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Abstract. We study the Hilbert–Poincaré series of three algebraic objects arising in the
Chow-theoretic and Kazhdan–Lusztig framework of matroids. These are, respectively,
the Hilbert–Poincaré series of the Chow ring, the augmented Chow ring, and the inter-
section cohomology module. We develop and highlight an explicit parallelism between
the Kazhdan–Lusztig polynomial of a matroid and the Hilbert–Poincaré series of its
Chow ring that extends naturally to the Hilbert–Poincaré series of both the intersection
cohomology module and the augmented Chow ring.
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1 Introduction

Starting from a loopless matroid M, one can construct various algebraic objects having
good properties that in turn can be used to answer purely combinatorial questions.
Three notable examples of such objects are the Chow ring CH(M), the augmented Chow
ring CH(M), and the intersection cohomology module IH(M). These three algebraic
structures possess a number of remarkable features and play an instrumental role in
the proofs of the log-concavity of the Whitney numbers of the first kind [1], and the top-
heaviness of the Whitney numbers of the second kind of the lattice of flats L(M) [7]. Our
main objects of study in this article are the coefficients of the respective Hilbert–Poincaré
series of each of these three structures.
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The intersection cohomology module IH(M) is particularly relevant in the Kazhdan–
Lusztig theory of matroids. Its Hilbert–Poincaré series is known in the literature as the
Z-polynomial of the matroid M and is denoted by ZM(x). The history is as follows. First,
in [23], Proudfoot, Xu, and Young introduced the Z-polynomial using a purely combina-
torial language (i.e., via the displayed equation in Theorem 1 (iii) below), without making
reference to any notion of intersection cohomology for arbitrary matroids (at that point).
Later, in [7], Braden, Huh, Matherne, Proudfoot, and Wang introduced the intersection
cohomology module IH(M) of a matroid M and showed that the combinatorially-defined
ZM(x) is equal to the Hilbert–Poincaré series of IH(M).

In fact, the Z-polynomial is strongly related to the Kazhdan–Lusztig polynomial
of M, denoted PM(x) and first studied by Elias, Proudfoot, and Wakefield in [11]. The
following can be used as a simultaneous recursive definition for both the Kazhdan–
Lusztig and Z-polynomials of matroids.

Theorem 1 ([23, 8]). There is a unique way to assign to each loopless matroid M a polynomial
PM(x) ∈ Z[x] such that the following properties hold:

(i) If rk(M) = 0, then PM(x) = 1.

(ii) If rk(M) > 0, then deg PM(x) < 1
2 rk(M).

(iii) For every matroid M, the polynomial

ZM(x) := ∑
F∈L(M)

xrk(F) PM/F(x)

is palindromic.1

The original definition of the Kazhdan–Lusztig polynomials of Elias, Proudfoot, and
Wakefield is given by the following result, which provides a recursion that defines them
uniquely in terms of characteristic polynomials of restrictions M|F and Kazhdan–Lusztig
polynomials of contractions M/F for flats F ∈ L(M). This does not make any reference
to the Z-polynomial.

Theorem 2 ([11]). There is a unique way to assign to each loopless matroid M a polynomial
PM(x) ∈ Z[x] such that the following conditions hold:

(i) If rk(M) = 0, then PM(x) = 1.

(ii) If rk(M) > 0, then deg PM(x) < 1
2 rk(M).

1In this context, we say that p(x) is palindromic if p(x) = xd p(x−1) where d = deg p(x). For example,
the polynomial q(x) = x2 + x is not palindromic, even though it satisfies x3q(x−1) = q(x).
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(iii) For every matroid M, the following recursion holds:

xrk(M)PM(x−1) = ∑
F∈L(M)

χM|F(x) PM/F(x).

These results provide compact and purely combinatorial definitions of PM(x) and
ZM(x). However, many properties of these families of polynomials are not easy to de-
duce from such statements. For instance, a non-obvious property that these polynomials
possess is the nonnegativity of their coefficients. In fact, another important result of [7]
precisely establishes this nonnegativity by proving that the coefficients of these polyno-
mials are given by certain graded dimensions; more precisely, ZM(x) = Hilb(IH(M), x)
and PM(x) = Hilb(IH(M)∅, x) (see [7, Theorem 1.9]).

We now turn history on its head. Recall that in the Kazhdan–Lusztig setting, the
combinatorially-defined Kazhdan–Lusztig and Z-polynomials came first, and their de-
scriptions as Hilbert–Poincaré series of IH(M)∅ and IH(M) came later. For the Chow-
theoretic setting, the Chow ring CH(M) and augmented Chow ring CH(M) were first
introduced in [12] and [6], respectively. In what follows, we give an “intrinsic" combina-
torial definition of their Hilbert–Poincaré series by mirroring Theorem 1 and Theorem 2.
(Theorem 5 below asserts that these polynomials are indeed the correct Hilbert–Poincaré
series.) These combinatorial definitions can be seen as the point of departure of our
study.

Theorem 3. There is a unique way to assign to each loopless matroid M a palindromic polynomial
HM(x) ∈ Z[x] such that the following properties hold:

(i) If rk(M) = 0, then HM(x) = 1.

(ii) If rk(M) > 0, then deg HM(x) = rk(M)− 1.

(iii) For every matroid M, the polynomial

HM(x) := ∑
F∈L(M)

xrk(F) HM/F(x)

is palindromic.

Similar to the case of the Kazhdan–Lusztig polynomials and the Z-polynomials, a
non-trivial property that one is able to observe is that the polynomials HM(x), and there-
fore also the polynomials HM(x), appear to have nonnegative coefficients. On the other
hand, given the resemblance between Theorem 3 and Theorem 1, it is reasonable to ask
for a counterpart for Theorem 2 in this alternative setting.

Theorem 4. There is a unique way to assign to each loopless matroid M a polynomial HM(x) ∈
Z[x] such that the following conditions hold:
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(i) If rk(M) = 0, then HM(x) = 1.

(ii) For every matroid M, the following recursion holds:

HM(x) = ∑
F∈L(M)

F ̸=∅

χM|F(x)HM/F(x).

As it is stated, the proof of this fact is an easy induction. What is much less evident
is that the polynomials HM(x) arising from this result coincide with those arising from
Theorem 3. In particular, it is already a non-trivial and interesting conclusion that the
polynomials as defined in Theorem 4 are palindromic, as this is not at all hinted by the
recursion. A slight difference with respect to Theorem 2 that deserves a comment is that
the polynomial HM(x) is defined recursively via a convolution of itself with the reduced
characteristic polynomial. Again, the nonnegativity of the coefficients of HM(x) is not
easy to deduce from this recursion and, moreover, the fact that the reduced characteristic
polynomial has coefficients that alternate in sign introduces an additional issue.

The polynomials HM(x) and HM(x) are less manageable than PM(x) and ZM(x) from
a computational point of view. For example neither HM(x) nor HM(x) behave well
under direct sums of matroids; one possible explanation for this is that the reduced
characteristic polynomial of a direct sum is not the product of the reduced characteristic
polynomials of the summands and, in particular, the argument that Elias, Proudfoot,
and Wakefield used in [11, Proposition 2.7] to prove that PM1⊕M2(x) = PM1(x)PM2(x)
does not hold.

The key step towards deducing that the coefficients of these polynomials are always
nonnegative integers is given by the following connection with the Chow ring and the
augmented Chow ring.

Theorem 5. Let M be a loopless matroid. The polynomial HM(x) is the Hilbert–Poincaré series
of the Chow ring CH(M) of M. The polynomial HM(x) is the Hilbert–Poincaré series of the
augmented Chow ring CH(M). In particular, both of them have nonnegative coefficients.

The proof relies essentially on a construction of Feichtner and Yuzvinsky [12] of
a certain Gröbner basis for the Chow ring of atomic lattices with respect to arbitrary
building sets. The strategy is to start with a raw expression for the Hilbert–Poincaré
series of both the Chow ring and the augmented Chow ring and prove that they satisfy
the recursions of both Theorem 3 and Theorem 4; this is very much in resemblance to the
proof of the positivity of the coefficients of the Kazhdan–Lusztig and the Z-polynomials
in [7, Theorem 1.2].

Remark 6. The reduced characteristic polynomial is a Tutte–Grothendieck invariant of the ma-
troid, i.e., the Tutte polynomial of the matroid determines it. A natural question that one could
ask is whether the Hilbert–Poincaré series of the Chow ring has the same property. As can be
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seen from Theorem 4, the map M 7→ HM(x) is essentially the inverse of the map M 7→ χM(x) in
the incidence algebra of the lattice of flats. In spite of that, we can find two matroids M1 and M2
of rank 4 on 7 elements having the same Tutte polynomial but whose Chow rings have different
Hilbert–Poincaré series. Precisely, consider the matroids M∗

1 and M∗
2 depicted in Figure 1 (the

reason for depicting the duals instead of the original matroids is that they have rank 3):
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2
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Figure 1: The duals of the matroids M1 and M2

The matroids M1 and M2 have the same Tutte polynomial:

TM1(x, y) = TM2(x, y) = x4 + 3x3 + 2x2y + xy2 + y3 + 4x2 + 5xy + 3y2 + 2x + 2y.

However, we have

HM1
(x) = x3 + 30x2 + 30x + 1,

HM2
(x) = x3 + 31x2 + 31x + 1.

Moreover, the same example shows that the Hilbert–Poincaré series of the augmented Chow ring
is not an evaluation of the Tutte polynomial because

HM1(x) = x4 + 37x3 + 98x2 + 37x + 1,

HM2(x) = x4 + 38x3 + 102x2 + 38x + 1.

We also mention explicitly the fact that neither HM(x) nor HM(x) determines the other.

2 Real-rootedness and gamma-positivity

As mentioned earlier, one can view Theorem 3 and Theorem 4 as “intrinsic” combinato-
rial definitions of the Hilbert–Poincaré series of the rings CH(M) and CH(M), avoiding
their explicit construction.

Given the similarity that we have with the counterpart definitions in the Kazhdan–
Lusztig framework, some statements (many of which are still conjectural) regarding
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the Kazhdan–Lusztig polynomial and the Z-polynomial of matroids now admit natural
analogues for the Chow ring and the augmented Chow ring.

Two outstanding conjectures posed in [16] and [23] assert the real-rootedness of both
PM(x) and ZM(x). A well known fact (see, e.g., [9]) is that the real-rootedness of a
polynomial with positive coefficients implies that the coefficients form an ultra log-
concave sequence and, in the case the polynomial is palindromic, that it is γγγ-positive.
Each of these two properties, i.e., ultra log-concavity or γ-positivity, is also known to be
stronger than the unimodality of the coefficients of the polynomial.

The similarity between the defining recursions of the polynomials arising in Theo-
rem 1 and Theorem 3, and a significant amount of experimentation, make it plausible
to postulate that these desirable properties of the coefficients might hold for HM(x) and
HM(x) as well. Indeed, these conjectural properties had already been observed in the
literature.

Conjecture 7. For every matroid M, the following polynomials have only real roots.

• ([14, Conjecture 10.19]) The polynomial HM(x), i.e., the Hilbert–Poincaré series of the
Chow ring CH(M).

• ([25, Conjecture 4.3.3]) The polynomial HM(x), i.e., the Hilbert–Poincaré series of the
augmented Chow ring CH(M).

• ([23, Conjecture 5.1]) The polynomial ZM(x), i.e., the Hilbert–Poincaré series of the inter-
section cohomology module IH(M).

• ([16, Conjecture 3.2]) The polynomial PM(x), i.e., the Hilbert–Poincaré series of the stalk
IH(M)∅ at the empty flat of IH(M)2.

The main result of Adiprasito, Huh, and Katz [1, Theorem 1.4] asserts the validity
of the Kähler package for the Chow rings of matroids. In particular, Poincaré duality
and the hard Lefschetz theorem are valid, and they imply respectively the palindromic-
ity and the unimodality of the coefficients of the Hilbert–Poincaré series of the Chow
ring. On the other hand, the Kähler package was proved for the augmented Chow
ring by Braden, Huh, Matherne, Proudfoot, and Wang in [6, Theorem 1.6] and for the
intersection cohomology module in [7, Theorem 1.6], so one can conclude analogous
statements for the Hilbert–Poincaré series of CH(M) and IH(M). Less is known regard-
ing the Hilbert–Poincaré series of IH(M)∅, i.e., the Kazhdan–Lusztig polynomial PM(x).
Although its coefficients are nonnegative, it is not known whether they are always uni-
modal.

2We note that CH(M) and IH(M) are both modules over the graded Möbius algebra H(M). We make
this point only to be able to define IH(M)∅, which depends on the H(M)-module structure. As the
purpose of this paper is to study various Hilbert–Poincaré series, we only need to view H(M), H(M),
CH(M), CH(M), IH(M), and IH(M)∅ as graded vector spaces.
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Another of our contributions will be to provide a proof of the γ-positivity for three of
the families of polynomials above (the palindromic ones, those for which this statement
is meaningful).

Theorem 8. For every matroid M, the polynomials HM(x), HM(x), and ZM(x) are γ-positive.

This result gives further evidence to part of Conjecture 7, and resolves a problem
posed in [13, Conjecture 5.6] by Ferroni, Nasr, and Vecchi that was known to hold only
in certain cases. The proofs of the γ-positivity of each of these families are surprisingly
simple, and depend only on a recursion witnessed by the validity of the semi-small
decompositions of [6] for the Chow ring and the augmented Chow ring. For the inter-
section cohomology, a recursion found by Braden and Vysogorets [8] does the job.

Remark 9. Two natural questions that are reasonable to formulate are whether the Kazhdan–
Lusztig polynomial PM(x) is a “non-symmetric γ-positive” polynomial, in the sense of [3, Section
5.1], and whether the equivariant Z-polynomial (see [23, Section 6]) is “equivariant γ-positive”,
in the sense of [3, Section 5.2]. The answer to both of these questions is negative, and it is possible
to provide explicit counterexamples.

3 Uniform matroids, binomial Eulerian polynomials, and
matroid polytopes

The case of uniform matroids is of particular interest both in the Kazhdan–Lusztig and
Chow-theoretic frameworks.

For the Z-polynomial and the Kazhdan–Lusztig polynomial of uniform matroids,
some explicit formulas are known (see e.g. [15]); we point out that the real-rootedness
of PM(x) and ZM(x) for M ∼= Uk,n are still open problems.

For the Hilbert–Poincaré series of both the Chow ring and the augmented Chow ring,
the situation is also complicated. The polynomials HM(x) for arbitrary uniform matroids
were addressed by Hameister, Rao, and Simpson in [18]; they give a nice description of
HUk,n

(x) in terms of statistics of permutations, but this description turns out to be quite
intricate from a computational point of view.

For Boolean matroids, the polynomial HM(x) has been studied in detail recently in
[22, 4, 24, 17, 19, 10]. To be precise, for a Boolean matroid M ∼= Un,n one has that HM(x) =
An(x), the n-th Eulerian polynomial (named this way in [24]), whereas HM(x) = Ãn(x) is
the n-th binomial Eulerian polynomial; notice that the recursion in Theorem 3 (iii) asserts
the identity

Ãn(x) =
n

∑
j=0

(
n
j

)
xj An−j(x).
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One can see the Hilbert–Poincaré series of Chow rings and augmented Chow rings as
vast generalizations of these polynomials, and within this broader framework one can
derive some interesting identities between them.

The polynomials PM(x), ZM(x), HM(x), and HM(x) are defined recursively. In partic-
ular, computing them for fairly small matroids is already a challenging computational
task. Towards simplifying their computation, a further contribution we make is extend-
ing a result of Ardila and Sanchez [2, Theorem 8.9] by proving the following result for
HM(x) and HM(x).

Theorem 10. The maps M 7→ HM(x) and M 7→ HM(x) are valuative under matroid polytope
subdivisions.

In other words, one can compute the Hilbert–Poincaré series of the augmented Chow
ring of a matroid M by subdividing its base polytope P(M) into smaller matroid poly-
topes and computing it for those smaller pieces. As a consequence, by using the notion of
relaxations of stressed subsets of Ferroni and Schröter [14], one proves that the Hilbert–
Poincaré series of the Chow ring and augmented Chow ring behave well under relax-
ations of stressed subsets (in particular, stressed hyperplanes). This in turn yields fast
ways of computing HM(x) and HM(x) for certain conjecturally “predominant” classes
of matroids.3 In particular, for the class of paving matroids, we obtain the following
expressions in analogy to [13, Theorem 1.4].

Theorem 11. Let M be a paving matroid of rank k and cardinality n. Then,

HM(x) = HUk,n
(x)− ∑

h≥k
λh

(
HUk,h+1

(x)− HUk−1,h⊕U1,1
(x)

)
,

HM(x) = HUk,n(x)− ∑
h≥k

λh

(
HUk,h+1(x)− HUk−1,h⊕U1,1(x)

)
,

where λh denotes the number of stressed hyperplanes of size h in M.

In order to make these formulas useful in practice, we prove a conjecture of Hameis-
ter, Rao, and Simpson [18, Conjecture 6.2]; this and its analogue in the augmented case
yield an explicit formula for HUk,n

(x) and HUk,n(x) for arbitrary uniform matroids. We
state an equivalent reformulation now, which also highlights the connection with (bino-
mial) Eulerian polynomials.

3In the terminology of Mayhew et al. [21], we mean that asymptotically almost every matroid lies in
the alleged class.
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Theorem 12. The Hilbert–Poincaré series of the Chow ring and the augmented Chow ring of a
uniform matroid of rank k and cardinality n are given by

HUk,n
(x) =

k−1

∑
j=0

(
n
j

)
Aj(x) χUk−j,n−j

(x),

HUk,n(x) =
k−1

∑
j=0

(−1)k−1−j
(

n
j

)(
n − 1 − j
k − 1 − j

)
Ãj(x)

1 − xk−j+1

1 − x
.

These formulas can be plugged into the equations in Theorem 11 to provide a very
fast way of computing the Hilbert–Poincaré series of Chow rings and augmented Chow
rings of all paving matroids. In particular, we can test with a computer the validity of
Conjecture 7 for sparse paving matroids with up to 40 elements.4

Proposition 13. Let M be a sparse paving matroid on a ground set with at most 40 elements.
Then both HM(x) and HM(x) are real-rooted polynomials.

4 Monotonicity on coefficients

An unpublished conjecture posed by Gedeon asserts that the maximum of the coeffi-
cients of the Kazhdan–Lusztig and Z-polynomial of a matroid of rank k and size n is
attained when the matroid is isomorphic to Uk,n; this conjecture first appeared in print
in [20, Conjecture 1.2]. It is known to hold for all paving matroids [13, Theorem 1.5].
Here we prove that its counterpart for the polynomials HM(x) and HM(x) indeed holds
for all matroids.

Theorem 14. Let M be a loopless matroid of rank k on a ground set of size n. The following
coefficient-wise inequalities hold:

HM(x) ⪯ HUk,n
(x),

HM(x) ⪯ HUk,n(x).

In other words, uniform matroids maximize coefficient-wisely the coefficients of the Hilbert–
Poincaré series of Chow rings and augmented Chow rings among all matroids with fixed rank
and size.

The key gadget to prove this conjecture is given by the construction of an injective
map from the barycentric subdivision of the lattice of flats of each matroid of rank k

4We observe that, using a rough estimation [5, Equation (10)], there are approximately 2240/60 ≈
105000000000 sparse paving matroids on a ground set of cardinality 40.
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Table 1: Examples of HM(x) and HM(x) for some uniform matroids M

(a) Examples of HUk,k+1
(x)

k = 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
x 1 7 21 51 113 239
x2 1 21 161 813 3361
x3 1 51 813 7631
x4 1 113 3361
x5 1 239
x6 1

(b) Examples of HUk,k+1(x)

k = 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
x1 1 4 11 26 57 120 247
x2 1 11 66 302 1191 4293
x3 1 26 302 2416 15619
x4 1 57 1191 15619
x5 1 120 4293
x6 1 247
x7 1

(c) Examples of HUk,k+2
(x)

k = 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
x1 1 11 36 92 211 457
x2 1 36 337 1877 8269
x3 1 92 1877 20155
x4 1 211 8269
x5 1 457
x6 1

(d) Examples of HUk,k+2(x)

k = 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
x1 1 5 16 42 99 219 466
x2 1 16 117 610 2641 10204
x3 1 42 610 5637 40444
x4 1 99 2641 40444
x5 1 219 10204
x6 1 466
x7 1

and cardinality n to the barycentric subdivision of the lattice of flats of Uk,n. This can be
combined with some of our formulas for HM(x) and HM(x), which show that these two
polynomials can be written as a sum of polynomials with positive coefficients indexed
by chains of flats.
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