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Abstract. We give an explicit formula for the power-sum expansion of Jack polynomi-
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1 Introduction

1.1 Jack polynomials and Jack characters

Jack polynomials J(α)λ are symmetric functions, indexed by an integer partition λ and a
deformation parameter α. They interpolate, up to scaling factors, between Schur func-
tions for α = 1 and zonal polynomials for α = 2. Stanley initiated in his seminal
work [18] the combinatorial analysis of these symmetric functions with connection with
various objects of algebraic combinatorics, such as partitions, tableaux, paths and maps
[14, 7, 9, 3, 15, 2].

Knop and Sahi have given in [9] a combinatorial interpretation for the coefficients of
the Jack polynomial J(α)λ in the monomial basis in terms of tableaux of shape λ. Existence

of a combinatorial expression for the expansion of the Jack polynomial J(α)λ in the power-
sum basis was conjectured by Hanlon [8]. In this paper, we give such a combinatorial
interpretation in terms of bipartite maps.

Roughly speaking, a map is a graph drawn on a locally orientable surface (see Sec-
tion 2.3 for a precise definition). The study of maps is a well developed area with strong
connections with analytic combinatorics, mathematical physics and probability [11]. The
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relationship between generating series of maps and the theory of symmetric functions
was first noticed via a character theoretic approach, and has then been developed to
include other techniques such as matrix integrals and differential equations [7, 10, 4, 2].

In fact, the aforementioned combinatorial interpretation follows from a more general
result that we prove: a combinatorial interpretation for Jack characters. For a partition
µ, the Jack character θ

(α)
µ is the function on Young diagrams defined by:

θ
(α)
µ (λ) :=

{
0 if |λ| < |µ|,
(|λ|−|µ|+m1(µ)

m1(µ)
)[pµ,1n−m ]J(α)λ if |λ| ≥ |µ|.

where [pµ] is the extraction symbol with respect to the variable p and m1(µ) is the
number of parts equal to 1 in the partition µ.

Jack characters play an important role in studying asymptotic behaviour of random
Young diagrams [3]. When α = 1, they correspond to the normalized irreducible charac-
ters of the symmetric group, and have a combinatorial interpretation in terms of permu-
tation factorizations which has been conjectured by Stanley and proved by Féray (see [5]
for the details). An analogous combinatorial expression has also been established in [6]
for Zonal characters, which correspond to θ

(α)
µ with α = 2. In this paper, we give a

combinatorial interpretation for θ
(α)
µ for general α in terms of maps. The expression we

obtain interpolates between the expressions given in [5] and [6] for α = 1 and α = 2.

1.2 Multi-layer maps

Definition 1.1. Fix k ≥ 0. We say that a bipartite map M is a k-layer map if its black vertices
(resp. white vertices) are partitioned into k sets (which may be empty), called the layers of the
map; V◦(M) =

⋃
1≤i≤k V

(i)
◦ (M) (resp. V•(M) =

⋃
1≤i≤k V

(i)
• (M)), which satisfy the following

condition: if v is a white vertex in a layer i, then all its neighbors are in layers j ≤ i, and it has
at least one neighbor in the layer i.

For 1 ≤ i ≤ k, we define the partition ν
(i)
• (M) obtained by reordering the degree distribution

of the black vertices in the layer i. A k-layer map is labelled if:

• in each layer 1 ≤ i ≤ k, the black vertices having the same degree j are numbered
by 1, 2, . . . , mj

(
ν
(i)
• (M)

)
, where mj

(
ν
(i)
• (M)

)
denotes the number of parts of size j in

ν
(i)
• (M).

• each black vertex has a distinguished oriented corner.

An example of a 2-layer map is given in the left part of Figure 1.
Note that a k-layer map can be seen as (k + 1)-layer map with an empty layer k + 1.

We call then a multi-layer map a k-layer map for some k ≥ 1. We denote by M(k) (resp.



Jack characters as generating series of bipartite maps and proof of Lassalle’s conjecture 3

v
(1)
2,1

v
(1)
3,2

v
(1)
3,1

v
(2)
4,1

r4

r3

r2

r1
s1

s2

s3

s4

Figure 1: Left: A 2-layer map on the Klein bottle, represented here by a square whose
left side should be glued to the right one (with a twist) and the top side should be
glued to the bottom one (without a twist), as indicated by the arrows. v(i)j,k denotes the
black vertex of degree j numbered by k in the layer i. Right: The Young diagram of the
partition [4, 3, 3, 3, 1] as the union of 4 rectangles, with s = (4, 3, 3, 1) and r = (1, 1, 2, 1)
as multirectangular coordinates.

M(∞)) the set of all labelled k-layer maps (resp. labelled multi-layer maps). Similarly,
we denote M(k)

µ and M(∞)
µ those of face-type µ (see Section 2.3 for the definition). The

following definition has been introduced by Goulden and Jackson.

Definition 1.2 ([7]). A statistic of non-orientability on bipartite maps is a statistic ϑ with non-
negative integer values, such that ϑ(M) = 0 if and only if M is orientable.

In practice, a statistic of non-orientability is supposed to "measure" the non-orient-
ability of a map by counting the number of edges which contribute to its non-orient-
ability, following a given algorithm of decomposition of the map. Several examples of
such statistics have been introduced in previous works [10, 4, 2].

1.3 First main result

Theorem 1.3. There exists a statistic of non-orientability ϑ on multi-layer maps such that for
any partitions µ and λ, we have

θ
(α)
µ (λ) = (−1)|µ| ∑

M∈M(∞)
µ

bϑ(M)

2|V•(M)|−cc(M)αcc(M) ∏
i≥1

(−αλi)
|V (i)◦ (M)|

z
ν
(i)
• (M)

, (1.1)

where b is the parameter related to α by b := α− 1, and z
ν
(i)
• (M)

is the classical normalization
factor (see Sections 2.1 and 2.3 for the precise definitions and notation).
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Note that the product here is finite since each multi-layer map has a finite number of
non empty layers. We give in Section 4 the key ingredients of the proof of Theorem 1.3.
As a direct consequence of Theorem 1.3, we obtain the following interpretation of Jack
polynomials in the basis of power-sum functions.

Theorem 1.4. Let n be a positive integer and let λ be a partition of n. Then

J(α)λ = (−1)n ∑
M

pν⋄(M)
bϑ(M)

2|V•(M)|−cc(M)αcc(M) ∏
1≤i≤ℓ(λ)

(−αλi)
|V (i)◦ (M)|

z
ν
(i)
• (M)

,

where the sum is taken over all ℓ(λ)-layer maps M of size n, and ν⋄(M) denotes the face-type of
M (see Section 2.3).

1.4 Lassalle’s conjecture and second main result.

Stanley has used [19] the following definition of multirectangular coordinates.

Definition 1.5 ([19]). Let k ≥ 1 and let s1 ≥ s2 · · · ≥ sk ≥ 1 and r1, . . . rk be two sequences of
nonnegative integers. We say that (s1, . . . , sk) and (r1, . . . , rk) are multirectangular coordinates
for a partition λ and we denote λ = sr, if λ is the union of k rectangles of sizes si × ri, or
equivalently λ = [sr1

1 . . . srk
k ], see the right part of Figure 1 for an example.

Since we do not require that the sequence s should be strictly decreasing, the multi-
rectangular coordinates are not unique in general. If λ is a partition of multirectangular
coordinates (s1, . . . , sk) and (r1, . . . , rk), we write for any partition µ

θ̃
(α)
µ (s, r) := θ

(α)
µ (λ),

where r = (r1, . . . , rk, 0 . . . ) and s = (s1, . . . , sk, 0, . . . ). In the case b = 0, which cor-
responds to the irreducible characters of the symmetric group, Stanley found [19] an
explicit formula for θ̃

(α)
µ (s, r) when λ is a rectangle, and he conjectured a formula for

general r, s that was soon after proved by Féray [5]. An analogous formula was found
in the case b = 1 [6]. A conjecture that suggests positivity and integrality of Jack char-
acters in multirectangular coordinates for arbitrary b was stated by Lassalle [12], and
it remained unproven for nearly 15 years1. Our second main result is the proof of this
conjecture.

Theorem 1.6. The normalized Jack characters (−1)|µ|zµθ̃
(α)
µ are polynomials in the variables

b,−s1,−s2, . . . , r1, r2, . . . with non-negative integer coefficients, where b := α− 1.

1It has been proved in the particular case s = (s, 0, . . . ) and r = (r, 0, . . . ) in [1].
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Interestingly, the proof of Theorem 1.6 consists of two parts that are proved using very
different techniques. In the first part we deduce positivity as a consequence of the com-
binatorial expression of Jack characters obtained in Theorem 1.3 (see Section 5). In the
second part, we obtain the integrality using integrable system of Nazarov–Sklyanin [16].
We relate their theory with Jack characters by proving an explicit combinatorial formula
expressing certain basis of shifted symmetric functions in terms of normalized Jack char-
acters. We conclude by showing that the transition matrix between these two bases is
invertible over Z. Consequently, we prove that Kerov polynomials for Jack characters
have integer coefficients, which was an open problem posed by Lassalle in [13] (see Sec-
tion 5.2 for details).

2 Notation

For the definitions and notation introduced in Sections 2.1 and 2.2 we refer to [18, 14].

2.1 Partitions

A partition λ = [λ1, ..., λℓ] is a weakly decreasing sequence of positive integers λ1 ≥ ... ≥
λℓ > 0. We denote by Y the set of all integer partitions. The integer ℓ is called the length
of λ and is denoted ℓ(λ). The size of λ is the integer |λ| := λ1 + λ2 + ... + λℓ. If n is the
size of λ, we say that λ is a partition of n and we write λ ⊢ n. The integers λ1,...,λℓ are
called the parts of λ. For i ≥ 1, we denote mi(λ) the number of parts of size i in λ. We
set then

zλ := ∏
i≥1

mi(λ)!imi(λ).

We denote by ≤ the dominance partial ordering on partitions, defined by

µ ≤ λ ⇐⇒ |µ| = |λ| and µ1 + ... + µi ≤ λ1 + ... + λi for i ≥ 1.

We identify a partition λ with its Young diagram, defined by

λ := {(i, j), 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}.

2.2 Symmetric functions and Jack polynomials

We fix an alphabet x := (x1, x2, ..). We denote by S the algebra of symmetric functions in
x with coefficients in Q. For every partition λ, we denote mλ the monomial function and
pλ the power-sum function associated with the partition λ. We consider the associated
alphabet of power-sum functions p := (p1, p2, ..).
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Let Sα be the algebra of symmetric functions with coefficients in Q(α). We denote by
⟨., .⟩α the α-deformation of the Hall scalar product defined by

⟨pλ, pµ⟩α = zλαℓ(λ)δλ,µ, for any partitions λ, µ.

Macdonald [14, Chapter VI.10] has proved that there exists a unique family of sym-
metric functions (J(α)λ )λ∈Y in Sα indexed by partitions, satisfying the following proper-
ties: 

Orthogonality: ⟨Jλ, Jµ⟩α = 0, for λ ̸= µ,
Triangularity: [mµ]Jλ = 0, unless µ ≤ λ,
Normalization: [m1n ]Jλ = n!, for λ ⊢ n,

where [mµ]Jλ denotes the coefficient of mµ in Jλ, and 1n is the partition with n parts
equal to 1. These functions are known as the Jack polynomials.

2.3 Maps

A connected map is a connected graph embedded into a surface such that all the connected
components of the complement of the graph are simply connected (see [11, Definition
1.3.7]). These connected components are called the faces of the map. We consider maps
up to homeomorphisms of the surface. A connected map is orientable if the underlying
surface is orientable. In this paper2, a map is an unordered collection of connected maps.
A map is orientable if each one of its connected components is orientable. Finally, the
size of a map is its number of edges.

In this paper, all the maps considered are bipartite; i.e their vertices are colored in two
colors, white and black, such that each edge connects two vertices of different colors.
Note that in a bipartite map, all faces have even degree. We define then the face-type of a
bipartite map M of size n, as the partition of n obtained by reordering the half degrees
of the faces and we denote it ν⋄(M). We also denote its set of white and black vertices
by V◦(M) and V•(M) respectively.

3 The combinatorial model

The purpose of this subsection is to define a family of statistic of non-orientability (see
Definition 1.2) on multi-layer maps. We start by some general definitions related to
non-orientable maps.

Let M be a bipartite map and let c1 and c2 be two corners of M of different colors.
Then we have two ways to add an edge to M between these two corners (see Figure 2).
We denote by e1 and e2 these edges. We say that the pair (e1, e2) is a pair of twisted edges

2This is not the standard definition of a map; usually a map is connected.
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on the map M and we say that e2 is obtained by twisting e1. Note that if M is connected
and orientable, then exactly one of the maps M ∪ {e1} and M ∪ {e2} is orientable. For
a given map with a distinguished edge (M, e), we denote (M̃, ẽ) the map obtained by
twisting the edge e.

We recall that b is the parameter related to the Jack parameter α by b = α− 1. We
now give the definition of a measure of non-orientability due to La Croix.

Definition 3.1. [10, Definition 4.1] We call a measure of non-orientability (MON) a function
ρ defined on the set of connected maps (M, e) with a distinguished edge, with values in {1, b},
satisfying the following conditions:

• if e connects two corners of the same face of M\{e}, and the number of the faces increases
by 1 by adding the edge e on the map M\{e}, then ρ(M, e) = 1. In this case we say that e
is a diagonal.

• if e connects two corners in the same face M\{e}, and the number of the faces of M\{e} is
equal to the number of faces of M, then ρ(M, e) = b. In this case we say that e is a twist.

• if e connects two corners of two different faces lying in the same connected component of
M\{e}, then ρ satisfies ρ(M, e) + ρ(M̃, ẽ) = 1 + b. In this case we say that e is a handle.
Moreover, if M is orientable then ρ(M, e) = 1.

• if e connects two faces lying in two different connected components, then ρ(M, e) = 1. In
this case, we say that e is a bridge.

Let M be a bipartite map and let e1, e2, . . . , ed be d distinct edges of M. For 1 ≤ i ≤
d, we denote Mj be the map obtained by deleting the edges e1, e2,..., ej from M. We define
ρ(M, e1, e2, . . . , ed) as the weight obtained by deleting the edges ej successively:

ρ(M, e1, e2, . . . , ed) := ∏
1≤j≤d

ρ(Mj, ej).

Given a MON ρ, one can associate a b-weight ρ(M) to a multi-layer map M by choos-
ing an order on the edges of M. We start by defining an order on black vertices.

We fix an integer k ≥ 1 and a labelled k-layer map M. To each black vertex v of M
we associate the triplet of positive integers (i, n, j), where i is the layer containing the
vertex, n is its degree, and j is the number given to v by the labelling of the map. By
definition, the triplets associated with two distinct black vertices are different. We define
then a linear order ≺M on the black vertices of M given by the lexicographic order on
the triplets (−i, n, j). In other terms, the maximal black vertex with respect to ≺M is the
vertex contained in the layer of smallest index, and having maximal degree and maximal
label. Note that when we delete the maximal vertex from a k-layer map and all the edges
incident to it, the map obtained is also a k-layer map.

We now introduce a statistic of non-orientability on k-layer labelled maps which will
have a key role in this paper.
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ẽ
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F2

ẽ
F1

F2

(b)

Figure 2: The different ways of adding an edge on a map. The added edge is repre-
sented each time by a band, that can be twisted at most once. The arrows indicate how
the added edge connects the two respective corners. Figure 2a: a pair of twisted edges
(e, ẽ) between two corners of the same face; e is a diagonal while ẽ is a twist. Figure 2b:
A pair of twisted edges (e, ẽ) between two corners of different faces F1 and F2. If F1 and
F2 are on the same connected component then the edges e and ẽ are handles, otherwise
they are bridges.

Definition 3.2 (Statistic of non-orientability on k-layer maps). Let ρ be a MON and let M
be a connected labelled k-layer map of size n. We define the b-weight ρ(M) of M, as the weight
obtained by decomposing M recursively as following. If M is the empty map then ρ(M) = 1.
Otherwise, let v be the maximal black vertex of M with respect to ≺M, and let c be its root
and d its degree. We denote by e1, . . . , ed the edges incident to v as they appear when we turn
around v starting from the root c. Let M′ be the map obtained from M by deleting v and all
the edges incident to it. Then, by definition ρ(M) := ρ(M, e1, . . . , ed) · ρ(M′). We extend
this definition to disconnected maps by multiplicativity; if M is a labelled k-layer map with
m connected components M1, . . . , Mm, then ρ(M) := ∏1≤i≤m ρ(Mi). Finally, we define the
statistic ϑρ on labelled multi-layer maps with values in non-negative integers, defined for every
M by ρ(M) = bϑρ(M).

It follows from the definitions that ϑρ is a statistic of non-orientability over labelled
bipartite maps. We prove that Theorem 1.3 holds for every statistic of the form ϑρ.

4 Idea of the proof of Theorem 1.3

The starting point of the proof of Theorem 1.3 is a characterization of Jack characters
due to Féray (see Section 4.1).

4.1 Féray’s characterization of Jack characters

Roughly, an α-shifted symmetric function f (s1, s2, . . . ) (a shifted function for short) is
a function which is symmetric in the variables si − i/α. If f is a shifted function and
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λ a partition, then we denote f (λ) := f (λ1, λ2, . . . , λℓ(λ), 0, . . . ). A shifted function is
completely determined by its evaluation on Young diagrams ( f (λ))λ∈Y, which gives an
identification between shifted functions and functions on Young diagrams. In particu-
lar, Jack characters defined as functions on Young diagrams in Section 1.1 can be seen
as shifted functions. The starting point of the proof of the main theorem is the follow-
ing characterization of the Jack characters θ

(α)
µ which is due to Valentin Féray (see [17,

Theorem A.2]).

Theorem 4.1. Fix a partition µ. The Jack character θ
(α)
µ is the unique α-shifted symmetric

function of degree |µ| with top homogeneous part α|µ|−ℓ(µ)/zµ · pµ, such that θ
(α)
µ (λ) = 0 for

any partition |λ| < |µ|.

4.2 The generating series of k-layer maps

Fix k ≥ 1. We define the generating series of k-layer maps:

F(k) (t, p, s1, . . . , sk) := ∑
M∈M(k)

(−t)|M|pν⋄(M)b
ϑρ(M)

2|V•(M)|−cc(M)αcc(M) ∏
1≤i≤k

(−αsi)
|V (i)◦ (M)|

z
ν
(i)
• (M)

. (4.1)

We also consider the projective limit F(∞) := lim←− F(k).
Note that the normalizing factors which appear in this definition are related to the

definition of labelling we use here3. This labelling allows to deal with maps with trivial
automorphism groups and also plays an important role in the definition of statistic of
non-orientability Section 3.

To obtain Theorem 1.3, we prove that [t|µ|pµ]F(∞)(λ1, . . . , λℓ(λ), 0, . . . ) satisfies the
conditions of Theorem 4.1. To this purpose we express the functions F(k) using the
differential operators introduced in [2].

5 Lassalle’s conjecture

5.1 Positivity - ideas

We consider two sequences of variables s = (s1, s2, . . . ) and r = (r1, r2, . . . ). We introduce
a bivariate version of the generating series of k-layer maps

F̃(∞)

(
t, p,

s1 s2 . . .
r1 r2 . . .

)
= ∑

M∈M(∞)

(−t)|M|pν⋄(M)b
ϑρ(M)

2|V•(M)|−cc(M)αcc(M) ∏
i≥1

r|V
(i)
• (M)|

i (−αsi)
|V (i)◦ (M)|

z
ν
(i)
• (M)

. (5.1)

3the factor 2|V•(M)|−cc(M) can be omitted by using a finer labelling
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Hence the functions F(∞) defined in Equation (4.1) are obtained as a specialization of
F̃(k):

F(∞)(t, p, s1, s2, . . . ) = F̃(∞)

(
t, p,

s1 s2 . . .
1 1 . . .

)
.

Proposition 5.1. Let λ be a partition, and let
(

s1 . . . sk
r1 . . . rk

)
be multirectangular coordinates

of λ. Then

F̃(∞)

(
t, p,

s1 . . . sk 0 . . .
r1 . . . rk 0 . . .

)
= F(∞)(t, p, λ1, . . . , λℓ(λ), 0, . . . ).

As a consequence of Theorem 1.3 and Proposition 5.1, we obtain that for any parti-
tion µ

θ̃
(α)
µ (s, r) = [t|µ|pµ]F̃(∞)

(
t, p,

s1 . . . sk 0 . . .
r1 . . . rk 0 . . .

)
, (5.2)

where s = (s1 . . . , sk, 0, . . . ) and r = (r1, . . . , rk, 0, . . . ). We now prove the positivity in
Lassalle’s conjecture.

Proof of the positivity in Theorem 1.6. Comparing Equation (5.1) and Equation (5.2) and
taking the limit on k we get that for every MON ρ

θ̃
(α)
µ (s, r) = (−1)|µ| ∑

M∈M(∞)
µ

bϑρ(M)

2|V•(M)|−cc(M)αcc(M) ∏
i≥1

r|V
(i)
• (M)|

i (−αsi)
|V (i)◦ (M)|

z
ν
(i)
• (M)

. (5.3)

Since every connected component of a bipartite map component contains at least one
white vertex, the α-term which appears in the denominator is compensated. This con-
cludes the proof of the positivity.

5.2 Integrality - ideas

Let Ch(α)
µ := zµ

√
α
|µ|−ℓ(µ) θ̃

(α)
µ . For a positive integer k define free cumulant R(α)

k+1 as

R(α)
k+1 := 2k ∑

T∈M(∞)
(k)

|V•(T)|+|V◦(T)|=k+1

∏
i≥1

(
ri

2
√

α

)|V (i)• (T)| (−
√

αsi)
|V (i)◦ (T)|

z
ν
(i)
• (T)

.

The constraints for the summation index says that the sum runs over all bicolored trees

with extra labelings and rootings. In particular, the normalization factors 2|V
(i)
• (T)|z

ν
(i)
• (T)

will be compensated by the number of labelings and rootings and in effect it can be
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shown that the free cumulants are polynomials in −
√

αs1,−
√

αs2 . . . , r1√
α

, r2√
α

. . . with
integer coefficients, see [4].

We prove the following theorem that is a weaker version of another conjecture of
Lassalle about the structure of Kerov polynomials for Jack characters [13].

Theorem 5.2. For every partition µ there exists a polynomial Kµ ∈ Z[x1, x2, x3, x4, . . . ]

such that Ch(α)
µ = Kµ(

√
α
−1 −

√
α, R(α)

2 , R(α)
3 , . . . ). In particular zµθ̃

(α)
µ is a polynomial in

b,−s1,−s2 . . . , r1, r2, . . . with integer coefficients.

The polynomial Kµ is called Kerov polynomial, and the last sentence in the above
theorem follows from the bound on the degree of Kµ and its parity proved in [3][Propo-
sition 3.10].

We deduce Theorem 5.2 from an explicit combinatorial formula for the moments ex-
pressed as a linear combination of Jack characters. A classical relation between moments
and free cumulants reads:

M(α)
k = ∑

π∈NC([1..k])
∏
B∈π

R(α)
|B| , (5.4)

where we sum over all non-crossing partitions of the set [1..k]. For any partition µ define
µ± 1 := (µ1± 1, . . . , µℓ(µ)± 1) and M(α)

µ := ∏
ℓ(µ)
i=1 M(α)

µi . We prove the following formula:

M(α)
µ+1 = Ch(α)

µ + ∑
ν<µ+1

aµ
ν−1 Ch(α)

ν−1 +
|µ|−ℓ(µ)

∑
i=1

∑
ν : |ν+1|=|µ+1|−i

γiaµ
ν Ch(α)

ν , (5.5)

where aµ
ν are positive integers with an explicit combinatorial interpretation as numbers of

some lattice paths (that we won’t describe in details due to lack of space). In particular
Equation (5.5) defines a unitriangular system of equations over Z, therefore it can be
inverted and then Theorem 5.2 follows applying (5.4). The proof of Equation (5.5) relies
on the analysis of the integrable system developed by Nazarov–Sklyanin in [16].
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