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The tropical critical points of an affine matroid
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Abstract. We prove that the maximum likelihood degree of a matroid M equals its
beta invariant β(M). For an element e of M that is neither a loop nor a coloop, this
is defined to be the degree of the intersection of the Bergman fan of (M, e) and the
inverted Bergman fan of N = (M/e)⊥. Equivalently, for a generic vector w ∈ RE−e,
this is the number of ways to find weights (0, x) on M and y on N with x+ y = w such
that on each circuit of M (resp. N), the minimum x-weight (resp. y-weight) occurs at
least twice.
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1 Introduction

During the Workshop on Nonlinear Algebra and Combinatorics from Physics at the Cen-
ter for the Mathematical Sciences and Applications at Harvard University in April 2022,
Sturmfels [15] posed one of those combinatorial problems that is deceivingly simple to
state, but whose answer requires a deeper understanding of the objects at hand.

Problem 1.1. [15] (Combinatorial version) Let M be a matroid on ground set E. Let e be an
element that is neither a loop nor a coloop. Let M/e be the contraction of M by e and let
N = (M/e)⊥ be its dual matroid. Given a vector w ∈ RE−e, find weight vectors (0, x) ∈ RE on
M (where e has weight 0) and y ∈ RE−e on N such that
• on each circuit of M, the minimum x-weight occurs at least twice,
• on each circuit of N, the minimum y-weight occurs at least twice, and
• w = x+ y.

Can this always be done? What is the number of solutions for generic w?

Theorem 1.2. (Geometric Version) Problem 1.1 can always be solved. If w ∈ RE−e is generic,
the number of solutions equals the beta invariant β(M) of the matroid.

We now restate Theorem 1.2 in tropical terms; see relevant definitions in Section 2.3.
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Figure 1: A graph G, its contraction G/0, and its dual H = (G/0)⊥.

Theorem 1.3. Let M be a matroid on E, and let e ∈ E be an element that is neither a loop nor a
coloop. Let (M, e) be the affine matroid of M with respect to e, and let N = (M/e)⊥. Then the
degree of the intersection of the Bergman fan Σ(M,e) and the inverted Bergman fan −ΣN is

deg(Σ(M,e) · −ΣN) = β(M) .

Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, and Telen [1] first encountered (a
special case of) Problem 1.1 in their study of the maximum likelihood estimation for lin-
ear discrete models. Using algebro-geometric results of Huh and Sturmfels [10], which
built on work of Varchenko [16], they proved Theorem 1.2 and Theorem 1.3 for matroids
realizable over the real numbers.

We prove the equivalent Theorem 1.2 and Theorem 1.3 for all matroids. Following the
original motivation, we call the answer to Problem 1.1 the maximum likelihood degree
of a matroid; our main result is that it equals the beta invariant.

We first prove Theorem 1.2 combinatorially, relying on the tropical geometric fact
that all generic w give the same intersection degree. We show that when the entries of
w are super-increasing with respect to some order < on E, the solutions to Problem 1.1
are naturally in bijection with the β-nbc bases of the matroid with respect to <. We then
sketch a proof of Theorem 1.3 that relies on the theory of tautological classes of matroids
of Berget, Eur, Spink, and Tseng [6]. This is an extended abstract of our results in [5].

2 Notation and preliminaries

2.1 The lattice of set partitions

A set partition λ of a set E is a collection of subsets, called blocks, of E, say λ =
{λ1, . . . , λℓ}, that cover E and the pairwise intersection is empty. We write λ |= E.
We let |λ| = ℓ be the number of blocks of λ. If e ∈ E and λ |= E, we write λ(e) for the
block of λ that contains e.
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We define the linear space of a set partition λ = {λ1, . . . , λℓ} |= E to be

L(λ) := span{eλ1 , . . . , eλℓ
} ⊆ RE

= {x ∈ RE | xi = xj whenever i, j are in the same block of λ},

where {ei : i ∈ E} is the standard basis of RE, eS = ∑s∈S es for S ⊆ E. Notice that
dim L(λ) = |λ|. The map λ 7→ L(λ) is a bijection between the set partitions of E and the
flats of the braid arrangement, which is the hyperplane arrangement in RE given by the
hyperplanes xi = xj for i ̸= j in E.

If λ |= 0⊔ E then we write L(λ)|x0=0 = {x ∈ RE : (0, x) ∈ L(λ) ⊆ R0⊔E}.

2.2 The intersection graph of two set partitions

The following construction from [3] will play an important role.

Definition 2.1. Let λ |= 0 ⊔ E and µ |= E be set partitions. The intersection graph Γ = Γλ,µ
is the bipartite graph with vertex set λ ⊔ µ and edge set E, where the edge e connects the parts
λ(e) of λ and µ(e) of µ containing e. On this graph, the vertex corresponding to λ(0) is marked
with a hollow point.

The intersection graph may have several parallel edges connecting the same pair of
vertices. Notice that the label of a vertex in Γ is just the set of labels of the edges incident
to it. Therefore we can remove the vertex labels, and simply think of Γ as a bipartite
multigraph on edge set E. This is illustrated in Figure 2.

9 8 7 6 4 3 5 2 1

6 2 01347859

9 8 7 46 3 125

Figure 2: The intersection graph of {6, 59, 2, 013478} |= [0, 9] and {9, 8, 7, 46, 3, 125} |=
[9], omitting brackets for easier legibility. Left: The elements of [0, 9] are labelling the
edges. Right: the vertices are labelled by parts of the set partitions.

Lemma 2.2. Let λ |= 0⊔ E and µ |= E be set partitions and Γλ,µ be their intersection graph.

1. If Γλ,µ has a cycle, then L(λ)|x0=0 ∩ (w− L(µ)) = ∅ for generic1 w ∈ RE.

1This means that this property holds for all w outside of a set of measure 0.
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2. If Γλ,µ is disconnected, then L(λ)|x0=0 ∩ (w− L(µ)) is not a point for any w ∈ RE.

3. If Γλ,µ is a tree, then L(λ)|x0=0 ∩ (w− L(µ)) is a point for any w ∈ RE.

Proof. Let x ∈ L(λ) and y ∈ L(µ) such that x+ y = w. Write xλ(i) := xi and yµ(j) := yj for
simplicity. The subspace L(λ)|x0=0 ∩ (w− L(µ)) is cut out by the equalities

xλ(i) + yµ(i) = wi for i ∈ E,
xλ(0) = 0.

This system has |E| + 1 equations and |λ| + |µ| unknowns. The linear dependences
among these equations are controlled by the cycles of the graph Γλ,µ. More precisely,
the first |E| linear functionals {xλ(i) + yµ(i) : i ∈ E} gives a realization of the graphical
matroid of Γλ,µ. The last equation is clearly linearly independent from the others.

If Γλ,µ has a cycle with edges i1, i2, . . . , i2k in that order, then the above equalities
imply that wi1 − wi2 + wi3 − · · · − wi2k = 0. For a generic w, this equation does not hold,
so L(λ)|x0=0 ∩ (w− L(µ)) = ∅.

If Γλ,µ is disconnected, let A be the set of edges in a connected component not con-
taining the vertex λ(0). If x ∈ L(λ) and y ∈ L(µ) satisfy x+ y = w and x0 = 0, then
x+ reA ∈ L(λ) and y − reA ∈ L(µ) also satisfy those equations for any real number r.
Therefore L(λ)|x0=0 ∩ (w− L(µ)) is not a point.

Finally, if Γλ,µ is a tree, then its number of vertices is one more than the number of
edges, that is, |E|+ 1 = |λ|+ |µ|, so the system of equations has equally many equations
and unknowns. Also, these equations are linearly independent since Γλ,µ is a tree. It
follows that the system has a unique solution.

When Γλ,µ is a tree, we call λ and µ an arboreal pair.

Lemma 2.3. Let λ |= 0⊔ E and µ |= E be an arboreal pair of set partitions and let Γλ,µ be their
intersection tree. Let w ∈ RE. The unique vectors x ∈ L(λ) and y ∈ L(µ) such that x+ y = w

and x0 = 0 are given by

xλi = we1 − we2 + · · · ± wek where e1e2 . . . ek is the unique path from λi to λ(0)
yµj = w f1 − w f2 + · · · ± w fl

where f1 f2 . . . fl is the unique path from µj to λ(0)

for any i and j.

Proof. This follows readily from the fact that, for each 1 ≤ i ≤ k, the values of xλ(ei)
and

yµ(ei)
on the vertices incident to edge i have to add up to wei .

Example 2.4. The set partitions λ = {6, 59, 2, 013478} |= [0, 9], µ = {9, 8, 7, 46, 3, 125} |= [9]
form an arboreal pair, whose intersection tree is shown in Figure 2. We have, for example,
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y9 = w9 − w5 + w1 because the path from µ(9) = {9} to λ(0) = {013478} uses edges 9, 5, 1
in that order. The remaining values are:

x6 = w6 − w4, x59 = w5 − w1, x2 = w2 − w1, x13478 = 0,
y9 = w9 − w5 + w1, y8 = w8, y7 = w7, y46 = w4, y3 = w3, y1235 = w1.

Definition 2.5. A vector w ∈ Rn+1 is super-increasing if ωi+1 > 3ωi > 0 for 1 ≤ i ≤ n.

Lemma 2.6. Let w be super-increasing. For any 1 ≤ a < b ≤ n + 1 and any choice of ϵis and
δis in {−1, 0, 1}, we have ωa + ∑a−1

i=1 ϵiωi < ωb + ∑b−1
j=1 δjωj.

Proof. After verifying inductively that ωc > 2
c−1

∑
i=1

ωi for all c, we see that

ωa +
a−1

∑
i=1

ϵiωi ≤ ωa +
a−1

∑
i=1

ωi <
3
2

ωa <
1
2

ωb < ωb −
b−1

∑
j=1

ωj ≤ ωb +
b−1

∑
j=1

δjωj

as desired.

Definition 2.7. Given a super-increasing vector w ∈ Rn+1 and a real number x, we will say x
is near wi and write x ≈ wi if wi − (w1 + · · ·+ wi−1) ≤ x ≤ wi + (w1 + · · ·+ wi). Note that
if x ≈ wi and y ≈ wj for i < j then x < y.

2.3 Matroids, Bergman fans, and tropical geometry

We assume familiarity with basic notions in matroid theory; for definitions and proofs,
see [13, 17]. We also state here some facts from tropical geometry that we will need; see
[11, 12] for a thorough introduction.

Let M be a matroid on E. The dual matroid M⊥ is the matroid on E whose set of bases
is {B⊥ | B is a basis of M}, where B⊥ := E− B.

The following lemma is useful to how M and M⊥ interact; see [13, Proposition 2.1.11].

Lemma 2.8. [2, Lemma 3.14] Let M be a matroid, and let F be a flat of M and G be a flat of
M⊥. Then |F ∪ G| ̸= |E| − 1.

Definition 2.9. Fix a linear order < on M. A broken circuit is a set of the form C−min<C
where C is a circuit of M. An nbc-basis of M is a basis of M that contains no broken circuits. A
βnbc-basis of M is an nbc-basis B such that B⊥ ∪ 0 \ 1 is an nbc-basis of M⊥.

Theorem 2.10. [7] The number of βnbc-bases of M is the beta invariant β(M) which is given
by β(M) = |χ′M(1)|, where χM is the characteristic polynomial of M:

χM(t) = ∑
X⊆E

(−1)|X|tr(M)−r(X).
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Assume that B = {b1 > · · · > br} is a basis of the matroid M. We define the flats
Fi := clM{b1, . . . , bi} and the flag FM(B) := {Fi}. The following characterization of
nbc-basis will be useful.

Lemma 2.11. Let M be a matroid of size n + 1 and rank r + 1, and B a basis of M. Then B is
an nbc-basis of M if and only if bi = min Fi for i = 1, . . . , r + 1.

Proof. Omitted.

An affine matroid (M, e) on E is a matroid M on E with a chosen element e ∈ E.

Definition 2.12. [14] The Bergman fan of a matroid M on E is

ΣM = {x ∈ RE | min
c∈C

xc is attained at least twice for any circuit C of M} .

The Bergman fan of an affine matroid (M, e) on E is

Σ(M,e) = {x ∈ RE−e | (0, x) ∈ ΣM}.

The motivation for this definition comes from tropical geometry. A subspace V ⊂ RE

determines a matroid MV , and the tropicalization of V is precisely the Bergman fan of
MV . Similarly, an affine subspace W ⊂ RE−e determines an affine matroid (MW , e) con-
sisting of a matroid MW on E and a special element e, which represents the hyperplane
at infinity. The tropicalization of W is the Bergman fan Σ(MW ,e).

Theorem 2.13. [4] The Bergman fan of a matroid M is a tropical fan equal to the union of the
cones

σF = cone(eF1 , . . . , eFr+1)

= {x ∈ RE | xa > xb whenever a ∈ Fi and b ̸∈ Fi for some 1 ≤ i ≤ r + 1}

for the complete flags F = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fr+1 = E} of flats of M.

If Σ1 and Σ2 are tropical fans of complementary dimensions, then Σ1 and Σ2 + v
intersect transversally at a finite set of points for generic vectors v ∈ Rn. Each intersec-
tion point p is equipped with a weight w(p) that depends on the respective intersecting
cones. It is a general fact that the quantity

deg(Σ1 · Σ2) := ∑
p∈Σ1∩(v+Σ2)

w(p)

is constant for generic v; this is the degree of the intersection [12, Proposition 4.3.3, 4.3.6].
In all the intersections that arise in this paper, one can verify that the weight w(p) is

equal to 1 for every intersection point p. Therefore the degree of the intersection will be
simply the number of intersection points:

deg(Σ(M,e) · −ΣN) := |Σ(M,e) ∩ (v− ΣN)|

for generic v ∈ RE−e.
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3 A combinatorial proof of the main theorem

Let M be a matroid on [0, n] of rank r + 1 such that 0 is not a loop nor a coloop. Then
M/0 has rank r, and N = (M/0)⊥ has rank n− r. For any basis B of M containing 0,
B⊥ = [0, n]− B is a basis of N = (M/0)⊥. Conversely, every basis of N equals B⊥ for a
basis B of M containing 0.

The following Lemma constructs an intersection point in ΣM|x0=0 ∩ (w−ΣN) for each
β-nbc basis B of M.

Lemma 3.1. Let M be a matroid on E = [0, n] of rank r + 1 such that 0 is not a coloop, and let
N = (M/0)⊥. Let w ∈ Rn be super-increasing. For any β-nbc basis B of M, there exist unique
vectors (0, x) ∈ σFM(B) and y ∈ σFN(B⊥) such that x+ y = w.

Proof. First we show that the set partitions π of FM(B) and π⊥ of FN(B⊥) form an
arboreal pair. Since they have sizes |B| = r + 1 and |B⊥| = n − r, respectively, their
intersection graph has n + 1 vertices and n edges. Therefore it is sufficient to prove that
the intersection graph Γπ,π⊥ is connected.

Assume contrariwise, and let A be a connected component not containing the edge
1. Let a > 1 be the smallest edge in A. Then a is the smallest element of its part π(a) in
π, and since B is nbc in M, this implies a ∈ B. Similarly, since B⊥ is nbc in N, this also
implies a ∈ B⊥. This is a contradiction.

It follows from Lemma 2.2 that there exist unique (0, x) ∈ L(π) and y ∈ L(π⊥) such
that x+ y = w. It remains to show that (0, x) ∈ σF and y ∈ σF⊥ .

Lemma 2.3 provides formulas for x and y in terms of the paths from the various
vertices of the tree of Γπ,π⊥ to π(0). To understand those paths, let us give each edge e
an orientation as follows:

π(e) −→ π⊥(e) if min π(e) > min π⊥(e),
π(e)←− π⊥(e) if min π(e) < min π⊥(e).

We never have min π(e) = min π⊥(e), because as above, that would imply e ∈ B ∩ B⊥.
We claim that every vertex other than π(0) has an outgoing edge under this orien-

tation. Consider a part πi ̸= π(0) of π; let min πi = b. Edge b connects πi = π(b)
to π⊥(b) ∋ b, and we cannot have min π⊥(b) > b = min π(b), so we must have
πi → π⊥(b). The same argument works for any part π⊥j of π⊥.

Now, every element b ∈ B is minimum in π(b), so there is a directed path that starts
at π(b) and can only end at π(0) whose first edge is b. Furthermore, by the definition of
the orientation, the labels of the edges decrease along this path. Thus in the alternating
sum xb = wb± · · · given by Lemma 2.3, the first term dominates, and xb ≈ wb. Similarly,
yc ≈ wc for all c ∈ B⊥.

Therefore, if we write B = {b1 > · · · > br > br+1 = 0}, since w is super-increasing,
it follows that xb1 > xb2 > · · · > xbr > xbr+1 = 0, so indeed (0, x) ∈ σF . Similarly, if we
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write B⊥ = E− B = {c1 > · · · > cn−r > cn−r+1 = 1}, then yc1 > yc2 > · · · > ycn−r+1 , so
y ∈ σF⊥ . The desired result follows.

Example 3.2. The graphical matroid M of the graph G in Figure 1 has six β-nbc bases: 0256,
0257, 0259, 0368, 0378, and 0379. Let us compute the intersection point in Σ(M,0) ∩ (w− ΣN)

associated to 0257 for the super-increasing vector w = (100, 101, . . . , 108) ∈ R9.
For B = 0257, we have B⊥ = 134689. Then

FM(B) = {∅ ⊊ 7 ⊊ 57 ⊊ 2457 ⊊ 0123456789}
FN(B⊥) = {∅ ⊊ 9 ⊊ 89 ⊊ 689 ⊊ 46789 ⊊ 346789 ⊊ 123456789},

give rise to the corresponding set compositions

π = 7|5|24|013689, π⊥ = 9|8|6|47|3|125.

This is indeed an arboreal pair, as evidenced by their intersection graph in Figure 3.

9 8 6 7 4 3 5 2 1

Figure 3: The intersection graph of π = 7|5|24|13689 and π⊥ = 9|8|6|47|3|125.

Lemma 3.1 gives us the unique points (0, x) ∈ Fπ and y ∈ Fτ such that x+ y = w; they
are given by the paths to the special vertex π(0) in the intersection tree Γπ,π⊥ . For example
x7 = 106 − 103 + 101 − 100 = 999009 and y4 = 103 − 101 + 100 = 991 are given by the paths
7421 and 421 from π(7) = π1 and π⊥(7) = π⊥4 to π(0), respectively. In this way we obtain:

x = 0 9 0 9 9999 0 999009 0 0
y = 1 1 100 991 1 100000 991 10000000 100000000
w = 1 10 100 1000 10000 100000 1000000 10000000 100000000

and x is in the intersection Σ(M,0) ∩ (w− ΣN).

The following lemma indicates that any intersection point between Σ(E,e) and v− ΣN
is an intersection between the cones described above. That is, cones corresponding to a
β-nbc basis.

Lemma 3.3. Let M be a matroid on E = [0, n] of rank r + 1, such that 0 is not a loop nor a
coloop, and N = (M/0)⊥. Let w ∈ Rn be generic and super-increasing. Let

F = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fr+1 = E}
G = {∅ = G0 ⊊ G1 ⊊ · · · ⊊ Gn−r−1 ⊊ Gn−r = E− 0}
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be complete flags of the matroids M and N, respectively, such that Σ(M,0) and w− ΣN intersect
at σF and w− σG . Then there exists a β-nbc basis B such that F = FM(B) and G = FN(B⊥).

Proof. By Lemma 2.2, the set compositions π and τ of F and G form an arboreal pair. In
particular, πa ∩ τb = (Fa − Fa−1) ∩ (Gb − Gb−1) cannot have more than one element for
any a and b. We proceed in several steps.

1. Our first step will be to show that in the intersection tree Γπ,τ , the top right vertex
πr+1 contains 0 and 1, the bottom right vertex τn−r contains 1, and thus the edge 1
connects these two rightmost vertices.

Each Gi is a flat of N = M⊥ − 0, so G•i := clM⊥(Gi) ∈ {Gi, Gi ∪ 0} is a flat of M⊥.
Consider the flag of flats of M⊥

G• := {∅ = G•0 ⊊ G•1 ⊊ · · · ⊊ G•n−r−1 ⊊ G•n−r = E},

where G•n−r = E because 0 is not a coloop of M⊥ and G•0 = ∅ because 0 is not a loop of
M⊥. Let M be the minimal index such that 0 ∈ G•M, so

G• := {∅ = G0 ⊊ G1 ⊊ · · · ⊊ GM−1 ⊊ GM ∪ 0 ⊊ · · · ⊊ Gn−r−1 ∪ 0 ⊊ Gn−r ∪ 0 = E},

Consider the unions of the flat Fr with the coflats in G•; let j be the index such that

Fr ∪ G•j−1 ̸= E, Fr ∪ G•j = E

Since it is the union of a flat and a coflat, the former cannot have size |E| − 1, so (Fr ∪
G•j )− (Fr ∪ G•j−1) = (E− Fr) ∩ (G•j − G•j−1) has size at least 2. But F and G are arboreal
so πr+1 ∩ τj = (E− Fr) ∩ (Gj − Gj−1) has size at most 1. This has two consequences:

a) G•j = Gj ∪ 0 and G•j−1 = Gj−1, that is, j = M.
b) 0 ∈ E− Fr = πr+1.
Similarly, consider the unions of the coflat G•n−r−1 with the flats in F ; let i be the

index such that
Fi−1 ∪ G•n−r−1 ̸= E, Fi ∪ G•n−r−1 = E.

Analogously, we get that (Fi − Fi−1) ∩ (E − G•n−r−1) has size at least 2, whereas πi ∩
τn−r = (Fi − Fi−1) ∩ (E− 0− Gn−r−1) has size at most 1. This has three consequences:

c) G•n−r−1 = Gn−r−1, that is, M = n− r.
d) 0 ∈ Fi − Fi−1, which in light of b) implies that i = r + 1.
e) (Fi− Fi−1)∩ (E− 0−Gn−r−1) = πr+1 ∩ τn−r = {e} for some element e ∈ E− 0. But

e ∈ πr+1 means that xe = 0 is minimum among all xis for any (0, x) ∈ σF , and e ∈ τn−r
means that ye is minimum among all yis for any y ∈ σG . Since w = x+ y for some such x

and y, we = xe + ye is minimum among all wis, and since w is super-increasing, e = 1.
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It follows that in the intersection tree Γπ,τ , the top right vertex πr+1 contains 0 and 1
by d) and e), the bottom right vertex τn−r contains 1 by e), and thus 1 connects them.

2. Next we claim that for any path in the tree Γπ,τ that ends with the edge 1, the first
edge has the largest label.2 Assume contrariwise, and consider a containment-minimal
path P that does not satisfy this property; its edges must be labelled e < f > f2 >
· · · > fk sequentially. If edge e goes from π(e) to τ(e), Lemma 2.3 gives xe = we −
w f ± (terms smaller than w f ) ≈ −w f < 0 = x1, contradicting that (0, x) ∈ σF . If e goes
from bottom to top, we get ye = we − w f ± (terms smaller than w f ) ≈ −w f < w1 = y1,
contradicting that y ∈ σG .

3. Now define

bi := min(Fi − Fi−1) for i = 1, . . . , r + 1,
cj := min(Gj − Gj−1) for j = 1, . . . , n− r.

Then B := {b1, . . . , br+1} and C := {c1, . . . , cn−r} are bases of M and N, and F = FM(B)
and G = FN(C). We claim that B is β-nbc and C = B⊥.

To do so, we first notice that the path from vertex πi = Fi− Fi−1 (resp. τj = Gj−Gj−1)
to edge 1 must start with edge bi (resp. cj): if it started with some larger edge b′ ∈
Fi − Fi−1, then the path from edge bi to edge 1 would not start with the largest edge.
This has two consequences:

f) The sets B and C are disjoint. If we had bi = cj = e, then edge e, which connects
vertices πi = Fi − Fi−1 and τj = Gj − Gj−1, would have to be the first edge in the paths
from both of these vertices to edge 1; this is impossible in a tree. We conclude that B and
C are disjoint. Since |B| = r + 1 and |C| = n− r, we have C = B⊥.

g) For each i we have xbi ≈ wbi , because the path from τi to vertex 0 – which is the
path from τi to edge 1, with edge 1 possibly removed – starts with the largest edge bi, so
Lemma 2.3 gives xbi = wbi ± (smaller terms) ≈ wbi . Similarly yci ≈ wci . Now, (0, x) ∈ σF
gives xb1 > · · · > xbr+1 , which implies wb1 > · · · > wbr+1 , which in turn gives

b1 > · · · > br > br+1; and analogously, c1 > · · · > cn−r−1 > cn−r = 1.

The former implies that B is nbc in M by Lemma 2.11. The latter, combined with c),
implies that c1 > · · · > cn−r−1 > 0 respectively are the minimum elements of the flats
G•1 , . . . , G•n−r−1, G•n−r = E that they sequentially generate, so C ∪ 0 \ 1 = B⊥ ∪ 0 \ 1 is nbc
in M⊥. It follows that B is β-nbc in M.

We conclude that B is β-nbc in M, F = FM(B), and G = FN(B⊥), as desired.

Combinatorial proof of Theorem 1.2. This follows from the previous two lemmas.
2It follows that the edge labels decrease along any such path, but we will not use this in the proof.
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4 A proof via torus-equivariant geometry

We sketch a proof of Theorem 1.3 using the framework of tautological classes of matroids
of Berget, Eur, Spink, and Tseng. See [5] for details on what follows.

In this framework, one works with the permutohedral fan ΣE, which is the Bergman
fan of the Boolean matroid on E. Toric geometry equips ΣE with two “cohomology”
rings: The torus-equivariant Chow ring A•T(ΣE), and the non-equivariant Chow ring
A•(ΣE), which is a quotient of A•T(ΣE) by an explicitly described ideal I.

First, one defines certain elements [Σ(M,e)] and [−Σ(M/e)⊥ ] of A•(ΣE) by using the fact
that the fans Σ(M,e) and −Σ(M/e)⊥ are subfans of ΣE that satisfy a balancing condition in
the sense of Minkowski weights [8]. These elements have the following property: The
ring A•(ΣE) is equipped with a degree map degΣE

: A•(ΣE) → Z, which agrees with
the map deg in Theorem 1.3 in the sense that

deg(Σ(M,e) ∩−Σ(M/e)⊥) = degΣE
([Σ(M,e)] · [−Σ(M/e)⊥ ]).

For a survey of these facts, see [9, Section 4] or [6, Section 7.1].

Second, one notes that [6] provided a distinguished representative in A•T(ΣE) of the
class [Σ(M,e)] ∈ A•(ΣE) = A•T(ΣE)/I, and similarly for the class [−Σ(M/e)⊥ ]. In more
detail, for a matroid M of rank r + 1 on a ground set E of size n + 1, [6, Definition
3.9] defined tautological Chern classes of M as certain elements {cT

i (S∨M)}i=0,...,r+1 and
{cT

j (QM)}j=0,...,n−r in the equivariant Chow ring A•T(ΣE), and established the following
properties.

Lemma 4.1. [6, Theorem 7.6, Propositions 5.11, 5.13] Let M be a matroid of rank r + 1 on
a ground set E of size n + 1. Define elements [Σ(M,e)]

T and [−Σ(M/e)⊥ ]
T in A•T(ΣE) by

[Σ(M,e)]
T = cT

n−r(QM) and [−Σ(M/e)⊥ ]
T = cT

r (S∨M/e⊕U0,e
). Then, their images in the quo-

tient A•(ΣE) are exactly [Σ(M,e)] and [−Σ(M/e)⊥ ], respectively.

Finally, to prove Theorem 1.3, one begins with [6, Theorem 6.2] which states that

degΣE

(
[Σ(M,e)] · cr(S∨M)

)
= β(M).

Thus, the desired statement degΣE
([Σ(M,e)] · [−Σ(M/e)⊥ ]) = β(M) will follow once one

shows that [Σ(M,e)] ·
(
cr(S∨M)− [−Σ(M/e)⊥ ]

)
= 0 in A•(ΣE). For this end, one considers

the distinguished representative [Σ(M,e)]
T ·

(
cT

r (S∨M) − [−Σ(M/e)⊥ ]
T) of this product in

A•T(ΣE). An explicit description of this representative straightforwardly displays that it
belongs to the ideal I.
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