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Some Facets of Shards
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Abstract. Reading cut the hyperplanes in a real central arrangement H into pieces
called shards, which reflect order-theoretic properties of the arrangement. We show that
shards have a natural interpretation as certain generators of the fundamental group of
the complement of the complexification of H. Taking only positive expressions in these
generators yields a new poset that we call the pure shard monoid.

When H is simplicial, its poset of regions is a lattice, so it comes equipped with a pop-
stack sorting operator Pop. In this case, we use Pop to define an embedding Crackle

of Reading’s shard intersection order into the pure shard monoid. When H is the
reflection arrangement of a finite Coxeter group, we also define a poset embedding
Snap of the shard intersection order into the positive braid monoid; in this case, our
three maps are related by Snap = Crackle · Pop.

Résumé. Reading a coupé les hyperplans dans un arrangement central réel H en
morceaux appelés shards, qui reflètent les propriétés ordinales de l’arrangement. Nous
montrons que les shards ont une interprétation naturelle en tant que certains généra-
teurs du groupe fondamental du complément de la complexification de H. En ne
prenant que des expressions positives dans ces générateurs, on obtient un nouvel en-
semble ordonné que nous appelons le monoïde shard pur.

Lorsque H est simplicial, son ensemble de régions est un treillis, et il est équipé d’un
pop-stack opérateur de tri Pop. Dans ce cas, nous utilisons Pop pour définir une in-
jection Crackle de l’ordre d’intersection des shards de Reading dans le monoïde shard
pur. Lorsque H est l’arrangement de réflexion d’un groupe de Coxeter fini, nous
définissons également une injection d’ensemble ordonné Snap de l’ordre d’intersection
des shards dans le monoïde de tresses positives; dans ce cas, nos trois fonctions sont
reliées par Snap = Crackle · Pop.
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1 Introduction

Throughout this extended abstract of the article [9], we let H be a finite central irre-
ducible real hyperplane arrangement in Rn. Salvetti introduced a certain CW complex
associated to H and used it to provide a presentation of the fundamental group of the
complement of the complexification of H. We prove that Salvetti’s generating set is
parameterized by shards, which Reading introduced and used to define his shard in-
tersection order in the case when H is simplicial. We introduce the pure shard monoid,
which is the monoid generated by Salvetti’s generators; it comes equipped with a natural
partial order that we believe deserves further attention. We prove that the interval from
the identity element to the full twist in the pure shard monoid is self-dual. In the case
when H is an arrangement of rank 2 with m hyperplanes, we prove that this interval is
a planar lattice with rank generating function 1 +

(
∑m−1

k=1

(
2(m

k )− 2
)

qk
)
+ qm and with

m2m−2 maximal chains.
We then assume H is simplicial. In this case, there is a known characterization of

the shard intersection order involving the pop-stack sorting operator Pop on the poset of
regions of H. We introduce a new map Crackle, and we prove that it is a poset embedding
of the shard intersection order into the pure shard monoid.

Next, we specialize further to the case when H is the reflection arrangement of a
finite Coxeter group W. We introduce another map Snap, and we prove that it is a poset
embedding of the shard intersection order on W into the weak order on the positive
braid monoid. The restriction of Snap to the set Sort(W, c) of c-sortable elements of
W originally arose in connection with Deodhar decompositions of noncrossing Catalan
varieties. In this setting, we obtain as a corollary that Snap restricts to a poset embedding
of the shard intersection order on Sort(W, c)—which is isomorphic to the noncrossing
partition lattice of W—into the weak order on the positive braid monoid.

Finally, we turn back to arbitrary finite central irreducible real arrangements and
define a fourth map Pow. We prove that Pow is a poset embedding of the poset of
regions of H into the pure shard monoid.

2 The Salvetti Complex

We write R for the set of regions (connected components of the complement) of H,
and we fix a base region B ∈ R and a point xB ∈ B. Let HC be the union of the
complexifications of the hyperplanes in H. The complexified hyperplane complement is
Cn \HC; write π1(C

n \HC, xB) for its fundamental group with base point xB. For C, D ∈
R, we write D ≤ C if every hyperplane in H that separates D from B also separates C
from B. The resulting poset Weak(H, B) := (R,≤) is the poset of regions of H with respect
to B.
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Following [10, 15], we construct a CW complex Sal(H) by gluing together oriented
dual zonotopes for H along compatible faces—one zonotope for each choice of base
region B, oriented from B to −B. The resulting CW complex Sal(H) has the same
fundamental group as the complexified hyperplane complement:

π1(Sal(H), B) = π1(C
n \ HC, xB).

The 1-skeleton of Sal(H) is given by orienting all edges of Weak(H, B) away from B, and
then for each edge e, adding in a reversed edge e∗. An illustration is given in Figure 1.
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Figure 1: Left: the hyperplane arrangement for the dihedral group I2(4) has eight
regions, and its four hyperplanes are cut into six shards. Right: the eight 2-cells of
Sal(H), indicated in blue. One 2-cell is attached for each of the eight homotopies
e1e2e3e4

∼= e8e7e6e5, e2e3e4e∗5 ∼= e∗1e8e7e6, . . . , e∗8e1e2e3 ∼= e7e6e5e∗4 .

Given arbitrary regions C, C′ ∈ R, we define a gallery from C′ to C to be a sequence
of edges (of the form e, e∗, e−1, and (e∗)−1) that starts at C′ and ends at C. A gallery
from C′ to C is positive if it only uses edges of the form e and e∗ (not e−1 or (e∗)−1). The
gallery is minimal if its length is equal to the number of hyperplanes separating C′ from
C, and it is called a loop if C = C′. Let us fix a positive minimal gallery gal(C′, C) from
C′ to C in Sal(H); any two such galleries from C′ to C are homotopic. If e is the edge
C′ e−→ C, we define the corresponding loop ℓe ∈ π1(Sal(H), B) by

ℓe := gal(B, C′) · ee∗ · gal(B, C′)−1 ∈ π1(Sal(H), B). (2.1)

Because of homotopies, this definition of the loop does not depend on the choice of
the gallery. Write Ledge = Ledge(H, B) for the set of all such loops ℓe. The group
π1(Sal(H), B) is generated by Ledge.
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3 Shards

We recall some constructions and results from [13, 14]. A subarrangement A of H is
called full if it consists of all hyperplanes of H containing a particular subset of Rn. For
a full rank-2 subarrangement A of H, let BA be the region of A containing B. We say
a hyperplane H ∈ A is basic if its intersection with the boundary of BA has dimension
n − 1. For H, H′ ∈ A, we say H cuts H′ if H is basic in A but H′ is not. Each hyper-
plane H ∈ H is broken into a number of connected pieces if we remove all points in H
contained the the hyperplanes of H that cut H—a shard of H is then the closure of one
of these connected pieces. We write HΣ for the unique hyperplane containing a shard Σ.
Let X(H, B) denote the set of shards.

Each cover relation C′ ⋖C in Weak(H, B) can be labeled by a shard Σ(C′ ⋖C), which
is the unique shard separating the region C′ from the region C; in this case, we call
Σ(C′ ⋖ C) a lower shard of C. Let covX(C) be the set of lower shards of C.

Now assume H is simplicial. Then Weak(H, B) is a semidistributive lattice [4], and
the set of shards forms an elegant geometric realization of the set of join-irreducible
elements. Furthermore, shard intersections encode the canonical join representations of
Weak(H, B). The map C 7→ ⋂

covX(C) defines a bijection from R to the set of arbitrary
intersections of shards. In [14], Reading introduced another poset Shard(H, B) := (R,⪯)
called the shard intersection order, which is defined by

C ⪯ D if and only if
⋂

covX(C) ⊇
⋂

covX(D).

As with Weak(H, B), the poset Shard(H, B) is a lattice—but while Weak(H, B) is “tall
and slender” (with height equal to the number of hyperplanes and with the number of
atoms equal to the dimension), Shard(H, B) is “short and wide” (with height equal to
dimension and with the number of atoms equal to the number of shards). When H is
the reflection arrangement of a finite Coxeter group W, the relationship between non-
crossing partitions and sortable elements allowed Reading to embed the W-noncrossing
partition lattice into the shard intersection order, thereby giving a uniform proof that the
noncrossing partition lattice is indeed a lattice. An example is illustrated in Figure 2.

4 Shards and the Salvetti Complex

Whenever we have an edge C′ e−→ C in Sal(H), we will write Σ(e) for the associated shard
Σ(C′ ⋖ C). Although the generators in Ledge are a priori indexed by cover relations in
Weak(H, B), our first theorem says that they are really indexed by the much smaller set
of shards.

Theorem 1 ([9]). Let H be a central real hyperplane arrangement. Given edges C′ e−→ C and

D′ f−→ D in Sal(H), the loops ℓe and ℓ f are homotopic if and only if Σ(e) = Σ( f ).
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Figure 2: The poset Shard(H, B) for the arrangement of Figure 1, which is the reflec-
tion arrangement of the dihedral group I2(4). Gray indicates elements in the image
of Reading’s embedding of the I2(4)-noncrossing partition lattice (with respect to a
certain Coxeter element); see [9, Section 7.5].

By Theorem 1, it makes sense write LX = Ledge, indexing the loops in Ledge by
shards. Thus, for any shard Σ, we define the shard loop ℓΣ = ℓe, where e is any edge such
that Σ(e) = Σ.

Let us define the pure shard monoid, denoted P+(H, B), to be the submonoid of
π1(Sal(H), B) generated by LX. That is, an element of π1(Sal(H), B) is in P+(H, B)
if and only if it can be represented by a word in the alphabet LX. This allows us to
endow P+(H, B) with a partial order ≤ by declaring that p ≤ p′ if there is a word over
LX representing p′ that contains a prefix representing p.

The full twist is the element ∆2 of π1(Sal(H), B) defined by

∆2 := gal(B,−B) · gal(−B, B).

When H is a finite irreducible simplicial arrangement, it is known that the center of
π1(Sal(H), B) is an infinite cyclic group generated by ∆2 [6]. We are especially interested
in [1, ∆2]P+ , the interval between the identity element 1 and the full twist ∆2 in P+(H, B).
This interval is “tall and wide,” but it is not a lattice in general, preventing the use of
Garside theory to study π1(Sal(H), B). Figure 3 shows this interval when H is the
arrangement from Figure 1.

The combinatorics of the pure shard monoid can be quite involved. However, we can
prove the following general result (which is stated as a conjecture in [9]).

Theorem 2. If H is a central arrangement, then the interval [1, ∆2]P+ is self-dual.

For a rank-2 arrangement with m hyperplanes, we have the following precise theo-
rem, which tells us that there are exactly m2m−2 words over the alphabet LX represent-
ing ∆2.
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Theorem 3 ([9]). Let H be hyperplane arrangement of rank 2 with m hyperplanes. The interval
[1, ∆2]P+ is a planar lattice with rank generating function 1 +

(
∑m−1

k=1

(
2(m

k )− 2
)

qk
)
+ qm and

with m2m−2 maximal chains.

5 Pop

In the next three sections, we discuss three incarnations of the shard intersection order
given by three maps Pop, Crackle, and Snap. The first one, defined using the map Pop, is
not new, but it inspired our terminology for the other two. For these three sections, we
assume that H is simplicial so that Weak(H, B) is a semidistributive lattice.

Let L be a locally finite meet-semilattice with meet operation denoted by ∧. Moti-
vated by work on pop-stacks from enumerative combinatorics and theoretical computer
science [1, 5, 17], the first author defined the pop-stack sorting operator Pop : L → L in [7]
(see also [8]) by

Pop(x) := x ∧
∧
{y ∈ L : y ⋖ x}. (5.1)

In the case when L = Weak(H, B), we can use Pop to characterize Shard(H, B). For
C ∈ R, let Σ([Pop(C), C]) be the set of shards that label the cover relations in the interval
[Pop(C), C]; that is,

Σ([Pop(C), C]) :=
{

Σ(D′ ⋖ D) : Pop(C) ≤ D′ ⋖ D ≤ C
}

.

By [14, Proposition 5.7], we have

C′ ⪯ C if and only if Σ([Pop(C′), C′]) ⊆ Σ([Pop(C), C]). (5.2)

6 Crackle

In this section, we continue to assume H is simplicial. Let us define the crackle map
Crackle : R → π1(Sal(H), B) by

Crackle(C) := gal(B,Pop(C)) · gal(Pop(C), C) · gal(C,Pop(C)) · gal(B,Pop(C))−1. (6.1)

This map generalizes the shard loops ℓΣ of Equation (2.1) and Theorem 1: if J is a
join-irreducible region of Weak(H, B), then Pop(J) is the unique region covered by J, so
Crackle(J) = ℓΣ(Pop(J)⋖J).

Just as Equation (5.2) characterized Shard(H, B) using Pop, we can give a charac-
terization of Shard(H, B) using Crackle. Recall that if P and Q are posets, then a map
ψ : P → Q is called a poset embedding if it is a poset isomorphism from P to its image
ψ(P) ⊆ Q.

Theorem 4. The map Crackle is a poset embedding from Shard(H, B) into the interval [1, ∆2]P+ .

Theorem 4 is illustrated in Figure 3.
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Figure 3: The interval [1, ∆2]P+ in the pure shard monoid P+(H, B) between the iden-
tity element and the full twist ∆2, where (H, B) is as in Figure 1. An edge p ⋖ p′ is
labeled i when p′ = p · ℓΣi . Circled elements are in the image of Crackle. An element
is colored gray if it appears as a prefix of a word for ∆2 using only generators corre-
sponding to noncrossing shards; see [9, Section 7.5].

7 Snap

We now specialize to the case when H is the reflection arrangement of a finite Coxeter
group W. We identify the base region B with the identity element of W; the free transitive
action of W on R then allows us to identity regions of H with elements of W. We write
Shard(W) := Shard(H, B), Weak(W) := Weak(H, B), P+(W) = P+(H, B), etc.

In this setting, the group P(W) := π1(C
n \ HC, xB) is called the pure braid group of

W, while the group B(W) := π1((C
n \ HC)/W, xB) is called the braid group of W. The

Coxeter group W fits into the following well-known exact sequence with its braid and
pure braid groups:

1 → P(W) → B(W)
φ−→ W → 1.

Let S be the set of simple generators of B(W) obtained by lifting the set S of simple re-
flections of W. The generators in S satisfy the same braid relations as the corresponding
simple reflections of W; the difference is that W also includes the relations stating that
the simple reflections are involutions. Thus, the projection φ : B(W) → W is the quotient
map that sends each generator s ∈ S to the corresponding s ∈ S and imposes these
additional relations. The submonoid of B(W) generated by S is called the positive braid
monoid of W and is denoted by B+(W). The weak order (W,≤) is defined by saying
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u ≤ v if and only if any reduced word for u appears as a prefix of some reduced word
for v. Analogously, the weak order Weak(B+(W)) := (B+(W),≤) is defined by saying
u ≤ v if and only if any word over S representing u appears as a prefix of some word
over S representing v. In this setting, the full twist ∆2 is equal to the lift w2

◦ of the long
element w◦ of W; we will also write ∆ = w◦.

We can rephrase Theorem 1 when H is the reflection arrangement of W as follows.

Corollary 1. Suppose u, v ∈ W and s, t ∈ S are such that u⋖ us and v⋖ vt. Let u, v, s, t be the
lifts of u, v, s, t, respectively, to B+(W). We have usu−1 = vtv−1 if and only if Σ(w ⋖ ws) =
Σ(u ⋖ ut).

For u, v ∈ W, we let uv = v−1uv. Write c = (s1, . . . , sn) for an ordering of the
elements of S. For s ∈ S and a positive braid w = si1 · · · sik ∈ B+(W) with projection
w = φ(w) ∈ W, let sw = (t, j), where t = sw and j counts the number of times t appears
in the sequence ssik , ssik

sik−1 , . . . , ssik
sik−1

···s1 .
In [11], a new set of noncrossing W-Catalan objects was introduced as the set of sub-

words of ch+1 that represent the full twist ∆2 = w2
◦ and satisfy an additional Deodhar

condition. When interpreted in the positive braid monoid B+(W), this Deodhar condi-
tion is equivalent to restricting to those c-sortable elements w in the interval [1, w2

◦]B+

with the property that for each descent s of w, we have sw = (t, j) with j even—this is
a nonstandard Deodhar embedding of the c-sortable elements into the interval [1, w2

◦]B+

(different from the usual lift of W into B+(W)). The second author speculated that re-
stricting the 2nd c-Fuss–Cambrian lattice to the image of this Deodhar embedding would
recover the noncrossing partition lattice NC(W, c). As the 2nd c-Fuss–Cambrian lattice
is a subposet of Weak(B+(W)), it makes sense to generalize this Deodhar embedding of
c-sortable elements to all elements of W.

The snap map Snap : W → B+(W) is our generalization of the Deodhar embedding.
We write Pop for the pop-stack sorting operators on the lattice Weak(W) and the meet-
semilattice Weak(B+(W)), relying on the argument of the operator to indicate the con-
text. For w ∈ W, let des(w) denote the right descent set of w, let w◦(des(w)) be the
longest element of the parabolic subgroup of W generated by des(w), and write w and
w◦(des(w)) for the usual lifts of w and w◦(des(w)) to B+(W). Define

Snap(w) := Pop(w) · (w◦(des(w)))2. (7.1)

Since Crackle(w) = Pop(w) · (w◦(des(w)))2 ·Pop(w)−1 in P+(W) ⊆ B(W), it follows that

Snap(w) = Crackle(w)Pop(w).

Just as the shard intersection order was characterized via Pop in Equation (5.2) and
via Crackle in Theorem 4, it is also characterized via Snap.

Theorem 5. The map Snap is a poset embedding from Shard(W) into [1, ∆2]B+ .

Theorem 5 is illustrated in Figure 4.
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Figure 4: The interval [1, ∆2]B+ in Weak(B+(I2(4))), where I2(4) is the dihedral group
of order 8 with simple reflections s and t. The reflection arrangement of I2(4) is shown
in Figure 1. Circled elements are in the image of Snap. Gray indicates that the element
is the image of a c-sortable element under Snap, where c = st; see [9, Section 7.5].
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8 Pow

In her history “The Untold Tale of Pow!, the Fourth Rice Krispies Elf: A look into the
era when the cereal mascots were more than just Snap!, Crackle! and Pop!” [16], Smith
writes:

“Lost in the shuffle, however, was a fourth Rice Krispies elf named Pow!
His short life is a time-capsule of an era when everyone was dreaming big.”

Inspired by this fourth mascot, we introduce a map Pow : R → P+(H, B) in the general
setting when H is a central irreducible real hyperplane arrangement. Given a region
C ∈ R and a positive minimal gallery

B = C0
e1−→ C1

e2−→ · · · ek−1−−→ Ck−1
ek−→ Ck = C,

we let
Pow(C) := ℓΣ(ek)

ℓΣ(ek−1)
· · · ℓΣ(e1)

.

(We prove in [9] that Pow is well-defined.) Just as Crackle embeds the “short and wide”
poset Shard(H, B) into the “tall and wide” interval [1, ∆2]P+ , the map Pow embeds the
“tall and slender” poset Weak(H, B) into [1, ∆2]P+ .

Theorem 6. The map Pow is a poset embedding from Weak(H, B) into [1, ∆2]P+ .

9 Future Work

9.1 Noncrossing Pure Braid Presentations

In future work, we will combine Theorem 1 with Salvetti’s presentation of π1(Sal(H), B),
Coxeter–Catalan combinatorics, Cambrian lattices, and noncrossing shards to write ex-
plicit presentations of the pure braid groups of finite Coxeter groups. In the special case
of the symmetric group and the Tamari lattice, our method will recover Artin’s original
presentation of the pure braid group [2, 3].

9.2 The Pure Shard Monoid

The pure shard monoid is an interesting algebraic and order-theoretic structure that
deserves further study—in particular, we would like to better understand the elements
and the maximal chains in the interval [1, ∆2]P+ . These maximal chains correspond to
LX-words representing the full twist ∆2. When H is an arrangement of rank 2, we
characterized these words in [9, Proposition 4.7]. It would already be interesting to
better understand [1, ∆2]P+ for special cases, such as rank-3 arrangements or reflection
arrangements of type-A Coxeter groups.
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9.3 Infinite Arrangements

We have assumed throughout that H is finite. It is natural to ask what aspects of the
above theory generalize to arrangements with infinitely many hyperplanes.

9.4 Bubbles, Blossom, Buttercup (and Bliss)

We view the bubble sort operator Bubbles as the 0-Hecke action of any reduced word
for the long element w◦ in the symmetric group. The higher Bruhat order is a partial
order defined on these reduced words [12]. We wonder if there are similar “higher
Bruhat orders” built from the LX-words for ∆2. One might expect to find relevant maps
Blossom and Buttercup in this theory. We recommend this subsection’s title as the logical
name for this proposed work.
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