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Abstract. We initiate a study of pattern avoidance in quarter-plane lattice walks. First
we demonstrate surprising links between Kreweras excursions (avoiding a pattern of
length 2) and some famous lattice walk models, such as Gessel, Gouyou-Beauchamps,
and Pólya excursions. Next we explore the nature (algebraic, hypergeometric, D-finite)
of the corresponding generating functions. In particular, we show that pattern avoid-
ance does not necessarily preserve algebraicity or D-finiteness.
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1 Introduction

In this paper we study pattern avoidance in quarter-plane lattice walks. A lattice walk
is a word w over a stepset — an alphabet S , whose elements (steps) are interpreted as
vectors in the plane, and then w is visualized as these vectors concatenated to each other
to form a polygonal line. A pattern in this context is a fixed word p, and we deal with
enumeration of walks that avoid p (that is, p is not a consecutive subsequence of w).

The case of directed walks (the models where all the steps have a positive x-coordinate)
which avoid a given pattern was studied in [1]. Therein, the vectorial kernel method
was developed in order to obtain an explicit expression of the corresponding generating
functions, which are systematically algebraic.

In this work, we initiate the study of pattern avoidance for walks in the quarter
plane N2. We use the term excursion to indicate a walk in N2 that starts and ends
at (0, 0), and the term meander to indicate a walk in N2 that starts at (0, 0) and ends any-
where in the quarter plane. As a first step, in this article we focus on some combinatorial
surprises which then occur. Firstly, we show that some models of pattern-avoiding Krew-
eras excursions are in bijection with some famous walk models which do not involve any
pattern avoidance. Secondly, we comment on the nature of the corresponding generating
functions and prove some cases of (non)-algebraicity or D-finiteness.
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2 Historical background: Kreweras, Gessel, Pólya, and
Gouyou-Beauchamps models

We briefly survey the history of five noteworthy models which will play a rôle in the
next section for our study of patterns in lattice walks. Each model is characterized by
its allowed steps; for example, the stepset of Kreweras’ model is S = {↓,←,↗} (see
Figure 1).

Kreweras Gessel Pólya Gouyou-Beauchamps Diagonal

Figure 1: The stepsets of five important models of lattice walks.

2.1 Kreweras walks
In his PhD thesis [27], Kreweras tackled the question of the enumeration of variants of
solid partitions (initially studied by MacMahon in [29]), and of other combinatorial struc-
tures (like Young tableaux) related to natural posets. He applied this to the m-candidate
ballot problem: the number of ways that n people can vote for candidates C1, . . . , Cm
such that C1 remains in the lead (or tied) with respect to the other candidates during the
ballot process. For 3 candidates, any such process corresponds to a Kreweras meander.
If C1 remained in the lead but ties with all other candidates at the end, this corresponds
to a Kreweras excursion of length 3n. They are counted (applying [27, Section 3.2]) by

e3n =
4n

(2n + 1)(n + 1)

(
3n
n

)
. (2.1)

This is the sequence A006335 in the On-Line Encyclopedia of Integer Sequences (OEIS).
Kreweras proved (2.1) by a guess-and-prove approach, which was then simplified in
collaboration with Niederhausen using hypergeometric identities [28, 31]. Gessel later
proved (2.1) in [18] with a probabilistic approach, rephrasing the problem in terms of
walks in N2. For other stepsets deeper mathematical tools are required. In fact, these
more general walk models correspond to the evolution of two queues in parallel, and
probabilists were interested in the stationary distribution of the corresponding infinite
Markov chain. To this aim, they solved these models with the machinery of boundary-
value problems and Riemann surfaces (see e.g. [14]). For Kreweras walks, Flatto and
Hahn [17] proved that the generating function of this stationary distribution is algebraic.
This method was revisited combinatorially by Bousquet-Mélou in [8], and later with
Mishna in [11], where they performed a classification of almost all models of walks with
small steps as algebraic, D-finite, etc. (the classification was completed since).

The algebraicity of Kreweras walks can also be established via a bijection with planar
maps (see Bernardi [4]), but many combinatorialists still hope for an even simpler proof,
e.g. based on a link with the inherent algebraicity of tree-like structures (see [2, 9, 23]).

https://oeis.org/A006335
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2.2 Gessel walks
In 2001, Ira Gessel conjectured that, for the stepset {→,←,↗,↙}, the number en of
excursions of length n is hypergeometric (and given by the OEIS sequence A135404):

e2n =
42n(1/2)n(5/6)n

(2)n(5/3)n
, where (a)m := a(a + 1) · · · (a + m− 1). (2.2)

This startling conjecture motivated the name “Gessel walks” since attached to this model.
The hypergeometricity of Gessel excursions was first proven by Kauers, Koutschan,

and Zeilberger in [25] using computer algebra techniques. Later, Bostan and Kauers [6]
proved that the trivariate generating function (length, final location) is algebraic. These
two proofs are nice examples of the “guess and prove” art via computer algebra.
Puzzled by a discrepancy between the simplicity of the excursion formula (2.2) and the
enormous size of algebraic equations required for its proof, several authors looked for
a more “human” approach. Bostan, Kurkova, and Raschel [7] found such a proof using
complex analysis, and Bousquet-Mélou [10] found another proof using generating func-
tion manipulations. It still remains a challenge to find an elementary combinatorial proof.

2.3 Pólya walks and diagonal walks
Pólya’s drunkard problem asks for the return probability of a random walk on the Z2 lattice
(with equiprobable steps ↓, ↑, →, and ←). This probability tends to 1 (as proven by
Pólya [32]). A natural question is which conditions on walks in N2 imply this property.
This is answered in [15], where conditions for (null-)recurrence are given.

Pólya walks in N2 were also studied by Guy, Krattenthaler, and Sagan [21], who
gave bijective proofs for the number of walks between any two points. In particular, the
number of Pólya excursions in N2 of length 2n is given by the OEIS sequence A005568:

e2n = CnCn+1, (2.3)

where Cn is the n-th Catalan number. These walks have connections to planar maps and
shuffles of parenthesis systems, as studied by Cori, Dulucq, and Viennot in [12]. The
diagonal walks (see Figure 1) are even simpler to enumerate: e2n = C2

n (OEIS A001246).

2.4 Gouyou-Beauchamps walks
In [19] Gouyou-Beauchamps studied Pólya walks in the quarter plane which stay weakly
below the line y = x, leading to what is now known as Gouyou-Beauchamps walks.
Gouyou-Beauchamps excursions in N2 are counted by the OEIS sequence A005700:

e2n = CnCn+2 − C2
n+1. (2.4)

Gouyou-Beauchamps walks of length 2n ending on the x-axis are in bijection with Pólya
excursions of length 2n, and with Young tableaux of size 2n and height ≤ 4 [20].

https://oeis.org/A135404
https://oeis.org/A005568
https://oeis.org/A001246
https://oeis.org/A005700
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3 Pattern avoidance in Kreweras excursions: bijections

In this section, we consider avoidance of patterns of length 2 in Kreweras walks. Recall
that we deal with consecutive patterns, and note that several occurrences of a pattern can
overlap (e.g., the word ABBBABABB has precisely three occurrences of the pattern BB).

Due to the symmetry of the Kreweras stepset with respect to the diagonal y = x, there
are just five patterns of length 2 that yield non-equivalent pattern-avoiding walk models.
We show that the corresponding pattern-avoiding excursion models exhibit surprising
links to the well-known models mentioned in Section 2: Gessel, Gouyou-Beauchamps,
Pólya, and diagonal excursions. These pattern-avoiding Kreweras excursion models are
listed in Table 1, along with their respective enumerating sequences, their OEIS entries,
and equinumerous quarter-plane excursion models without any forbidden patterns.

Pattern p
# {Kreweras excursions

of length 3n avoiding p}
OEIS In bijection with

Proven
in

1 1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions Thm. 4
2 1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions Prop. 5

3 1, 1, 5, 37, 332, 3343, . . . None
Gessel excursions
ending with ↓

Cor. 8

4 1, 2, 10, 70, 588, 5544, . . . A005568 1 Pólya excursions Prop. 9
5 1, 1, 4, 25, 196, 1764, . . . A001246 1 Diagonal excursions Thm. 10

Table 1: Summary of results concerning quarter-plane models in bijection with
pattern-avoiding Kreweras excursions. Models 1, 2, and 3 are algebraic, while models
4 and 5 are D-finite, but not algebraic (see Section 4).

Most notably, the first two entries of Table 1 relate pattern-avoiding Kreweras excur-
sions to Gessel excursions. In particular, one deduces that the patterns and
are equidistributed among Kreweras excursions. In the following theorem, we prove a
stronger result about the joint statistics of these two patterns.

Theorem 1. The number of Kreweras excursions of length 3n with k occurrences of and
ℓ occurrences of is equal to the number of Kreweras excursions of length 3n with ℓ occurrences
of and k occurrences of .

Proof. We provide an autobijection on the set of Kreweras excursions of length 3n that
switches the occurrences of the patterns and . In this bijection, the patterns can
be independently considered despite the possible overlap of a← step in both patterns.

1It is footnoteworthy that A005568 (resp. A001246) also enumerates Gouyou-Beauchamps walks of even
(resp. odd) length ending on the y-axis, and Young tableaux of height ≤ 4 of even (resp. odd) size; see [20].

https://oeis.org/A135404
https://oeis.org/A135404
https://oeis.org/A005568
https://oeis.org/A001246
https://oeis.org/A005568
https://oeis.org/A001246
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Let w be a Kreweras excursion with k occurrences of the pattern and ℓ occur-
rences of the pattern . We mark each ← which is followed by a ←, and separately
each ↗ which is preceded by a ←. Note that any ← step followed by a ↗ step and
preceded by a ← step (that is, any ← step being at the overlap of the two patterns) is
never marked.

We define the index of a step to be its ordinal number, from 1 to n, among the steps of
the same kind, in the order as they occur in the excursion.

1. Let a1, a2, . . . , ak be the indices of the marked← steps, in the order as they occur in w.
For each i = 1, 2, . . . , k, in this order, we remove the ← step with the index ai, and
insert it immediately before the ↗ step with the index ai + 1. This transformation
yields a valid excursion, since the section of the walk up until the (ai + 1)-th ↗
step can have up to ai ← steps. The newly obtained excursion is denoted by w′.

2. Next, let b1, b2, . . . , bℓ be the indices of the marked ↗ steps, in the order as they
occur in w′. (Note that we only consider ↗ steps marked before Step 1.) For each
j = ℓ, ℓ − 1, . . . , 1, in this order, we remove the ← step that occurs immediately
before a marked ↗ step with index bj, and insert it immediately before the ← step
with index bj. As above, one can routinely show that the resulting walk is an
excursion; we denote it by w′′.

Refer to Figure 2 for an example, where the marked ← steps are coloured red, and
the marked ↗ steps are coloured blue. It is easily seen directly that w 7→ w′′ is an
involution. Therefore, it is a bijection.

Finally, we show that w′′ has ℓ occurrences of and k occurrences of . At Step 1,
k occurrences of yield k distinct “new” occurrences of in w′. The only way in
which the patterns can overlap in w′, is a string where the first ← was adjacent
to the (marked) ↗ in w, and the second ← is an inserted one. Then, at Step 2, ℓ “old”
occurrences of yield distinct occurrences in w′′. In particular, in each string
the step ↗ is marked, therefore it yields both and in w′′. All in all, it follows
that w 7→ w′′ swaps the numbers of occurrences of and .

w
7→

w′

7→
w′′

Figure 2: An example of the mapping w 7→ w′′ in the proof of Theorem 1.

For k = 0 we immediately obtain the following result.

Corollary 2. There is a bijection between -avoiding Kreweras excursions of length 3n and
-avoiding Kreweras excursions of length 3n.
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The following table shows the number of Kreweras excursions of length 3n with
precisely k occurrences of the pattern (or, due to Theorem 1, of the pattern ).

k = 0 1 2 3
n = 1 2

2 11 5
3 85 93 14
4 782 1432 560 42

Of course, the row sums in this table are Kreweras numbers. As noted in Table 1 (the first
two entries), the first column, corresponding to avoidance, contains Gessel numbers: this
will be proven in Theorem 4. On the other hand, the maximum possible number of oc-
currences of is n− 1, and the Kreweras excursions that have that many occurrences
of this pattern make a nice cameo of Catalan numbers, as we show now.

Proposition 3. The number of Kreweras excursions of length 3n with n− 1 occurrences of the
pattern (or, equivalently, ) is the (n + 1)-th Catalan number.

Proof. The only way in which such an excursion can have n− 1 occurrences of the pat-
tern is when all ← steps occur consecutively, and this must happen after all of the
↗ steps. Therefore the walk ends with a consecutive sequence of n← steps followed by
a (possibly empty) consecutive sequence of ↓ steps to return to (0, 0). Since it is possible
to reconstruct the end of the excursion by knowing where the first← step is, we remove
this end-section of the excursion and replace it with a ↗ step followed by ↓ steps to
reach the x-axis. The obtained walk then consists of n + 1 steps of type ↗ and n + 1
steps of type ↓, which is a slanted Dyck path of length 2(n + 1). This correspondence is
easily seen to be a bijection, and it is demonstrated in the following figure.

We now prove the links between constrained Kreweras excursions and Gessel excursions.

Theorem 4 (Table 1, Entry 1). There is a bijection between -avoiding Kreweras excursions
of length 3n and Gessel excursions of length 2n.

Proof. Consider the following correspondence between steps of -avoiding Kreweras
excursions (left) and Gessel excursions (right):

←→ ←→ ←→ ←→
Note that in -avoiding Kreweras excursions, a step immediately before a← step

can be either ↗ or ↓. Therefore, “short-cutting” ↗ and ↓ steps followed by ←, and
leaving all other steps unchanged, directly yields the desired bijection.
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Proposition 5 (Table 1, Entry 2). There is a bijection between -avoiding Kreweras excursions
of length 3n and Gessel excursions of length 2n.

Proof. This follows directly from Theorems 1 and 4.

Next we note that in the bijection from Theorem 4, ↓ steps (not followed by a← step)
are preserved. Hence we have the following generalization.

Proposition 6. There is a bijection between Gessel excursions of length 2n with at least m final
↓ steps and -avoiding Kreweras excursions of length 3n which end with at least m ↓ steps.

The following theorem will be one key ingredient for proving some of the bijective
links of Table 1.

Theorem 7. There is a bijection between -avoiding Kreweras excursions of length 3n and
-avoiding Kreweras excursions of length 3n whose last step is ↓.

Proof. Let w be a -avoiding Kreweras excursion of length 3n. Consider the n-tuple
(α1, . . . , αn), where αi is the number of ← steps that immediately follow the i-th ↓ step.
Note that we have α1 + . . . + αn = n. Transform (α1, . . . , αn) into a {0, 1}-sequence
of length 2n − 1, where the gap between entries contributes 0, and the entry αi ≥ 0
contributes αi 1s. (This is a classical bijection, popularized by Feller [16, Chapter II.5],
often called the “balls and bars” bijection.) Now erase from w all the ← steps, thus
obtaining a sequence w̃ of n ↗ steps and n ↓ steps in the same order as they were in w,
and insert ← steps into w̃ after precisely those positions where we have 1 in the {0, 1}-
sequence constructed above. Refer to Figure 3 for an illustration, where the ← steps
are coloured blue. The new Kreweras walk w′ avoids and has last step ↓, and it is
routine to prove that it is an excursion, and that this mapping is a bijection.

w

←→

(0, 4, 2, 0, 0, 0) ↭ 011110110000

w̃

←→

w′

Figure 3: An example of the bijection w↔ w′ in the proof of Theorem 7.

Now, Proposition 6 and Theorem 7 yield directly the following correspondence.

Corollary 8 (Table 1, Entry 3). There is a bijection between -avoiding Kreweras excursions
of length 3n and Gessel walks which end with at least one ↓ step.
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We now prove the link with Pólya excursions.

Proposition 9 (Table 1, Entry 4). There is a bijection between -avoiding Kreweras excur-
sions of length 3n and Pólya excursions of length 2n.

Proof. Similarly to the proof of Theorem 4, the correspondence of steps of -avoiding
Kreweras (left) and Pólya (right) excursions is given by the following rules.

←→ ←→ ←→ ←→

Finally, we prove the link between -avoiding Kreweras excursions and diagonal
excursions.

Theorem 10 (Table 1, Entry 5). There is a bijection between -avoiding Kreweras excursions
of length 3n and diagonal excursions of length 2n.

Proof. Any Kreweras excursion which avoids the pattern is uniquely determined by
the positions of the↗ steps in the excursion: All steps in between↗ steps are a sequence
of ← steps followed by a sequence of ↓ steps. Therefore we can uniquely decompose
the excursions into pairs of Dyck paths (D1, D2), where D1 consists of all↗ and ↓ steps
(in order) in the excursion, and D2 all ↗ and ← steps in the excursion. The original
Kreweras excursion can be obtained from pairs by placing all ← and ↓ steps between a
given pair of↗ steps with← steps first, followed by ↓ steps.

From the pair (D1, D2) of two Dyck paths of length 2n, we consider the i-th step in
D1 = d1,1d1,2 . . . d1,2n and D2 = d2,1d2,2 . . . d2,2n simultaneously, 1 ≤ i ≤ 2n, and form the
i-th step gi of the diagonal excursion as follows:

• If d1,i =↗ and d2,i =↗, then gi =↗.
• If d1,i =↗ and d2,i =←, then gi =↖.
• If d1,i =↓ and d2,i =↗, then gi =↘.
• If d1,i =↓ and d2,i =←, then gi =↙.

Now, diagonal excursions are decomposed into pairs of Dyck paths by considering the
projection of the excursion on the x- and y-axis. These Dyck paths correspond to (D1, D2)
as described above. See Figure 4 for an example.

⇄ ⇄

Figure 4: An example for the bijection from Theorem 10.
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4 Pattern avoidance and nature of generating functions

In this section, we tackle the question of the (non)-algebraicity of pattern-avoiding walks.
To this aim, it is useful to first recall the notion of directed walks. A walk is called

directed if all its steps (x, y) have x ≥ 0. Since such walks can be encoded by context-free
grammars, their generating functions are systematically algebraic; see e.g. [3, 13].

What happens for more general stepsets, when one additionally forbids a pattern,
and constrains the domain? This is summarized in the following theorem.

Theorem 11 ((Non)-algebraicity of generating functions). For any fixed stepset, let
F(t, x, y, v) be the generating function of walks constrained in a domain, where t, x, y, and v
encode respectively the length of the walk, its final x and y coordinates, and the number of occur-
rences of a given pattern p. The nature of this generating function satisfies:

a) For walks in Z2 avoiding a pattern, F is rational.
b) For walks in N×Z avoiding a pattern, F is algebraic.
c) For directed walks in N2 avoiding a pattern, F is algebraic.
d) For non-directed walks in N2 avoiding a pattern, F is not necessarily algebraic.

Proof. a) The walks in Z2 avoiding a pattern p with stepset S can be encoded by the
complement of a regular expression, namely {S∗pS∗}c, and thus have a rational
generating function.

b) These pattern-avoiding walks in N×Z are encodable by a pushdown automaton
with a single stack (encoding the distance to the y-axis), and thus by a context-free
grammar [3]; therefore, they have an algebraic generating function.

c) If the walk is directed, then, by the vectorial kernel method (as developed in [1]),
F(t, x, y, v) is algebraic. In particular, setting v = 0, the generating function of
directed walks avoiding a given pattern is algebraic.

d) For non-directed walks, one can have F(t, x, y, 1) algebraic, but F(t, x, y, 0) not alge-
braic. It is e.g. the case for Entry 4 of Table 1. Indeed, these walks are counted by
CnCn+1 ∼ 4 16n

πn3 . Such asymptotics involving an n−3 factor are not compatible with
the rather constrained asymptotics of algebraic function coefficients [2, 24].

It is natural to ask to what extent forbidding a pattern impacts the nature of the
generating function. Figure 5 illustrates the drastic impact it can have.

Kauers–Yatchak’s model [26]
(NB: steps are with multiplicity)

1

1 2 1

2

11

Mishna–Rechnitzer’s
model [30]

Figure 5: Forbidding some steps in the left (algebraic) model leads to the right (hyper-
transcendental) model (as follows by the work of Singer and Hardouin [22]).

The models of Kreweras excursions of Section 3 are thus much more structured than
what could be expected, as proven in the following proposition.
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Proposition 12. For each pattern p of length 2, the generating function for p-avoiding Kreweras
excursions is D-finite (and not algebraic for the patterns , , and ).

Proof. Due to the properties of the models discussed in Section 2, the only case which
is left open is Entry 3 in Table 1. Yet, its generating function is just the extraction of the
coefficient [x0y1] in a trivariate algebraic generating function (the one of Gessel walks).
By classical closure properties [33] this gives a D-finite function, and it can be checked
that it satisfies the same differential equation as an algebraic function of degree 4.

The classification for meanders is still open; let us explain what the obstacles are if one
tries to extend the kernel method approaches. Kreweras walks with each occurrence of
p = a1a2 is marked by v can be generated by an automaton with two states: The walk is
in state Q1 if its last step is a1, and in state Q0 otherwise. For example, for p = :

↗, ↓
Q0

v

←
↗, ↓ ←Q1

In this example, the corresponding transition matrix is A =

(
xy + y−1 x−1

xy + y−1 vx−1

)
. Now, let

Qi(t, x, y, v) be the generating function of walks starting in state Qi (for short, we denote
it hereafter by Qi(x, y)). One thus has the following matrix equation

(Q0(x, y), Q1(x, y)) = (1, 0) + t{x≥0y≥0}(Q0(x, y), Q1(x, y))A,

which, in turn, is equivalent to the following system of two equations:(
1− t(xy + ȳ)

)
Q0(x, y)− t(xy + ȳ)Q1(x, y) = 1− tȳ

(
Q0(x, 0) + Q1(x, 0)

)
,

−tx̄Q0(x, y) + (1− tvx̄)Q1(x, y) = −tx̄
(
Q0(0, y) + vQ1(0, y)

)
.

More generally, a pattern of length m leads similarly to a system of m equations, with
3m unknowns and m2 “kernels” (the coefficients in front of the Qi(x, y)’s). In most cases,
trying to obtain new equations via variants of the algebraic and vectorial kernel methods
(see [1, 8]) does not solve this system, except in a few noteworthy cases which possess
more symmetries. This allows us to show, for example, that Pólya walks avoiding the
pattern are counted by a pullback of a hypergeometric function (similarly to [5]).
We plan to detail these aspects in our forthcoming article.

This concludes our investigation of patterns for lattice walks in N2: we focused
here on patterns of length 2 leading to nice combinatorial features, so many natural
extensions are possible. For example, it is possible to tackle longer or more complex
patterns (e.g. some regular expressions), to attach weights or multiplicities to the steps,
to include border interactions, to add parameters which mark how often a walk visits
a given set of sites, to consider other domains than N2, to follow statistics such as
the height or the (signed) area, to establish the corresponding asymptotics and limit
laws. . . The study of lattice path generating functions still has good days ahead!
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