From Kreweras to Gessel: A walk through patterns in the quarter plane

Andrei Asinowski*1, Cyril Banderier†2, and Sarah J. Selkirk‡1

1Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
2Laboratoire d’Informatique de Paris Nord, Université Sorbonne Paris Nord, France

Abstract. We initiate a study of pattern avoidance in quarter-plane lattice walks. First we demonstrate surprising links between Kreweras excursions (avoiding a pattern of length 2) and some famous lattice walk models, such as Gessel, Gouyou-Beauchamps, and Pólya excursions. Next we explore the nature (algebraic, hypergeometric, D-finite) of the corresponding generating functions. In particular, we show that pattern avoidance does not necessarily preserve algebraicity or D-finiteness.

Keywords: lattice walks, pattern avoidance, bijections, generating functions

1 Introduction

In this paper we study pattern avoidance in quarter-plane lattice walks. A lattice walk is a word w over a stepset — an alphabet S, whose elements (steps) are interpreted as vectors in the plane, and then w is visualized as these vectors concatenated to each other to form a polygonal line. A pattern in this context is a fixed word p, and we deal with enumeration of walks that avoid p (that is, p is not a consecutive subsequence of w).

The case of directed walks (the models where all the steps have a positive x-coordinate) which avoid a given pattern was studied in [1]. Therein, the vectorial kernel method was developed in order to obtain an explicit expression of the corresponding generating functions, which are systematically algebraic.

In this work, we initiate the study of pattern avoidance for walks in the quarter plane \mathbb{N}^2. We use the term excursion to indicate a walk in \mathbb{N}^2 that starts and ends at $(0, 0)$, and the term meander to indicate a walk in \mathbb{N}^2 that starts at $(0, 0)$ and ends anywhere in the quarter plane. As a first step, in this article we focus on some combinatorial surprises which then occur. Firstly, we show that some models of pattern-avoiding Kreweras excursions are in bijection with some famous walk models which do not involve any pattern avoidance. Secondly, we comment on the nature of the corresponding generating functions and prove some cases of (non)-algebraicity or D-finiteness.

*https://me.aau.at/~anasinowski/. Partially supported by the FWF project P32731.
†https://lipn.fr/~banderier/. Partially supported by the PHC Amadeus project 48736QG.
‡https://www.math.aau.at/selkirk/. Supported by the FWF project DOC78.
A. Asinowski, C. Banderier, and S.J. Selkirk

2 Historical background: Kreweras, Gessel, Pólya, and Gouyou-Beauchamps models

We briefly survey the history of five noteworthy models which will play a rôle in the next section for our study of patterns in lattice walks. Each model is characterized by its allowed steps; for example, the stepset of Kreweras' model is $S = \{\downarrow, \leftarrow, \nearrow\}$ (see Figure 1).

<table>
<thead>
<tr>
<th>Kreweras</th>
<th>Gessel</th>
<th>Pólya</th>
<th>Gouyou-Beauchamps</th>
<th>Diagonal</th>
</tr>
</thead>
</table>

Figure 1: The stepsets of five important models of lattice walks.

2.1 Kreweras walks

In his PhD thesis [27], Kreweras tackled the question of the enumeration of variants of solid partitions (initially studied by MacMahon in [29]), and of other combinatorial structures (like Young tableaux) related to natural posets. He applied this to the m-candidate ballot problem: the number of ways that n people can vote for candidates C_1, \ldots, C_m such that C_1 remains in the lead (or tied) with respect to the other candidates during the ballot process. For 3 candidates, any such process corresponds to a Kreweras meander. If C_1 remained in the lead but ties with all other candidates at the end, this corresponds to a Kreweras excursion of length $3n$. They are counted (applying [27, Section 3.2]) by

$$e_{3n} = \frac{4^n}{(2n+1)(n+1)} \binom{3n}{n}.$$ \hspace{1cm} (2.1)

This is the sequence A006335 in the On-Line Encyclopedia of Integer Sequences (OEIS). Kreweras proved (2.1) by a guess-and-prove approach, which was then simplified in collaboration with Niederhausen using hypergeometric identities [28, 31]. Gessel later proved (2.1) in [18] with a probabilistic approach, rephrasing the problem in terms of walks in \mathbb{N}^2. For other stepsets deeper mathematical tools are required. In fact, these more general walk models correspond to the evolution of two queues in parallel, and probabilists were interested in the stationary distribution of the corresponding infinite Markov chain. To this aim, they solved these models with the machinery of boundary-value problems and Riemann surfaces (see e.g. [14]). For Kreweras walks, Flatto and Hahn [17] proved that the generating function of this stationary distribution is algebraic. This method was revisited combinatorially by Bousquet-Mélou in [8], and later with Mishna in [11], where they performed a classification of almost all models of walks with small steps as algebraic, D-finite, etc. (the classification was completed since).

The algebraicity of Kreweras walks can also be established via a bijection with planar maps (see Bernardi [4]), but many combinatorialists still hope for an even simpler proof, e.g. based on a link with the inherent algebraicity of tree-like structures (see [2, 9, 23]).
2.2 Gessel walks

In 2001, Ira Gessel conjectured that, for the stepset \{→, ←, ↗, ↘\}, the number \(e_n\) of excursions of length \(n\) is hypergeometric (and given by the OEIS sequence \(A135404\)):

\[
e_{2n} = \frac{4^{2n}(1/2)_n(5/6)_n}{(2)_n(5/3)_n}, \quad \text{where } (a)_n := a(a+1)\cdots(a+m-1). \tag{2.2}
\]

This startling conjecture motivated the name “Gessel walks” since attached to this model.

The hypergeometricity of Gessel excursions was first proven by Kauers, Koutschan, and Zeilberger in [25] using computer algebra techniques. Later, Bostan and Kauers [6] proved that the trivariate generating function (length, final location) is algebraic. These two proofs are nice examples of the “guess and prove” art via computer algebra. Puzzled by a discrepancy between the simplicity of the excursion formula (2.2) and the enormous size of algebraic equations required for its proof, several authors looked for a more “human” approach. Bostan, Kurkova, and Raschel [7] found such a proof using complex analysis, and Bousquet-Mélou [10] found another proof using generating function manipulations. It still remains a challenge to find an elementary combinatorial proof.

2.3 Pólya walks and diagonal walks

Pólya’s drunkard problem asks for the return probability of a random walk on the \(\mathbb{Z}^2\) lattice (with equiprobable steps ↓, ↑, →, and ←). This probability tends to 1 (as proven by Pólya [32]). A natural question is which conditions on walks in \(\mathbb{N}^2\) imply this property. This is answered in [15], where conditions for (null-)recurrence are given.

Pólya walks in \(\mathbb{N}^2\) were also studied by Guy, Krattenthaler, and Sagan [21], who gave bijective proofs for the number of walks between any two points. In particular, the number of Pólya excursions in \(\mathbb{N}^2\) of length \(2n\) is given by the OEIS sequence \(A005568\):

\[
e_{2n} = C_n C_{n+1}, \tag{2.3}
\]

where \(C_n\) is the \(n\)-th Catalan number. These walks have connections to planar maps and shuffles of parenthesis systems, as studied by Cori, Dulucq, and Viennot in [12]. The diagonal walks (see Figure 1) are even simpler to enumerate: \(e_{2n} = C_n^2\) (OEIS A001246).

2.4 Gouyou-Beauchamps walks

In [19] Gouyou-Beauchamps studied Pólya walks in the quarter plane which stay weakly below the line \(y = x\), leading to what is now known as Gouyou-Beauchamps walks. Gouyou-Beauchamps excursions in \(\mathbb{N}^2\) are counted by the OEIS sequence \(A005700\):

\[
e_{2n} = C_n C_{n+2} - C_{n+1}^2. \tag{2.4}
\]

Gouyou-Beauchamps walks of length \(2n\) ending on the \(x\)-axis are in bijection with Pólya excursions of length \(2n\), and with Young tableaux of size \(2n\) and height \(\leq 4\) [20].
3 Pattern avoidance in Kreweras excursions: bijections

In this section, we consider avoidance of patterns of length 2 in Kreweras walks. Recall that we deal with consecutive patterns, and note that several occurrences of a pattern can overlap (e.g., the word ABBBABABB has precisely three occurrences of the pattern BB).

Due to the symmetry of the Kreweras stepset with respect to the diagonal $y = x$, there are just five patterns of length 2 that yield non-equivalent pattern-avoiding walk models. We show that the corresponding pattern-avoiding excursion models exhibit surprising links to the well-known models mentioned in Section 2: Gessel, Gouyou-Beauchamps, Pólya, and diagonal excursions. These pattern-avoiding Kreweras excursion models are listed in Table 1, along with their respective enumerating sequences, their OEIS entries, and equinumerous quarter-plane excursion models without any forbidden patterns.

<table>
<thead>
<tr>
<th>Pattern p</th>
<th># {Kreweras excursions of length $3n$ avoiding p}</th>
<th>OEIS</th>
<th>In bijection with</th>
<th>Proven in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1, 2, 11, 85, 782, 8004, \ldots$</td>
<td>A135404</td>
<td>Gessel excursions</td>
<td>Thm. 4</td>
</tr>
<tr>
<td>2</td>
<td>$1, 2, 11, 85, 782, 8004, \ldots$</td>
<td>A135404</td>
<td>Gessel excursions</td>
<td>Prop. 5</td>
</tr>
<tr>
<td>3</td>
<td>$1, 1, 5, 37, 332, 3343, \ldots$</td>
<td>None</td>
<td>Gessel excursions ending with \downarrow</td>
<td>Cor. 8</td>
</tr>
<tr>
<td>4</td>
<td>$1, 2, 10, 70, 588, 5544, \ldots$</td>
<td>A005568 1</td>
<td>Pólya excursions</td>
<td>Prop. 9</td>
</tr>
<tr>
<td>5</td>
<td>$1, 1, 4, 25, 196, 1764, \ldots$</td>
<td>A001246 1</td>
<td>Diagonal excursions</td>
<td>Thm. 10</td>
</tr>
</tbody>
</table>

Table 1: Summary of results concerning quarter-plane models in bijection with pattern-avoiding Kreweras excursions. Models 1, 2, and 3 are algebraic, while models 4 and 5 are D-finite, but not algebraic (see Section 4).

Most notably, the first two entries of Table 1 relate pattern-avoiding Kreweras excursions to Gessel excursions. In particular, one deduces that the patterns \leftarrow and \triangleleft are equidistributed among Kreweras excursions. In the following theorem, we prove a stronger result about the joint statistics of these two patterns.

Theorem 1. The number of Kreweras excursions of length $3n$ with k occurrences of \leftarrow and ℓ occurrences of \triangleleft is equal to the number of Kreweras excursions of length $3n$ with ℓ occurrences of \leftarrow and k occurrences of \triangleleft.

Proof. We provide an autobijection on the set of Kreweras excursions of length $3n$ that switches the occurrences of the patterns \leftarrow and \triangleleft. In this bijection, the patterns can be independently considered despite the possible overlap of a \leftarrow step in both patterns.

1It is *footnoteworthy* that A005568 (resp. A001246) also enumerates Gouyou-Beauchamps walks of even (resp. odd) length ending on the y-axis, and Young tableaux of height ≤ 4 of even (resp. odd) size; see [20].
Let \(w \) be a Kreweras excursion with \(k \) occurrences of the pattern \(\leftarrow \) and \(\ell \) occurrences of the pattern \(\nearrow \). We mark each \(\leftarrow \) which is followed by a \(\leftarrow \), and separately each \(\nearrow \) which is preceded by a \(\leftarrow \). Note that any \(\leftarrow \) step followed by a \(\nearrow \) step and preceded by a \(\leftarrow \) step (that is, any \(\leftarrow \) step being at the overlap of the two patterns) is never marked.

We define the \textit{index} of a step to be its ordinal number, from 1 to \(n \), among the steps of the same kind, in the order as they occur in the excursion.

1. Let \(a_1, a_2, \ldots, a_k \) be the indices of the marked \(\leftarrow \) steps, in the order as they occur in \(w \). For each \(i = 1, 2, \ldots, k \), in this order, we remove the \(\leftarrow \) step with the index \(a_i \), and insert it immediately before the \(\nearrow \) step with the index \(a_i + 1 \). This transformation yields a valid excursion, since the section of the walk up until the \((a_i + 1) \)-th \(\nearrow \) step can have up to \(a_i \) \(\leftarrow \) steps. The newly obtained excursion is denoted by \(w' \).

2. Next, let \(b_1, b_2, \ldots, b_\ell \) be the indices of the marked \(\nearrow \) steps, in the order as they occur in \(w' \). (Note that we only consider \(\nearrow \) steps marked before Step 1.) For each \(j = \ell, \ell - 1, \ldots, 1 \), in this order, we remove the \(\leftarrow \) step that occurs immediately before a \textit{marked} \(\nearrow \) step with index \(b_j \), and insert it immediately before the \(\leftarrow \) step with index \(b_j \). As above, one can routinely show that the resulting walk is an excursion; we denote it by \(w'' \).

Refer to Figure 2 for an example, where the marked \(\leftarrow \) steps are coloured red, and the marked \(\nearrow \) steps are coloured blue. It is easily seen directly that \(w \mapsto w'' \) is an involution. Therefore, it is a bijection.

Finally, we show that \(w'' \) has \(\ell \) occurrences of \(\leftarrow \) and \(k \) occurrences of \(\nearrow \). At Step 1, \(k \) occurrences of \(\leftarrow \) yield \(k \) distinct “new” occurrences of \(\nearrow \) in \(w' \). The only way in which the patterns can overlap in \(w' \), is a string \(\nearrow \), where the first \(\leftarrow \) was adjacent to the (marked) \(\nearrow \) in \(w \), and the second \(\leftarrow \) is an inserted one. Then, at Step 2, \(\ell \) “old” occurrences of \(\nearrow \) yield distinct occurrences \(\leftarrow \) in \(w'' \). In particular, in each string \(\nearrow \), the step \(\nearrow \) is marked, therefore it yields both \(\leftarrow \) and \(\nearrow \) in \(w'' \). All in all, it follows that \(w \mapsto w'' \) swaps the numbers of occurrences of \(\leftarrow \) and \(\nearrow \).

![Figure 2](image-url)\[Figure 2: An example of the mapping \(w \mapsto w'' \) in the proof of Theorem 1.\]

For \(k = 0 \) we immediately obtain the following result.

\textbf{Corollary 2.} There is a bijection between \(\leftarrow \)-avoiding Kreweras excursions of length \(3n \) and \(\nearrow \)-avoiding Kreweras excursions of length \(3n \).
The following table shows the number of Kreweras excursions of length $3n$ with precisely k occurrences of the pattern \leftarrow (or, due to Theorem 1, of the pattern \nearrow).

<table>
<thead>
<tr>
<th>n</th>
<th>k = 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>93</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>782</td>
<td>1432</td>
<td>560</td>
<td>42</td>
</tr>
</tbody>
</table>

Of course, the row sums in this table are Kreweras numbers. As noted in Table 1 (the first two entries), the first column, corresponding to avoidance, contains Gessel numbers: this will be proven in Theorem 4. On the other hand, the maximum possible number of occurrences of \leftarrow is $n - 1$, and the Kreweras excursions that have that many occurrences of this pattern make a nice cameo of Catalan numbers, as we show now.

Proposition 3. The number of Kreweras excursions of length $3n$ with $n - 1$ occurrences of the pattern \leftarrow (or, equivalently, \nearrow) is the $(n + 1)$-th Catalan number.

Proof. The only way in which such an excursion can have $n - 1$ occurrences of the pattern \leftarrow is when all \leftarrow steps occur consecutively, and this must happen after all of the \nearrow steps. Therefore the walk ends with a consecutive sequence of n \leftarrow steps followed by a (possibly empty) consecutive sequence of \down steps to return to $(0, 0)$. Since it is possible to reconstruct the end of the excursion by knowing where the first \leftarrow step is, we remove this end-section of the excursion and replace it with a \nearrow step followed by \down steps to reach the x-axis. The obtained walk then consists of $n + 1$ steps of type \nearrow and $n + 1$ steps of type \down, which is a slanted Dyck path of length $2(n + 1)$. This correspondence is easily seen to be a bijection, and it is demonstrated in the following figure.

We now prove the links between constrained Kreweras excursions and Gessel excursions.

Theorem 4 (Table 1, Entry 1). There is a bijection between \leftarrow-avoiding Kreweras excursions of length $3n$ and Gessel excursions of length $2n$.

Proof. Consider the following correspondence between steps of \leftarrow-avoiding Kreweras excursions (left) and Gessel excursions (right):

Note that in \leftarrow-avoiding Kreweras excursions, a step immediately before a \leftarrow step can be either \nearrow or \down. Therefore, “short-cutting” \nearrow and \down steps followed by \leftarrow, and leaving all other steps unchanged, directly yields the desired bijection.
Proposition 5 (Table 1, Entry 2). There is a bijection between \searrow-avoiding Kreweras excursions of length $3n$ and Gessel excursions of length $2n$.

Proof. This follows directly from Theorems 1 and 4.

Next we note that in the bijection from Theorem 4, ↓ steps (not followed by a ← step) are preserved. Hence we have the following generalization.

Proposition 6. There is a bijection between Gessel excursions of length $2n$ with at least m final ↓ steps and \searrow-avoiding Kreweras excursions of length $3n$ which end with at least m ↓ steps.

The following theorem will be one key ingredient for proving some of the bijective links of Table 1.

Theorem 7. There is a bijection between \swarrow-avoiding Kreweras excursions of length $3n$ and \nwarrow-avoiding Kreweras excursions of length $3n$ whose last step is ↓.

Proof. Let w be a \swarrow-avoiding Kreweras excursion of length $3n$. Consider the n-tuple (a_1, \ldots, a_n), where a_i is the number of ← steps that immediately follow the i-th ↓ step. Note that we have $a_1 + \ldots + a_n = n$. Transform (a_1, \ldots, a_n) into a $\{0,1\}$-sequence of length $2n - 1$, where the gap between entries contributes 0, and the entry $a_i \geq 0$ contributes a_i 1s. (This is a classical bijection, popularized by Feller [16, Chapter II.5], often called the “balls and bars” bijection.) Now erase from w all the ← steps, thus obtaining a sequence \bar{w} of $n \nearrow$ steps and $n \downarrow$ steps in the same order as they were in w, and insert ← steps into \bar{w} after precisely those positions where we have 1 in the $\{0,1\}$-sequence constructed above. Refer to Figure 3 for an illustration, where the ← steps are coloured blue. The new Kreweras walk w' avoids \nwarrow and has last step ↓, and it is routine to prove that it is an excursion, and that this mapping is a bijection.

![Figure 3: An example of the bijection $w \leftrightarrow w'$ in the proof of Theorem 7.](image)

(0, 4, 2, 0, 0, 0) \mapsto 011110110000

Now, Proposition 6 and Theorem 7 yield directly the following correspondence.

Corollary 8 (Table 1, Entry 3). There is a bijection between \nearrow-avoiding Kreweras excursions of length $3n$ and Gessel walks which end with at least one ↓ step.
We now prove the link with Pólya excursions.

Proposition 9 (Table 1, Entry 4). There is a bijection between \(\nearrow \)-avoiding Kreweras excursions of length \(3n \) and Pólya excursions of length \(2n \).

Proof. Similarly to the proof of Theorem 4, the correspondence of steps of \(\nearrow \)-avoiding Kreweras (left) and Pólya (right) excursions is given by the following rules.

\[
\begin{array}{cccc}
\uparrow & \leftrightarrow & \uparrow & \leftrightarrow \\
\downarrow & \leftrightarrow & \downarrow & \leftrightarrow \\
\end{array}
\]

Finally, we prove the link between \(\nwarrow \)-avoiding Kreweras excursions and diagonal excursions.

Theorem 10 (Table 1, Entry 5). There is a bijection between \(\nwarrow \)-avoiding Kreweras excursions of length \(3n \) and diagonal excursions of length \(2n \).

Proof. Any Kreweras excursion which avoids the pattern \(\nwarrow \) is uniquely determined by the positions of the \(\nearrow \) steps in the excursion: All steps in between \(\nearrow \) steps are a sequence of \(\leftarrow \) steps followed by a sequence of \(\downarrow \) steps. Therefore we can uniquely decompose the excursions into pairs of Dyck paths \((D_1, D_2)\), where \(D_1 \) consists of all \(\nearrow \) and \(\downarrow \) steps (in order) in the excursion, and \(D_2 \) all \(\nearrow \) and \(\leftarrow \) steps in the excursion. The original Kreweras excursion can be obtained from pairs by placing all \(\leftarrow \) and \(\downarrow \) steps between a given pair of \(\nearrow \) steps with \(\leftarrow \) steps first, followed by \(\downarrow \) steps.

From the pair \((D_1, D_2)\) of two Dyck paths of length \(2n \), we consider the \(i \)-th step in \(D_1 = d_{1,1}d_{1,2}\ldots d_{1,2n} \) and \(D_2 = d_{2,1}d_{2,2}\ldots d_{2,2n} \) simultaneously, \(1 \leq i \leq 2n \), and form the \(i \)-th step \(g_i \) of the diagonal excursion as follows:

- If \(d_{1,i} = \nearrow \) and \(d_{2,i} = \nearrow \), then \(g_i = \nearrow \).
- If \(d_{1,i} = \nearrow \) and \(d_{2,i} = \leftarrow \), then \(g_i = \nwarrow \).
- If \(d_{1,i} = \downarrow \) and \(d_{2,i} = \nearrow \), then \(g_i = \nwarrow \).
- If \(d_{1,i} = \downarrow \) and \(d_{2,i} = \leftarrow \), then \(g_i = \nwarrow \).

Now, diagonal excursions are decomposed into pairs of Dyck paths by considering the projection of the excursion on the \(x \)- and \(y \)-axis. These Dyck paths correspond to \((D_1, D_2)\) as described above. See Figure 4 for an example.

![Figure 4: An example for the bijection from Theorem 10.](image)
4 Pattern avoidance and nature of generating functions

In this section, we tackle the question of the (non)-algebraicity of pattern-avoiding walks. To this aim, it is useful to first recall the notion of directed walks. A walk is called directed if all its steps \((x, y)\) have \(x \geq 0\). Since such walks can be encoded by context-free grammars, their generating functions are systematically algebraic; see e.g. \([3, 13]\).

What happens for more general stepsets, when one additionally forbids a pattern, and constrains the domain? This is summarized in the following theorem.

Theorem 11 ((Non-)algebraicity of generating functions). For any fixed stepset, let \(F(t, x, y, v)\) be the generating function of walks constrained in a domain, where \(t, x, y,\) and \(v\) encode respectively the length of the walk, its final \(x\) and \(y\) coordinates, and the number of occurrences of a given pattern \(p\). The nature of this generating function satisfies:

- a) For walks in \(\mathbb{Z}^2\) avoiding a pattern, \(F\) is rational.
- b) For walks in \(\mathbb{N} \times \mathbb{Z}\) avoiding a pattern, \(F\) is algebraic.
- c) For directed walks in \(\mathbb{N}^2\) avoiding a pattern, \(F\) is algebraic.
- d) For non-directed walks in \(\mathbb{N}^2\) avoiding a pattern, \(F\) is not necessarily algebraic.

Proof.

a) The walks in \(\mathbb{Z}^2\) avoiding a pattern \(p\) with stepset \(S\) can be encoded by the complement of a regular expression, namely \(\{S^*pS^*\}^c\), and thus have a rational generating function.

b) These pattern-avoiding walks in \(\mathbb{N} \times \mathbb{Z}\) are encodable by a pushdown automaton with a single stack (encoding the distance to the \(y\)-axis), and thus by a context-free grammar \([3]\); therefore, they have an algebraic generating function.

c) If the walk is directed, then, by the vectorial kernel method (as developed in \([1]\)), \(F(t, x, y, v)\) is algebraic. In particular, setting \(v = 0\), the generating function of directed walks avoiding a given pattern is algebraic.

d) For non-directed walks, one can have \(F(t, x, y, 1)\) algebraic, but \(F(t, x, y, 0)\) not algebraic. It is e.g. the case for Entry 4 of Table 1. Indeed, these walks are counted by \(C_n C_{n+1} \sim 4 \frac{16^n}{\pi n^3}\). Such asymptotics involving an \(n^{-3}\) factor are not compatible with the rather constrained asymptotics of algebraic function coefficients \([2, 24]\).

It is natural to ask to what extent forbidding a pattern impacts the nature of the generating function. Figure 5 illustrates the drastic impact it can have.

![Figure 5: Forbidding some steps in the left (algebraic) model leads to the right (hypertranscendental) model (as follows by the work of Singer and Hardouin [22]).](image)

The models of Kreweras excursions of Section 3 are thus much more structured than what could be expected, as proven in the following proposition.
Proposition 12. For each pattern p of length 2, the generating function for p-avoiding Kreweras excursions is D-finite (and not algebraic for the patterns $\uparrow\downarrow$, $\rightarrow\leftarrow$, and $\rightarrow\uparrow\rightarrow\leftarrow$).

Proof. Due to the properties of the models discussed in Section 2, the only case which is left open is Entry 3 in Table 1. Yet, its generating function is just the extraction of the coefficient $[x^0y^1]$ in a trivariate algebraic generating function (the one of Gessel walks). By classical closure properties [33] this gives a D-finite function, and it can be checked that it satisfies the same differential equation as an algebraic function of degree 4. □

The classification for meanders is still open; let us explain what the obstacles are if one tries to extend the kernel method approaches. Kreweras walks with each occurrence of $p = a_1a_2$ is marked by v can be generated by an automaton with two states: The walk is in state Q_1 if its last step is a_1, and in state Q_0 otherwise. For example, for $p = \rightarrow\leftarrow$:

$$\begin{array}{c}
\uparrow, \downarrow \\
\leftarrow \\
\rightarrow, \downarrow \\
\leftarrow
\end{array}$$

In this example, the corresponding transition matrix is $A = \begin{pmatrix} xy + y^{-1} & x^{-1} \\ xy + y^{-1} & vx^{-1} \end{pmatrix}$. Now, let $Q_i(t, x, y, v)$ be the generating function of walks starting in state Q_i (for short, we denote it hereafter by $Q_i(x, y)$). One thus has the following matrix equation

$$(Q_0(x, y), Q_1(x, y)) = (1, 0) + t\{x^{\geq 0}y^{>0}\}(Q_0(x, y), Q_1(x, y))A,$$

which, in turn, is equivalent to the following system of two equations:

$$(1 - t(xy + y))Q_0(x, y) - t(xy + y)Q_1(x, y) = 1 - t\tilde{y}(Q_0(x, 0) + Q_1(x, 0)),$$

$$-txQ_0(x, y) + (1 - tvx)Q_1(x, y) = -tx(Q_0(0, y) + vQ_1(0, y)).$$

More generally, a pattern of length m leads similarly to a system of m equations, with $3m$ unknowns and m^2 “kernels” (the coefficients in front of the $Q_i(x, y)$’s). In most cases, trying to obtain new equations via variants of the algebraic and vectorial kernel methods (see [1, 8]) does not solve this system, except in a few noteworthy cases which possess more symmetries. This allows us to show, for example, that Pólya walks avoiding the pattern $\rightarrow\leftarrow$ are counted by a pullback of a hypergeometric function (similarly to [5]). We plan to detail these aspects in our forthcoming article.

This concludes our investigation of patterns for lattice walks in \mathbb{N}^2: we focused here on patterns of length 2 leading to nice combinatorial features, so many natural extensions are possible. For example, it is possible to tackle longer or more complex patterns (e.g. some regular expressions), to attach weights or multiplicities to the steps, to include border interactions, to add parameters which mark how often a walk visits a given set of sites, to consider other domains than \mathbb{N}^2, to follow statistics such as the height or the (signed) area, to establish the corresponding asymptotics and limit laws... The study of lattice path generating functions still has good days ahead!
References

