλ = aλ
1 · · · aλ

d where

aλ
i = d + r− i− µi + 1, . . . , d + r− i. (5.1)

Define Red(w(d,r))|λ to be the set of reduced words ending with aλ.

Proposition 5.4. The bijection a 7→ Q(a) between Red(w(d,r)) and SYT(Z(d, r)) in Corol-
lary 4.5 induces a well-defined bijection between Red(w(d,r))|λ and SYT(Z(d, r))|λ.

A key ingredient in the proof of Proposition 5.4 is the existence of the reverse of
Kraśkiewicz’s insertion.

Lemma 5.5 (Lemma 1.25, [8]). Given (P(a), Q(a)) for some a = a1a2 · · · aℓ(w) ∈ Red(w) and
w ∈ W(Bn), let Q′ be obtained by removing the largest entry in Q(a). Then there is a unique
a ∈ [0, n− 1] and a unique P′ ∈ SDT(wsa) such that P′ ← a = P, and sh(P′) = sh(Q′). In
fact, we have a = aℓ(w).

5.2 Bijection between BS(λ) and BS(Z(d, r))|λ
Recall some notations from the beginning of this section: µi = Z(d, r)i − λi, σi = ∑i

k=1 µk
and N = |λ|.

Definition 5.6. Define BS(Z(d, r))|λ to be the set of balanced tableaux T of shape Z(d, r)
such that for all i ∈ [d] and any k ∈ [N + σi−1 + 1, N + σi], k appears in row i of T.

Lemma 5.7. Let B ∈ BS(λ) and fix some i ∈ [d] such that either i = 1 or λi−1 ≥ λi + 3.
Denote λ# the shifted diagram obtained from λ by adding a box in the i-th row. Let j be the
column index of the box λ# \ λ. Let B# be the tableau obtained from B by

1. interchange column j and j + 1 of B,
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2. define B#(i, j) = N + 1.

Then B# is a balanced tableau and the following map is a bijection:

fi : BS(λ) −→{T ∈ BS(λ#) : T(i, j) = N + 1}
B 7−→B#.

(5.2)

Lemma 5.8. BS(Z(d, r))|λ is the image of BS(λ) under the composition of maps F = ( fd)
ad ◦

( fd−1)
ad−1 ◦ · · · ◦ ( f1)

a1 with each fi defined as in (5.2). As a result, F is a bijection between
BS(λ) and BS(Z(d, r))|λ.

5.3 Bijection between BS(Z(d, r))|λ and Red(w(d,r))|λ
Proposition 5.9. Let a ∈ Red(w(d,r)) be a reduced word. Then ro(a) gives a balanced tableau
in BS(Z(d, r))|λ if and only if the ending segment of a is the same as aλ as in Definition 5.3.
Consequently, this induces a bijection between BS(Z(d, r))|λ and Red(w(d,r))|λ.

Combining Proposition 5.4, Lemma 5.8 and Proposition 5.9, we get a bijection be-
tween SYT(λ) and BS(λ).

Proposition 5.10. The bijection SYT(λ) ←→ BS(λ) in Theorem 1.1 does not depend on the
parameter r.

Example 5.11. We now work out an example in the case where λ = (6, 2, 1), d = 3 and
r = 2. Assume we start with a balanced tableau B ∈ BS(λ) shown here:

B = 6 3 4 1 5 9
7 8

2

.

We can complete it to B+ ∈ BS(Z(3, 2)) using the algorithm in Lemma 5.8

B = 6 3 4 1 5 9

7 8

2

→ 6 3 4 1 5 9 10

7 8

2

→ 6 3 4 5 1 9 10

7 8 11

2

→

6 3 4 5 9 1 10

7 8 11 12

2

→ 6 3 4 5 9 10 1

7 8 11 12 13

2

→ 6 3 4 9 5 10 1

7 8 12 11 13

2 14

→

6 3 4 9 10 5 1

7 8 12 13 11

2 14 15

= B+
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Now B+ gives a reflection order of w(d,r) as follows

12345 13245 1̄3245 31̄245 3̄1̄245 1̄3̄245

1̄23̄45 21̄3̄45 2̄1̄3̄45 2̄1̄43̄5 2̄1̄453̄

1̄2̄453̄ 1̄42̄53̄ 1̄452̄3̄ 41̄52̄3̄ 451̄2̄3̄.

e3−e2 e1 e3+e1 e3 e3−e1

e3+e2 e2+e1 e2 e4+e3 e5+e3

e2−e1 e4+e2 e5+e2 e4+e1 e5+e1

We can read off the reduced word a = 201012103412312 ∈ Red(w(3,2)). We can confirm
that the reduced word ends with aλ = 412312. Now we perform the Kraśkiewicz’s
insertion on a described in Section 4 and we get

P(a) = 4 3 0 1 2 3 4
3 0 1 2 3

0 1 2

, Q(a) = 1 2 3 5 6 9 10
4 7 11 12 13

8 14 15

,

Finally, let T+ = Q(a) ∈ SYT(w(3,2)), and T ∈ SYT(λ) is obtained from T+ by deleting
the largest entries until |λ| entries are left:

T+ = 1 2 3 5 6 9 10

4 7 11 12 13

8 14 15

, T = 1 2 3 5 6 9

4 7

8

.
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