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Abstract. In this extended abstract we introduce refined canonical stable Grothendieck
polynomials and their duals with two infinite sequences of parameters. These polyno-
mials unify several generalizations of Grothendieck polynomials including canonical
stable Grothendieck polynomials due to Yeliussizov, refined Grothendieck polynomi-
als due to Chan and Pflueger, and refined dual Grothendieck polynomials due to
Galashin, Liu, and Grinberg. We give Jacobi–Trudi-like formulas, combinatorial mod-
els, Schur expansions, Schur positivity, and dualities of these polynomials. We also
consider flagged versions of Grothendieck polynomials and their duals with skew
shapes.
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1 Introduction

1.1 History of Grothendieck polynomials

Grothendieck polynomials were introduced by Lascoux and Schützenberger [8] for
studying the Grothendieck ring of vector bundles on a flag variety. When focusing
on the Grothendieck ring of vector bundles on Grassmannians rather than that of flag
varieties, the stable Grothendieck polynomials are indexed by partitions. These stable
Grothendieck polynomials form a basis for the (connective) K-theory ring of Grassman-
nians, see [12, Section 2.3] and references therein. In this context, Lenart [9] gave the
Schur expansion of Gλ(x) and showed that {Gλ(x) : λ is a partition} is a basis for
(a completion of) the space of symmetric functions. Buch [1] showed that the stable
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Grothendieck polynomial Gλ(x) is equal to a generating function for semistandard set-
valued tableaux of shape λ.

After Buch’s work [1], many generalizations of Gλ(x) have been studied from various
viewpoints. In [7], Lam and Pylyavskyy introduced the dual stable Grothendieck poly-
nomials gλ(x), and found a combinatorial interpretation for them in terms of reverse
plane partitions. Similar to the Grothendieck polynomial case, the dual Grothendieck
polynomials form a basis for the space of symmetric functions.

Yeliussizov [15] introduced the canonical stable Grothendieck polynomials G(α,β)
λ (x)

with two parameters α and β, and defined the dual canonical stable Grothendieck poly-
nomials g(α,β)

λ (x) by the relation ⟨G(−α,−β)
µ (x), g(α,β)

λ (x)⟩ = δλ,µ, where ⟨−,−⟩ is the Hall
inner product. Yeliussizov [15] showed that these polynomials behave as nicely as Schur
functions under the involution ω. Moreover, he found combinatorial interpretations for
G(α,β)

λ (x) and g(α,β)
λ (x).

There are also generalizations of Grothendieck polynomials and their duals with in-
finite parameters; see [2, 3, 6, 13]. In this extended abstract, motivated by these previous
works, we introduce refined canonical stable Grothendieck polynomials Gλ(xn; α, β) and
their duals gλ(xn; α, β) with infinite parameters α = (α1, α2, . . . ) and β = (β1, β2, . . . ),
and furthermore their flagged versions with skew shapes. Our generalization unifies all
generalizations of Grothendieck polynomials mentioned above.

1.2 Refined canonical Grothendieck polynomials and their duals

Let x = (x1, x2, . . . ), xn = (x1, . . . , xn) be sequences of variables, and α = (α1, α2, . . . ),
β = (β1, β2, . . . ) sequences of parameters.

We generalize the canonical stable Grothendieck polynomials as follows. See Sec-
tion 2 for precise definitions of the notations.

Definition 1.1. For a partition λ with at most n parts, the refined canonical stable Grothen-
dieck polynomial Gλ(xn; α, β) is defined by

Gλ(xn; α, β) =

det

(
xλi+n−i

j
(1 − β1xj) · · · (1 − βi−1xj)

(1 − α1xj) · · · (1 − αλi xj)

)
1≤i,j≤n

∏1≤i<j≤n(xi − xj)
. (1.1)

Using the notation ⊖ we can rewrite (1.1) as follows:

Gλ(xn; α, β) =
det

(
hλi+n−i[xj ⊖ (Aλi − Bi−1)]

)
1≤i,j≤n

∏1≤i<j≤n(xi − xj)
, (1.2)

where Ak = α1 + · · ·+ αk and Bk = β1 + · · ·+ βk for k ≥ 1, and Ak = Bk = 0 for k ≤ 0.
We define our generalization of dual Grothendieck polynomials via the following

bialternant formula.
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Definition 1.2. For a partition λ with at most n parts, the refined dual canonical stable
Grothendieck polynomial gλ(xn; α, β) is defined by

gλ(xn; α, β) =
det(hλi+n−i[xj − Aλi−1 + Bi−1])1≤i,j≤n

∏1≤i<j≤n(xi − xj)
. (1.3)

Our generalizations Gλ(x; α, β) and gλ(x; α, β) generalize several well-studied vari-
ations of Grothendieck polynomials as follows. Here 0 = (0, 0, . . . ), 1 = (1, 1, . . . ),
α0 = (α, α, . . . ) and β0 = (β, β, . . . ).

Variations of G or g introduced in how to specialize
Gν/λ(x) Buch [1] Gν/λ(x; 0, 1)
gλ/µ(x) Lam–Pylyavskyy [7] gλ/µ(x; 0, 1)

G(α,β)
λ (x) Yeliussizov [15] Gλ(x; α0,−β0)

g(α,β)
λ (x) Yeliussizov [15] gλ(x;−α0, β0)

RGσ(x; β) Chan–Pflueger [2] Gσ(x; 0, β)
g̃λ/µ(x; β) Galashin–Grinberg–Liu [3] gλ/µ(x; 0, β)

Gλ/µ, f /g(x) Matsumura [11] Grow(g, f )
λ/µ (x; 0,−β0)

g̃row(r,s)
λ/µ (x; β) Grinberg [4], Kim [6] grow(r,s)

λ/µ (x; 0, β)

The remainder of the extended abstract is organized as follows. In Section 2, we
briefly recall necessary definitions. In Section 3, we give Schur expansions and Jacobi–
Trudi-like formulas for Gλ(xn; α, β) and gλ(xn; α, β) and prove their duality. In Section 4,
we give tableau models for Gλ(x; α, β) and gλ(x; α, β) and obtain Schur positivity of
Gλ(x; α,−β) and gλ(x;−α, β). In Sections 5 and 6, we extend refined canonical stable
Grothendieck polynomials and their duals to skew shapes with certain flag conditions.
In Section 7, we give skew Schur expansions for Gλ/µ(x; α, β) and gλ/µ(x; α, β), and they
behave nicely under the involution ω. The full version of this extended abstract is [5],
where the missing proofs can be found.

2 Preliminaries

In this section, we set up notations and give the necessary background. Throughout this
extended abstract, we denote by Z (resp. Z+) the set of integers (resp. positive integers).

2.1 Partitions and tableaux

A partition is a weakly decreasing sequence λ = (λ1, . . . , λℓ) of positive integers. Each λi
is called a part, and the length ℓ(λ) = ℓ of λ is the number of parts in λ. We denote by
Parn the set of partitions with at most n parts, and by Par the set of all partitions.
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We will identify a partition λ with its Young diagram. Each element (i, j) ∈ λ is
called a cell of λ. The Young diagram of λ is visualized by placing a square (i, j) for each
cell (i, j) in λ using the matrix coordinates. The transpose λ′ of λ is the partition whose
Young diagram is obtained from that of λ by reflecting across the diagonal. The content
c(i, j) of a cell (i, j) ∈ λ is j − i.

For two partitions λ, µ ∈ Par with µ ⊆ λ, the skew shape λ/µ is defined to be λ − µ =
{(i, j) : 1 ≤ i ≤ ℓ(λ), µi < j ≤ λi}. We denote by |λ/µ| the number of cells in λ/µ.

A semistandard Young tableau of shape λ/µ is a filling T of the cells in λ/µ with
positive integers such that the integers are weakly increasing in each row and strictly
increasing in each column. Let SSYT(λ/µ) be the set of semistandard Young tableaux of
shape λ/µ. A reverse plane partition of shape λ/µ is a filling T of the cells in λ/µ with
positive integers such that the integers are weakly increasing in each row and in each
column. Let RPP(λ/µ) be the set of reverse plane partitions of shape λ/µ.

2.2 Symmetric functions

Let Λ be the Q-algebra of all symmetric functions in Q[[x1, x2, . . . ]]. The completion Λ̂
of Λ is the set of symmetric functions with possibly unbounded degree. For n ≥ 1, the
complete homogeneous symmetric function hn(x) and the elementary symmetric function en(x)
are defined to be

hn(x) = ∑
i1≤···≤in

xi1 · · · xin , and en(x) = ∑
i1<···<in

xi1 · · · xin .

Define an endomorphism ω : Λ −→ Λ of the Q-algebra Λ by ω(hn(x)) = en(x).
An important basis is the Schur function basis. For a partition λ ∈ Parn, the Schur

polynomial sλ(xn) of shape λ is defined by

sλ(xn) =
det(xλi+n−i

j )1≤i,j≤n

∏1≤i<j≤n(xi − xj)
.

The Schur function sλ(x) is defined to be the coefficient-wise limit of sλ(xn) as n → ∞.
The Schur function sλ/µ(x) of shape λ/µ is defined by sλ/µ(x) = ∑T∈SSYT(λ/µ) xT, where
xT = xm1

1 xm2
2 · · · and mi is the number of appearances of i in T.

The Hall inner product is the inner product on Λ defined by ⟨sλ(x), sµ(x)⟩ = δλ,µ.
This inner product is naturally extended to Λ̂ × Λ because every element f ∈ Λ̂ can be
written as f = ∑λ∈Par cλsλ(x).

The Jacobi–Trudi formula and its dual give expansions of Schur functions in terms of
hn(x) and en(x) as determinants: for partitions µ ⊆ λ,

sλ/µ(x) = det
(

hλi−µj−i+j(x)
)ℓ(λ)

i,j=1
and sλ′/µ′(x) = det

(
eλi−µj−i+j(x)

)ℓ(λ)
i,j=1

.
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In this extended abstract, we consider the completion of ΛQ[α,β] = Q[α, β]⊗Λ instead
of Λ.

2.3 Plethystic substitutions

We define plethystic substitution via the power sum symmetric functions pn(x). For a
formal power series Z ∈ Q[[z1, z2, . . . ]], the plethystic substitution pn[Z] of Z into pn(x) is
defined to be the formal power series obtained from Z by replacing each zi by zn

i . By
definition, f [z1 + z2 + · · · ] = f (z1, z2, . . . ). For more properties of plethystic substitution,
we refer the reader to [10].

For integers r, s, and n, we define

X = x1 + x2 + · · · , Xn = x1 + x2 + · · ·+ xn, X[r,s] = xr + xr+1 + · · ·+ xs,

An = α1 + α2 + · · ·+ αn, Bn = β1 + β2 + · · ·+ βn,

where Xn = An = Bn = 0 if n ≤ 0 and X[r,s] = 0 if r > s.
In this extended abstract, we only consider the plethystic substitution into hn(x) and

en(x). We will use the following properties, which follows from [10, Theorem 6].

Proposition 2.1. For n ≥ 0 and Z ∈ Q[[z1, z2, . . . ]], we have

hn[−Z] = (−1)nen[Z] and en[−Z] = (−1)nhn[Z].

For Z1, Z2 ∈ Q[[z1, z2, . . . ]],

hn[Z1 + Z2] = ∑
a+b=n

ha[Z1]hb[Z2] and en[Z1 + Z2] = ∑
a+b=n

ea[Z1]eb[Z2].

We introduce a novel notation ⊖ as follows.

Definition 2.2. For n ∈ Z and Z1, Z2 ∈ Q[[z1, z2, . . . ]] with no constant terms,

hn[Z1 ⊖ Z2] = ∑
a−b=n

ha[Z1]hb[Z2] and en[Z1 ⊖ Z2] = ∑
a−b=n

ea[Z1]eb[Z2].

3 Schur expansions, Jacobi–Trudi-like formulas, and du-
ality

In this section, we give Schur expansions and Jacobi–Trudi-like formulas for Gλ(x; α, β)
and gλ(x; α, β) using the Cauchy–Binet theorem. We also give the duality between
Gλ(x; α, β) and gλ(x; α, β) with respect to the Hall inner product.
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For λ, µ ∈ Parn, define

Cλ,µ(α, β) = det
(

hµi−λj−i+j[Aλj − Bj−1]
)n

i,j=1
,

cλ,µ(α, β) = det
(

hλi−µj−i+j[−Aλi−1 + Bi−1]
)n

i,j=1
.

We expand Gλ(xn; α, β) and gλ(xn; α, β) into Schur functions as follows.

Theorem 3.1. Let λ ∈ Parn. We have

Gλ(xn; α, β) = ∑
µ⊇λ

Cλ,µ(α, β)sµ(xn),

gλ(xn; α, β) = ∑
µ⊆λ

cλ,µ(α, β)sµ(xn).

We can apply the Cauchy–Binet theorem again to the Schur expansions in Theo-
rem 3.1 to obtain Jacobi–Trudi-like formulas.

Theorem 3.2. For λ ∈ Parn, we have

Gλ(xn; α, β) = det
(
hλi−i+j[Xn ⊖ (Aλi − Bi−1)]

)n
i,j=1 ,

gλ(xn; α, β) = det
(
hλi−i+j[Xn − Aλi−1 + Bi−1]

)n
i,j=1 .

Using the Schur expansions of Gλ(x; α, β) and gλ(x; α, β), we show the following
duality with respect to the Hall inner product, which justifies the name “refined dual
canonical stable Grothendieck polynomial” for gλ(x; α, β).

Theorem 3.3. For λ, µ ∈ Par, we have

⟨Gλ(x; α, β), gµ(x; α, β)⟩ = δλ,µ.

4 Combinatorial models and Schur positivity

In this section we give combinatorial models for the Schur coefficients Cλ,µ(α, β) and
cλ,µ(α, β) of Gλ(x; α, β) and gλ(x; α, β). As a consequence we show that Gλ(x; α,−β)
and gλ(x;−α, β) are Schur-positive. In order to state our results we need the following
tableaux, which are modified versions of elegant tableaux [7, 9].

Definition 4.1. A Z-elegant tableau of shape λ/µ is a filling T of the cells in λ/µ with
integers such that the rows are weakly increasing, the columns are strictly increasing,
and

min(i − µi, 1) ≤ T(i, j) < i for all (i, j) ∈ λ/µ.

Let ETZ(λ/µ) denote the set of all Z-elegant tableaux of shape λ/µ.
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Definition 4.2. A Z-inelegant tableau of shape µ/λ is a filling T of the cells in µ/λ with
integers such that the rows are weakly decreasing, the columns are strictly decreasing,
and

min(µi − i, 0) < T(i, j) ≤ λi for all (i, j) ∈ µ/λ.

Let IETZ(µ/λ) denote the set of all Z-inelegant tableaux of shape µ/λ.

We now give combinatorial interpretations for the Schur coefficients Cλ,µ(α, β) and
cλ,µ(α, β) of Gλ(x; α, β) and gλ(x; α, β) in terms of tableaux.

Theorem 4.3. Let λ, µ ∈ Par with λ ⊆ µ. We have

Cλ,µ(α, β) = ∑
T∈IETZ(µ/λ)

∏
(i,j)∈µ/λ

(αT(i,j) − βT(i,j)−c(i,j)),

cλ,µ(α, β) = ∑
T∈ETZ(λ/µ)

∏
(i,j)∈λ/µ

(−αT(i,j)+c(i,j) + βT(i,j)),

where αm = βm = 0 for m ≤ 0. In particular, Gλ(x; α,−β) and gλ(x;−α, β) are Schur-
positive, that is, Cλ,µ(α,−β) and cλ,µ(−α, β) are polynomials in α and β with nonnegative
integer coefficients.

For the proof of Theorem 4.3, we express Cλ,µ(α, β) and cλ,µ(α, β) in terms of nonin-
tersecting lattice paths using the Lindström–Gessel–Viennot lemma. The nonintersecting
lattice paths are then easily transformed into the desired tableaux.

5 Flagged Grothendieck polynomials

In this section we give a combinatorial model for Gλ(x; α, β) using marked multiset-
valued tableaux. More generally, we consider two flagged versions of Gλ(x; α, β) and
extend the partition λ to a skew shape. To begin with, we introduce the following
definition.

Definition 5.1. A marked multiset-valued tableau of shape λ/µ is a filling T of λ/µ with
multisets such that

• T(i, j) is a nonempty (finite) multiset {a1 ≤ · · · ≤ ak} of positive integers, in which
each integer ai may be marked if i ≥ 2 and ai−1 < ai, and

• max(T(i, j)) ≤ min(T(i, j + 1)) and max(T(i, j)) < min(T(i + 1, j)) if (i, j), (i, j +
1) ∈ λ/µ and (i, j), (i + 1, j) ∈ λ/µ, respectively.

Let MMSVT(λ/µ) denote the set of marked multiset-valued tableaux of shape λ/µ.
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1, 2∗, 2 2, 2, 4∗

1 3, 3

Figure 1: An example of T ∈ MMSVT((3, 2)/(1)), where the marked integers are
indicated with ∗. The weight of T is given by wt(T) = x2

1x4
2x2

3x4α2
2α3(−β1)

2.

For T ∈ MMSVT(λ/µ), let xT(i,j) = xm1
1 xm2

2 · · ·, where mk is the total number of ap-
pearances of k and k∗ in T(i, j), and let unmarked(T(i, j)) (resp. marked(T(i, j))) denote
the number of unmarked (resp. marked) integers in T(i, j). We define

wt(T) = ∏
(i,j)∈λ/µ

xT(i,j)α
unmarked(T(i,j))−1
j (−βi)

marked(T(i,j)).

See Figure 1.

The main goal of this section is to prove the following combinatorial interpretation
for Gλ(x; α, β).

Theorem 5.2. For a partition λ, we have

Gλ(x; α, β) = ∑
T∈MMSVT(λ)

wt(T).

Our strategy for proving Theorem 5.2 is to introduce a flagged version which allows
us to use induction. We note that a row-flagged version with partition shape is sufficient
to prove this theorem, but for completeness we also consider a column-flagged version
and we generalize the partition shape to any skew shape.

Definition 5.3. Let r = (r1, r2, . . . ), s = (s1, s2, . . . ) be in Zn
+. Let MMSVTrow(r,s)(λ/µ)

denote the set of T ∈ MMSVT(λ/µ) such that ri ≤ min(T(i, j)) and max(T(i, j)) ≤ si

for all (i, j) ∈ λ/µ. Similarly, MMSVTcol(r,s)(λ/µ) denotes the set of T ∈ MMSVT(λ/µ)
such that rj ≤ min(T(i, j)) and max(T(i, j)) ≤ sj for all (i, j) ∈ λ/µ. We define the
row-flagged and column-flagged refined canonical stable Grothendieck polynomials by

Grow(r,s)
λ/µ (x; α, β) = ∑

T∈MMSVTrow(r,s)(λ/µ)

wt(T),

Gcol(r,s)
λ/µ (x; α, β) = ∑

T∈MMSVTcol(r,s)(λ/µ)

wt(T).
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Now we give Jacobi–Trudi-like formulas for Grow(r,s)
λ/µ (x; α, β) and Gcol(r,s)

λ/µ (x; α, β).

Theorem 5.4. Let λ, µ ∈ Parn, r, s ∈ Zn
+ with µ ⊆ λ. If ri ≤ ri+1 and si ≤ si+1 whenever

µi < λi+1 for 1 ≤ i ≤ n − 1, then

Grow(r,s)
λ/µ (x; α, β) = C det

(
hλi−µj−i+j[X[rj,si]

⊖ (Aλi − Aµj − Bi−1 + Bj)]
)n

i,j=1
, (5.1)

where C = ∏n
i=1 ∏si

l=ri
(1 − βixl).

We prove Theorem 5.4 by showing that the both sides of (5.1) satisfy the same recur-
rence relations and initial conditions. The idea is based on a proof of the Jacobi–Trudi-
like formula for flagged Schur functions due to Wachs [14]. We prove the following
theorem in a similar way.

Theorem 5.5. Let λ, µ ∈ Parn, r, s ∈ Zn
+ with µ ⊆ λ. If ri − µi ≤ ri+1 − µi+1 and si − λi ≤

si+1 − λi+1 + 1 whenever µi < λi+1 for 1 ≤ i ≤ n − 1, then

Gcol(r,s)
λ′/µ′ (x; α, β) = D det

(
eλi−µj−i+j[X[rj,si]

⊖ (Ai−1 − Aj − Bλi + Bµj)]
)n

i,j=1
,

where D = ∏n
i=1 ∏si

l=ri
(1 − αixl)

−1.

6 Flagged dual Grothendieck polynomials

In this section we give a combinatorial model for the refined dual canonical stable
Grothendieck polynomials gλ(x; α, β) using marked reverse plane partitions. To this end
we introduce a flagged version of gλ(x; α, β) using marked reverse plane partitions and
prove a Jacobi–Trudi-like formula for this flagged version. More generally, we consider
two flagged versions of gλ(x; α, β) and extend the partition λ to a skew shape.

Definition 6.1. A left-marked reverse plane partition (or simply marked reverse plane partition)
of shape λ/µ is a reverse plane partition T of shape λ/µ in which every entry T(i, j) with
T(i, j) = T(i, j + 1) may be marked. We denote by MRPP(λ/µ) the set of marked reverse
plane partitions of shape λ/µ. For T ∈ MRPP(λ/µ), define

wt(T) = ∏
(i,j)∈λ/µ

wt(T(i, j)),

where

wt(T(i, j)) =


−αj if T(i, j) is marked,
βi−1 if T(i, j) is not marked and T(i, j) = T(i − 1, j),
xT(i,j) if T(i, j) is not marked and T(i, j) ̸= T(i − 1, j).

Here, the equality T(i, j) = T(i − 1, j) means that their underlying integers are equal.
See Figure 2.
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1 2 4∗ 4

1∗ 1 3 5

1 1

3∗ 3∗ 3

Figure 2: An example of T ∈ MRPP(λ/µ), where λ = (6, 5, 3, 3) and µ = (2, 1, 1). We
have the weight wt(T) = x1x2x2

3x4x5(−α1)(−α2)2(−α5)β1β2
2.

The main goal of this section is to prove the following combinatorial interpretation
for gλ(x; α, β).

Theorem 6.2. We have
gλ(x; α, β) = ∑

T∈MRPP(λ)
wt(T). (6.1)

Similar to our approach in the previous section, in order to prove Theorem 6.2 we
introduce a flagged version. For completeness we again consider row- and column-
flagged versions on skew shapes.

Definition 6.3. Let r = (r1, r2, . . . ) ∈ Zn
+ and s = (s1, s2, . . . ) ∈ Zn

+. We denote by
MRPProw(r,s)(λ/µ) (resp. MRPPcol(r,s)(λ/µ)) the set of T ∈ MRPP(λ/µ) such that ri ≤
T(i, j) ≤ si (resp. rj ≤ T(i, j) ≤ sj) for all (i, j) ∈ λ/µ. We define row-flagged and column-
flagged refined dual canonical stable Grothendieck polynomials by

grow(r,s)
λ/µ (x; α, β) = ∑

T∈MRPProw(r,s)(λ/µ)

wt(T),

gcol(r,s)
λ/µ (x; α, β) = ∑

T∈MRPPcol(r,s)(λ/µ)

wt(T).

Now we give Jacobi–Trudi-like formulas for the two flagged versions of gλ(x; α, β).

Theorem 6.4. Let λ, µ ∈ Parn, r, s ∈ Zn
+ such that ri ≤ ri+1 and si ≤ si+1 whenever µi <

λi+1. Then we have

grow(r,s)
λ/µ (x; α, β) = det

(
hλi−µj−i+j[X[rj,si]

− Aλi−1 + Aµj + Bi−1 − Bj−1]
)n

i,j=1
,

gcol(r,s)
λ′/µ′ (x; α, β) = det

(
eλi−µj−i+j[X[rj,si]

− Ai−1 + Aj−1 + Bλi−1 − Bµj ]
)n

i,j=1
.

The proof is based on the ideas in [6].
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7 Schur expansions and the omega involution for skew
shapes

When we set ri = 1 and si = ∞ for each i in Theorems 5.4, 5.5 and 6.4, we have the
refined canonical stable Grothendieck polynomial Gλ/µ(x; α, β) of skew shape λ/µ, and
its dual gλ/µ(x; α, β).

We define a generalized partition of length n to be a sequence (λ1, . . . , λn) ∈ Zn sat-
isfying λ1 ≥ · · · ≥ λn. Denote by GParn the set of generalized partitions of length n.
We expand Gλ/µ(x; α, β) and gλ/µ(x; α, β) in terms of skew Schur functions (up to some
factor) using the Cauchy–Binet Theorem.

Theorem 7.1. For λ, µ ∈ Parn with µ ⊆ λ, we have

Gλ/µ(x; α, β) = C ∑
ρ,ν∈GParn
ρ⊆µ⊆λ⊆ν

Cλ,ν(α, β)sν/ρ(x)C′
ρ,µ(α, β), (7.1)

where C = ∏n
i=1 ∏∞

l=1(1 − βixl) and

Cλ,ν(α, β) = det
(

hνi−λj−i+j[Aλj − Bj−1]
)n

i,j=1
,

C′
ρ,µ(α, β) = det

(
hµi−ρj−i+j[−Aµi + Bi]

)n

i,j=1
.

Theorem 7.2. For λ, µ ∈ Parn, we have

gλ/µ(x; α, β) = ∑
ρ,ν∈Parn

µ⊆ρ⊆ν⊆λ

cλ,ν(α, β)sν/ρ(x)c′ρ,µ(α, β),

where

cλ,ν(α, β) = det
(

hλi−νj−i+j[−Aλi−1 + Bi−1]
)n

i,j=1
,

c′ρ,µ(α, β) = det
(

hρi−µj−i+j[Aµj − Bj−1]
)n

i,j=1
.

Finally, we obtain the effect of the involution ω on Gλ/µ(x; α, β) and gλ/µ(x; α, β).

Theorem 7.3. For λ, µ ∈ Par with µ ⊆ λ, we have

ω(Gλ/µ(x; α, β)) = Gλ′/µ′(x;−β,−α),

ω(gλ/µ(x; α, β)) = gλ′/µ′(x;−β,−α).
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