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Abstract. Given a matrix A, let AI,J denote the submatrix of A determined by rows I
and columns J. The Barrett–Johnson Inequalities relate sums of products of principal
minors of positive semidefinite (PSD) matrices, when orders of the minors are given
by integer partitions λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) of n. Specifically, we have

λ1! · · · λr! ∑
(I1,...,Ir)

det(AI1,I1) · · ·det(AIr ,Ir) ≥ µ1! · · · µs! ∑
(J1,...,Js)

det(AJ1,J1) · · ·det(AJs,Js),

for all PSD n × n matrices A, where sums are over ordered set partitions of {1, . . . , n}
satisfying |Ik| = λk, |Jk| = µk, if and only if λ is majorized by µ. We show that these
inequalities hold for totally nonnegative matrices as well.

1 Introduction

A matrix A ∈ Matn×n(C) is called Hermitian if it satisfies A∗ = A where ∗ denotes
conjugate transpose. Such a matrix is called Hermitian positive semi-definite (HPSD) if we
have x∗Ax ≥ 0 for all x ∈ Cn. For A ∈ Matn×n(R), the Hermitian property reduces to
symmetry A⊤= A, and the positive semidefinite (PSD) property reduces to x⊤Ax ≥ 0 for
all x ∈ Rn. A matrix A ∈ Matn×n(R) is called totally nonnegative (TNN) if each minor
(determinant of a square submatrix) is nonnegative. One can deduce that the entries of
all n × n HPSD and/or TNN matrices satisfy certain polynomial inequalities. In some
cases, inequalities for the two classes of matrices are precisely the same. (See [14, §1].)

Given an n × n matrix A = (ai,j) and subsets I, J ⊆ [n] := {1, . . . , n}, define the
submatrix AI,J = (ai,j)i∈I,j∈J , and define the set Ic := [n]∖ I. Hadamard [7] showed that
for A HPSD we have

det(A) ≤ a1,1 · · · an,n, (1.1)

and Koteljanskii [9] showed that this holds for A TNN as well. Fischer [5] strengthened
(1.1) by showing that for all I ⊆ [n] we have

det(A) ≤ det(AI,I)det(AIc,Ic), (1.2)
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and Ky Fan showed that this holds for A TNN as well (unpublished; see [2]). Barrett and
Johnson [1] showed that for A PSD, averages of the products of pairs of minors appearing
in (1.2) increase as the cardinality difference between I and Ic decreases. Furthermore,
they proved a similar result for averages of products of many minors: given integer
partitions λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) of n, we have

∑
(I1,...,Ir)

det(AI1,I1) · · ·det(AIr,Ir)

( n
λ1,...,λr

)
≥ ∑

(J1,...,Js)

det(AJ1,J1) · · ·det(AJs,Js)

( n
µ1,...,µs

)
, (1.3)

if and only if λ is majorized by µ, where the sums are over ordered set partitions of [n] of
types λ and µ, i.e., sequences of subsets of [n] satisfying having cardinalities

I1 ⊎ · · · ⊎ Ir = J1 ⊎ · · · ⊎ Js = [n], |Ik| = λk, |Jk| = µk. (1.4)

We will show that these inequalities also hold for TNN matrices.

2 The symmetric group, its traces, and symmetric func-
tions

The symmetric group algebra C[Sn] is generated over C by s1, . . . , sn−1, subject to relations

s2
i = e for i = 1, . . . , n − 1,

sisjsi = sjsisj for |i − j| = 1,

sisj = sjsi for |i − j| ≥ 2.

We define the one-line notation w1 · · ·wn of w ∈ Sn by letting any expression for w act
on the word 1 · · · n, where each generator sj = s[j,j+1] acts on an n-letter word by swap-
ping the letters in positions j and j + 1, i.e., sj ◦ v1 · · · vn = v1 · · · vj−1vj+1vjvj+2 · · · vn.
Whenever si1 · · · siℓ is a reduced (short as possible) expression for w ∈ Sn, we call ℓ the
length of w and write ℓ = ℓ(w). It is known that ℓ(w) is equal to inv(w), the number of
inversions in w1 · · ·wn. It is also known that conjugacy classes in Sn are precisely the
set of permutations that have the same cycle type. We name cycle type by integer parti-
tions of n, the weakly decreasing positive integer sequences λ = (λ1, . . . , λℓ) satisfying
λ1 + · · ·+ λℓ = n. The ℓ = ℓ(λ) components of λ are called its parts, and we let |λ| = n
and λ ⊢ n denote that λ is a partition of n. Given λ ⊢ n, we define the transpose partition
λ⊤= (λ⊤1, . . . , λ⊤λ1

) by
λ⊤i = #{j | λj ≥ i}.

Sometimes it is convenient to name a partition with exponential notation, omitting
parentheses and commas, so that 4216 := (4, 4, 1, 1, 1, 1, 1, 1). Sometimes it is convenient
to partially order partitions of n by the majorization (or dominance) order,

λ ⪯ µ iff λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi (2.1)



Barrett–Johnson inequalities 3

for all i. It is known that if λ is covered by µ in this partial order then λ, µ have equal
parts except in two positions i < j where we have

µi = λi + 1, µj = λj − 1. (2.2)

Let Λ be the ring of symmetric functions in x = (x1, x2, . . . ) having integer coef-
ficients, and let Λn be the Z-submodule of homogeneous functions of degree n. This
submodule has rank equal to the number of partitions of n. Five standard bases of Λn
consist of the monomial {mλ | λ ⊢ n}, elementary {eλ | λ ⊢ n}, (complete) homogeneous
{hλ | λ ⊢ n}, power sum {pλ | λ ⊢ n}, and Schur {sλ | λ ⊢ n} symmetric functions. (See,
e.g., [15, Ch. 7] for definitions.) The change-of-basis matrix relating {eλ | λ ⊢ n} and
{mλ | λ ⊢ n} is given by the equations

eλ = ∑
µ⪯λ⊤

Mλ,µmµ, (2.3)

where Mλ,µ equals the number of column-strict Young tableaux of shape λ⊤and content
µ. That is, Mλ,µ is the number of histograms having λi boxes in column i for all i, filled
with µ1 ones, µ2 twos, etc., with column entries strictly increasing from bottom to top.

Let Tn be the Z-module of Z[Sn]-traces (equivalently, Sn-class functions), linear func-
tionals θ : Z[Sn] → Z satisfying θ(gh) = θ(hg) for all g, h ∈ Z[Sn]. Like the Z-module
Λn, the trace space Tn has dimension equal to the number of integer partitions of n. The
Frobenius Z-module isomorphism (2.4)

Frob : Tn → Λn

θ 7→ 1
n! ∑

w∈Sn

θ(w)pctype(w)
(2.4)

defines bijections between standard bases of Λ, and Tn. Schur functions correspond to
irreducible characters, while elementary and homogeneous symmetric functions corre-
spond to induced sign and trivial characters,

sλ ↔ χλ, eλ ↔ ϵλ = sgn
xSn
Sλ

, hλ ↔ ηλ = triv
xSn
Sλ

,

where Sλ is the Young subgroup of Sn indexed by λ. The power sum and monomial
bases of Λn correspond to bases of Tn which are not characters. We call these the power
sum {ψλ | λ ⊢ n} and monomial {ϕλ | λ ⊢ n} traces, respectively. These are the bases
related to the irreducible character bases by the same matrices of character evaluations
and inverse Kostka numbers that relate power sum and monomial symmetric functions
to Schur functions,

pλ = ∑
µ

χµ(λ)sµ, ψλ = ∑
µ

χµ(λ)χµ,

mλ = ∑
µ

K−1
λ,µsµ, ϕλ = ∑

µ

K−1
λ,µχµ,

(2.5)

where χµ(λ) := χµ(w) for any w ∈ Sn having ctype(w) = λ.
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3 Immanants and totally nonnegative polynomials

Each of the inequalities stated in Section 1 may be stated in terms of a polynomial
in matrix entries. In particular, let x = (xi,j)i,j∈[n] be a matrix of n2 indeterminates,
and for p(x) ∈ C[x] := C[xi,j]i,j∈[n] and A = (ai,j) an n × n matrix, define p(A) =
p(a1,1, a1,2, . . . , an,n). While few of the polynomial inequalities in Section 1 specifically
mention the symmetric group, all of them involve polynomials which are linear combi-
nations of monomials of the form {x1,w1 · · · xn,wn |w ∈ Sn}. Following [10], [16], we call
such polynomials immanants. Specifically, given f : Sn → C define the f -immanant to be
the polynomial

Imm f (x) := ∑
w∈Sn

f (w)x1,w1 · · · xn,wn ∈ C[x]. (3.1)

The sign character (w 7→ (−1)ℓ(w)) immanant and trivial character (w 7→ 1) immanant
are the determinant and permanent,

det(x) = ∑
w∈Sn

(−1)ℓ(w)x1,w1 · · · xn,wn , per(x) = ∑
w∈Sn

x1,w1 · · · xn,wn .

Simple formulas for the induced sign and trivial character immanants are due to Little-
wood–Merris–Watkins [10], [12]: for λ = (λ1, . . . , λr) ⊢ n, we have

Immϵλ(x) = ∑
(I1,...,Ir)

det(xI1,I1) · · ·det(xIr,Ir),

Immηλ(x) = ∑
(I1,...,Ir)

per(xI1,I1) · · ·per(xIr,Ir),
(3.2)

where the sums are over all ordered set partitions of [n] of type λ (1.4).
Some current interest in immanants and their connection to TNN matrices was in-

spired by Lusztig’s work with canonical bases of quantum groups. (See, e.g., [11].) In
particular, one quantum group has an interesting basis whose elements can be described
in terms of immanants which evaluate nonnegatively on TNN matrices. Call a poly-
nomial p(x) totally nonnegative (TNN) if p(A) ≥ 0 whenever A is a totally nonnegative
matrix. There is no known procedure to decide if a given polynomial is TNN.

The formula (3.2) makes it obvious that Immϵλ(x) is a TNN polynomial for each par-
tition λ ⊢ n. A stronger result [17, Cor. 3.3] asserts that irreducible character immanants
Immχλ(x) are TNN as well. It is clear that the Sn-trace immanants

{Immθ(x) | θ ∈ Tn, Immθ(x) is TNN }

form a cone, i.e., are closed under real nonnegative linear combinations. Stembridge
has conjectured [18, Conj. 2.1] that the extreme rays of this cone are generated by the
monomial trace immanants

{Immϕλ(x) | λ ⊢ n}, (3.3)
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and has shown [18, Prop. 2.3] that the cone of TNN Sn-trace immanants lies inside of
the cone generated by (3.3).

Proposition 3.1. Each immanant of the form Immθ(x) with θ ∈ Tn is a totally nonnegative
polynomial only if it is equal to a nonnegative linear combination of monomial trace immanants.

Thus it is conjectured that an Sn-trace immanant is TNN if and only if it is equal to a
nonnegative linear combination of monomial trace immanants. Indeed it is known that
some monomial trace immanants generate extremal rays of the cone of TNN Sn-trace
immanants [3, Thm.1̇0.3]. (See Theorem 4.6.)

4 The Temperley-Lieb algebra and 2-colorings

Given a complex number ξ, we define the Temperley-Lieb algebra Tn(ξ) to be the C-algebra
generated by elements t1, . . . , tn−1 subject to the relations

t2
i = ξti, for i = 1, . . . , n − 1,

titjti = ti, if |i − j| = 1,

titj = tjti, if |i − j| ≥ 2.

When ξ = 2 we have the isomorphism Tn(2) ∼= C[Sn]/(1+ s1 + s2 + s1s2 + s2s1 + s1s2s1).
(See e.g. [4], [6, Sec. 2.1, Sec. 2.11], [19, Sec. 7].) Specifically, the isomorphism is given by

σ : C[Sn] → Tn(2),
si 7→ ti − 1.

(4.1)

Let Bn be the multiplicative monoid generated by t1, . . . , tn−1 when ξ = 1, also called
the standard basis of Tn(ξ). It is known that |Bn| is the nth Catalan number Cn = 1

n+1(
2n
n ).

Diagrams of the basis elements of Tn(ξ), made popular by Kauffman [8, Sec. 4] are (undi-
rected) graphs with 2n vertices and n edges. The identity and generators 1, t1, . . . , tn−1
are represented by

, , , . . . , ,
and multiplication of these elements corresponds to concatenation of diagrams, with
cycles contributing a factor of ξ. For instance, the fourteen basis elements of T4(ξ) are

, , , , , , , , , , , , , ,
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and the equality t3t2t3t3t1 = ξt1t3 in T4(ξ) is represented by

= ξ
,

(4.2)

with the "bubble" becoming the scalar multiple ξ. We will identify each element τ ∈ Bn
with its Kauffman diagram, and will label vertices v1, . . . , v2n, clockwise from the lower
left. We define the height of a vertex by

hgt(vi) =

{
i if 1 ≤ i ≤ n,
2n + 1 − i if n + 1 ≤ i ≤ 2n.

For instance, (4.4) shows the element t7t6t8t5t7t4t6t5t2 ∈ B9 on the left, with vertex labels.
Vertices have heights 1, . . . , 9, from bottom to top. It is easy to see that for all τ ∈ Bn,
each edge (vi, vj) satisfies

hgt(vi)− hgt(vj) =

{
1 (mod 2) if i, j ≤ n or i, j ≥ n + 1,
0 (mod 2) otherwise.

(4.3)

Define τ̂ to be the graph obtained from τ by adding edges (i, 2n + 1 − i) for all i
(even if such an edge already exists). Since each vertex in τ̂ has degree 2, it is clear that
this graph is a disjoint union of cycles. For example, corresponding to the element τ on
the left of (4.4) we have τ̂ to its right, the decomposition of this graph into four disjoint
cycles, and a proper 2-coloring of this graph.
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2-coloring of τ̂

(4.4)

The Temperley-Lieb algebra Tn(2) sometimes arises in the 2-coloring of combinatorial
objects. Define a principal coloring of τ ∈ Bn to be a map κ : vertices(τ) → {black, white}
which is a proper coloring of τ̂, i.e.,

color(vi) ̸= color(v2n+1−i) for i = 1, . . . , n,
color(vi) ̸= color(vj) if vi and vj are adjacent in τ.

Let (τ, κ) denote the graph τ with its vertices colored by κ.
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Principal colorings of τ are closely related to cycles in τ̂. It is clear that colors must
alternate along any one cycle of τ̂. It is also true that vertex colors alternate as one views
the vertices in clockwise order, ignoring the edges of that cycle. For example, consider a
2-coloring of the cycle (v4, v11, v8, v7, v12, v15) of τ̂ in (4.4),

4

v
7

v
8

v
11

12

15
v

v

v

.

Proposition 4.1. If τ̂ is a single cycle, then there are two principal colorings of τ. In each,
vertices of odd index and of even index have opposite colors.

Proof. Omitted.

Clearly if κ is a principal coloring of τ ∈ Bn and if τ̂ is a single cycle, then we have∣∣∣∣#(white vertices on
left of (τ, κ)

)
− #

(
white vertices on

right of (τ, κ)

)∣∣∣∣ =
{

0 if n even,
1 if n odd.

(4.5)

In this situation we call (τ, κ) balanced if n is even, and unbalanced otherwise. More
specifically, we call (τ, κ) left-unbalanced (right-unbalanced) if it has more white vertices
on the left (right). Now consider τ ∈ Bn with τ̂ a disjoint union of cycles C1, . . . , Cd, and
κ a principal coloring of τ. Define

α = α(τ, κ) := #{i | (τCi , κ) right unbalanced},
β = β(τ, κ) := #{i | (τCi , κ) left unbalanced}.

(4.6)

For example, in (4.4), the proper 2-coloring κ of τ̂ corresponds to a principal coloring of
τ with α(τ, κ) = 1, β(τ, κ) = 2, and d = 4. Also note that there is one balanced cycle.

It is easy to characterize the colorings κ of a given Temperley-Lieb basis element τ

for which the numbers α, β (4.6) are constant.

Lemma 4.2. Let (τ, κ), (τ, κ′) be principal colorings with j white vertices on the left, for some j,
0 ≤ j ≤ ⌊n

2 ⌋. Then we have α(τ, κ) = α(τ, κ′) and β(τ, κ) = β(τ, κ′).

Proof. Omitted.

By this lemma, we may write

α(τ, j) := α(τ, κ), (β(τ, j) := β(τ, κ)) (4.7)

if there exists a principal coloring of τ in which j vertices on the left are white.
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Just as Tn(2) is related to 2-coloring, it is related to total nonnegativity of polynomials
in the subspace

spanR{det(xI,I)det(xIc,Ic) | I ⊆ [n]} (4.8)

of immanants. We define an immanant Immτ(x) for each τ ∈ Bn in terms of the function

fτ : C[Sn] → R

w 7→ coefficient of τ in σ(w),
(4.9)

(extended linearly). To economize notation, we will write Immτ instead of Imm fτ
,

Immτ(x) = ∑
w∈Sn

fτ(w)x1,w1 · · · xn,wn .

For example, consider the case n = 3 and τ = t1 ∈ B3. Extracting the coefficients of t1 in
the expressions

σ(e) = 1, σ(s1) = t1 − 1, σ(s2) = t2 − 1,
σ(s1s2) = (t1 − 1)(t2 − 1) = t1t2 − t1 − t2 + 1,
σ(s2s1) = (t2 − 1)(t1 − 1) = t2t1 − t1 − t2 + 1,

σ(s1s2s1) = (t1 − 1)(t2 − 1)(t1 − 1) = t1 + t2 − t1t2 − t2t1 − 1,

(where we have used t1t2t1 = t1 and t2
1 = 2t1 to obtain the last expression), we have

ft1(e) = 0, ft1(s1) = 1, ft1(s2) = 0, ft1(s1s2) = −1, ft1(s2s1) = −1, ft1(s1s2s1) = 1, and

Immt1(x) = x1,2x2,1x3,3 − x1,3x2,1x3,2 − x1,2x2,3x3,1 + x1,3x2,2x3,1.

Note that in the special case τ = 1, the function fτ maps a permutation w to (−1)inv(w).
Thus the determinant is a Temperley-Lieb immanant,

det(x) = Imm1(x).

It was shown in [13] that Temperley-Lieb immanants are a basis of the space (4.8),
and that they are TNN. Furthermore, they are the extreme rays of the cone of TNN
immanants in this space [13, Thm. 10.3].

Proposition 4.3. Each immanant of the form

Imm f (x) = ∑
I,J⊆[n]
|I|=|J|

cI,J det(xI,J)det(xIc,Jc) (4.10)

is a totally nonnegative polynomial if and only if it is equal to a nonnegative linear combination
of Temperley-Lieb immanants.
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In fact each complementary product of minors is a 0-1 linear combination of Temper-
ley-Lieb immanants [13, Prop. 4.4].

Theorem 4.4. For I ⊆ [n] we have

det(xI,I)det(xIc,Ic) = ∑
τ∈Bn

bτImmτ(x), (4.11)

where

bτ =

{
1 if there is a principal coloring of τ with {vi | i ∈ I} white, {vi | i ∈ [n]∖ I} black,
0 otherwise.

(4.12)

By (3.2) we have that for each two-part partition λ = (n− j, j) of n, the corresponding
induced sign character immanant belongs to (4.8). Furthermore, we have the following
explicit expansion of these in terms of the Temperley-Lieb immanant basis.

Theorem 4.5. For j = 0, . . . , ⌊n
2 ⌋ − 1, we have

Immϵn−j,j(x) = ∑
τ∈Bn

dj,τImmτ(x),

where dj,τ is the number of principal colorings of τ having j white vertices on the left. Explicitly,
assuming such a coloring exists, this is 2d−α−β(α+β

α ), where d = the number of cycles of τ̂, and
α = α(τ, j), β = β(τ, j) are defined as in (4.7).

Proof. Omitted.

Combining (2.3) and (3.2), we see that monomial immanants Immϕµ(x) indexed by
partitions of the form µ = 2c1d ⊢ n belong to the space (4.8) as well. To expand these in
the Temperley–Lieb immanant basis, we define for each µ = 2c1d ⊢ n the set P(µ) of all
τ ∈ Bn such that there exists a principal coloring of τ with c + d white vertices on the
left and no principal coloring of τ with c + d + 1 white vertices on the left.

Theorem 4.6. For µ = 2c1d ⊢ n, we have that Immϕµ(x) is a totally nonnegative polynomial.
In particular we have

Immϕµ(x) = ∑
τ∈P(µ)

bµ,τImmτ(x),

where bµ,τ = 2#cycles of τ̂ of cardinality 0 (mod 4).

Proof. Omitted.
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5 Main results

Fischer’s inequalities (1.2) naturally lead to the questions of how products

det(AI,I)det(AIc,Ic) (5.1)

of complementary pairs of minors compare to one another, and of whether a greater
cardinality difference |Ic| − |I| tends to make the product (5.1) greater or smaller. This
second question led Barrett and Johnson [1] to consider the average value of such prod-
ucts when cardinalities are fixed,

1
(n

k)
∑

I⊆[n]
|I|=k

det(AI,I)det(AIc,Ic). (5.2)

They found that for PSD matrices, a smaller cardinality difference makes the average
product of minors greater [1, Thm. 1]. We give two proofs that the same is true for TNN
matrices.

Theorem 5.1. For all TNN matrices A and for k = 0, . . . , ⌊n
2 ⌋ − 1, we have

1
(n

k)
∑
|I|=k

det(AI,I)det(AIc,Ic) ≤ 1
( n

k+1)
∑

|I|=k+1
det(AI,I)det(AIc,Ic). (5.3)

First proof (idea). By (3.2) it is equivalent to show that the polynomial

Immϵn−k−1,k+1(x)
( n

k+1)
− Immϵn−k,k(x)

(n
k)

(5.4)

is totally nonnegative. By Theorem 4.5, this difference belongs to the span of the
Temperley-Lieb immanants. Multiplying by n!/(k!(n − k − 1)!) we obtain

(k + 1)Immϵn−k−1,k+1(x)− (n − k)Immϵn−k,k(x) = ∑
τ∈Bn

cτImmτ(x), (5.5)

where cτ = (k + 1)dk+1,τ − (n − k)dk,τ, and dk+1,τ, dk,τ are defined in terms of proper
colorings of τ as in Theorem 4.5. Straightforward computations show that cτ ≥ 0.

Second proof (idea). Again we multiply the polynomial (5.4) by n!/(k!(n − k − 1)!). Ex-
panding in the monomial immanant basis of the trace immanant space, we have

(n − k)Immϵ(k,n−k)(x)− (k + 1)Immϵ(k+1,n−k−1)(x) = ∑
µ⊢n

cµImmϕµ(x) (5.6)

where the integers {cµ | µ ⊢ n} satisfy (n − k)e(k,n−k) − (k + 1)e(k+1,n−k−1) = ∑µ⊢n cµmµ.
The special case of (2.3) for two-part partitions, implies that each partition µ appearing
with nonzero coefficient in (5.6) has the form µ = 2a1n−2a. Straightforward computations
show that we have cµ ≥ 0, and thus Theorem 4.6 completes the proof.



Barrett–Johnson inequalities 11

Now we may state and prove our main theorem.

Theorem 5.2. Fix n > 0 and partitions λ = (λ1, . . . , λr) ⊢ n, µ = (µ1 . . . , µs) ⊢ n with
λ ⪯ µ. For all TNN matrices we have

λ1! · · · λr! ∑
(I1,...,Ir)

det(AI1,I1) · · ·det(AIr,Ir) ≥ µ1! · · · µs! ∑
(J1,...,Js)

det(AJ1,J1) · · ·det(AJs,Js), (5.7)

Proof. By (2.2) it suffices to consider λ, µ having equal parts except µi = λi + 1 and
µj = λj − 1 for some i < j. (Thus we may assume s = r and will allow µs = 0.) Let
ν = (ν1, . . . , νr−2) be the partition of n − λi − λj consisting of all other parts.

As in the proofs of Theorem 5.1, we observe that each sum of products of minors is
an induced sign character immanant (3.2). Thus the inequality (5.7) is equivalent to the
total nonnegativity of the polynomial

λ1! · · · λr! Immϵλ(x)− µ1! · · · µr! Immϵµ(x). (5.8)

Dividing this by ν1! · · · νr−2!λi!µj! and collecting terms, we obtain

λj ∑
J⊆[n]
|J|=|ν|

Immϵν(xJ,J)Imm
ϵ
(λi ,λj)(xJc,Jc)− µi ∑

J⊆[n]
|J|=|ν|

Immϵν(xJ,J)Imm
ϵ
(λi+1,λj−1)(xJc,Jc)

= ∑
J⊆[n]
|J|=|ν|

Immϵν(xJ,J)
(

λjImm
ϵ
(λi ,λj)(xJc,Jc)− µiImm

ϵ
(λi+1,λj−1)(xJc,Jc)

)
.

By Theorem 5.1, or more precisely (5.5), this polynomial is TNN and so is (5.8).

It would be interesting to extend the Barrett–Johnson inequalities (1.3) to all HPSD
matrices, and to state a permanental analog as originally suggested in [1]. Using (3.2)
we may state these problems as follows.

Problem 5.3. Characterize the pairs (λ, µ) of partitions of n for which we have

1. λ1! · · · λr! Immϵλ(A) ≤ µ1! · · · µr! Immϵµ(A) for all A HPSD,

2. λ1! · · · λr! Immηλ(A) ≥ µ1! · · · µr! Immηµ(A) for all A HPSD or PSD,

3. λ1! · · · λr! Immηλ(A) ≥ µ1! · · · µr! Immηµ(A) for all A TNN.
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